Bottom of the $L^2$ spectrum of the Laplacian on locally symmetric spaces - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Bottom of the $L^2$ spectrum of the Laplacian on locally symmetric spaces

Jean-Philippe Anker
Hong-Wei Zhang
  • Fonction : Auteur
  • PersonId : 1073373

Résumé

We estimate the bottom of the $L^2$ spectrum of the Laplacian on locally symmetric spaces in terms of the critical exponents of appropriate Poincaré series. Our main result is the higher rank analog of a characterization due to Elstrodt, Patterson, Sullivan and Corlette in rank one. It improves upon previous results obtained by Leuzinger and Weber in higher rank.
Fichier principal
Vignette du fichier
AZ.pdf (468.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02865274 , version 1 (11-06-2020)
hal-02865274 , version 2 (22-07-2021)

Identifiants

  • HAL Id : hal-02865274 , version 1

Citer

Jean-Philippe Anker, Hong-Wei Zhang. Bottom of the $L^2$ spectrum of the Laplacian on locally symmetric spaces. 2020. ⟨hal-02865274v1⟩
149 Consultations
168 Téléchargements

Partager

More