Bottom of the $L^2$ spectrum of the Laplacian on locally symmetric spaces
Résumé
We estimate the bottom of the $L^2$ spectrum of the Laplacian on locally symmetric spaces in terms of the critical exponents of appropriate Poincaré series. Our main result is the higher rank analog of a characterization due to Elstrodt, Patterson, Sullivan and Corlette in rank one. It improves upon previous results obtained by Leuzinger and Weber in higher rank.
Origine | Fichiers produits par l'(les) auteur(s) |
---|