On p-Laplacian reaction-diffusion problems with dynamical boundary conditions in perforated media - Archive ouverte HAL
Article Dans Une Revue Mediterranean Journal of Mathematics Année : 2023

On p-Laplacian reaction-diffusion problems with dynamical boundary conditions in perforated media

Résumé

This paper deals with the homogenization of the p-Laplacian reaction-diffusion problems in a domain containing periodically distributed holes of size ε, with a dynamical boundary condition of pure-reactive type. We generalize our previous results (see [2]) established in the case where the diffusion is modeled by the Laplacian operator, i.e., with p = 2. We prove the convergence of the homogenization process to a nonlinear p-Laplacian reaction-diffusion equation defined on a unified domain without holes with zero Dirichlet boundary condition and with extra terms coming from the influence of the nonlinear dynamical boundary conditions.
Fichier principal
Vignette du fichier
Anguiano_Hal_V2.pdf (350.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02881568 , version 1 (25-06-2020)
hal-02881568 , version 2 (20-01-2023)
hal-02881568 , version 3 (13-08-2023)

Identifiants

Citer

María Anguiano. On p-Laplacian reaction-diffusion problems with dynamical boundary conditions in perforated media. Mediterranean Journal of Mathematics, 2023, 20 (3), pp.124. ⟨10.1007/s00009-023-02333-1⟩. ⟨hal-02881568v2⟩
501 Consultations
354 Téléchargements

Altmetric

Partager

More