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Introduction

We adopt the standard notation and refer to [START_REF] Helgason | Groups and geometric analysis, Mathematical Surveys and Monographs[END_REF] for more details. Let G be a semi-simple Lie group, connected, noncompact, with finite center, and K be a maximal compact subgroup of G. The homogeneous space X = G/K is a Riemannian symmetric space of noncompact type. Let g = k ⊕ p be the Cartan decomposition of the Lie algebra of G. The Killing form of g induces a K-invariant inner product . , . on p, hence a G-invariant Riemannian metric on G/K. Fix a maximal abelian subspace a in p. We identify a with its dual a * by means of the inner product inherited from p. Let Γ be a discrete torsion-free subgroup of G that acts freely and properly discontinuously on X. Then Y = Γ\X is a locally symmetric space, whose Riemannian structure is inherited from X. We denote by d( . , . ) the joint Riemannian distance on X and Y , by n their joint dimension, and by their joint rank, which is the dimension of a.

Let Σ ⊂ a be the root system of (g, a) and let W be the associated Weyl group. Choose a positive Weyl chamber a + ⊂ a and let Σ + ⊂ Σ be the corresponding subsystem of positive roots. Denote by ρ = 1 2 α∈Σ + m α α the half sum of positive roots counted with their multiplicities. Occasionally we shall need the reduced root system Σ red = {α ∈ Σ | α 2 / ∈ Σ}.

Consider the classical Poincaré series P s (xK, yK) = γ∈Γ e -sd(xK,γyK) ∀ s > 0, ∀ x, y ∈ G (1.1) and denote by δ(Γ) = inf{s > 0 | P s (xK, yK) < +∞} its critical exponent, which is independent of xK and yK. Recall that δ(Γ) ∈ [0, 2 ρ ] may be also defined by Theorem 1.1. In the rank one case ( = 1), we have

δ(Γ) = lim sup R→+∞ log N R (xK, yK) R ∀ x, y ∈ G, where N R (xK, yK) = |{γ ∈ Γ | d(xK,
λ 0 (Y ) = ρ 2 if 0 ≤ δ(Γ) ≤ ρ , ρ 2 -(δ(Γ) -ρ ) 2 if ρ ≤ δ(Γ) ≤ 2 ρ . (1.2)
This result was extended in higher rank as follows by Leuzinger [Leu04] and Weber [START_REF] Weber | Heat kernel bounds, Poincaré series, and L 2 spectrum for locally symmetric spaces[END_REF]. Let ρ min = min H∈a + , H =1 ρ, H ∈ (0, ρ ]. Notice that ρ min = ρ in rank one and thus the following theorem reduces to Theorem 1.1.

Theorem 1.2. In the general case ( ≥ 1), the following estimates hold: • Upper bound:

λ 0 (Y ) ≤ ρ 2 if 0 ≤ δ(Γ) ≤ ρ , ρ 2 -(δ(Γ) -ρ ) 2 if ρ ≤ δ(Γ) ≤ 2 ρ .
• Lower bound:

λ 0 (Y ) ≥ ρ 2 if 0 ≤ δ(Γ) ≤ ρ min , max {0, ρ 2 -(δ(Γ) -ρ min ) 2 } if ρ min ≤ δ(Γ) ≤ 2 ρ .
In other terms,

               λ 0 (Y ) = ρ 2 if δ(Γ) ∈ 0, ρ min , λ 0 (Y ) ∈ ρ 2 -(δ(Γ)-ρ min ) 2 , ρ 2 if δ(Γ) ∈ ρ min , ρ , λ 0 (Y ) ∈ ρ 2 -(δ(Γ)-ρ min ) 2 , ρ 2 -(δ(Γ)-ρ ) 2 if δ(Γ) ∈ ρ , ρ +ρ min , λ 0 (Y ) ∈ 0, ρ 2 -(δ(Γ)-ρ ) 2 if δ(Γ) ∈ ρ +ρ min , 2 ρ .
In this paper, we first improve the lower bound of λ 0 (Y ) in Theorem 1.2 by a slight modification of the classical Poincaré series (1.1). Let δ (Γ) denote the critical exponent of the modified Poincaré series (2.7) associated to the polyhedral distance (2.1).

Theorem 1.3. The following lower bound holds for the bottom λ 0 (Y ) of the L 2 spectrum of -∆ on Y = Γ\G/K:

λ 0 (Y ) ≥ ρ 2 if 0 ≤ δ (Γ) ≤ ρ , ρ 2 -(δ (Γ) -ρ ) 2 if ρ ≤ δ (Γ) ≤ 2 ρ .
We obtain next a plain analog of Theorem 1.1 by considering a more involved family of Poincaré series. We denote by δ (Γ) the critical exponent of P s (xK, yK), see (3.3).

Theorem 1.4. The following characterization holds for the bottom λ 0 (Y ) of the L 2 spectrum of -∆ on Y = Γ\G/K:

λ 0 (Y ) = ρ 2 if 0 ≤ δ (Γ) ≤ ρ , ρ 2 -(δ (Γ) -ρ ) 2 if ρ ≤ δ (Γ) ≤ 2 ρ . (1.3) Remark 1.5. If Γ is a lattice, i.e., Y = Γ\G/K has finite volume, then λ 0 (Y ) = 0 and δ (Γ) = 2 ρ , hence δ (Γ) = 2 ρ . Furthermore δ(Γ) = 2 ρ [Alb99, Theorem 7.4].
As pointed out by Corlette [START_REF] Corlette | Hausdorff dimensions of limit sets. I[END_REF] in rank one and by Leuzinger [START_REF] Leuzinger | Kazhdan's property (T), L 2 -spectrum and isoperimetric inequalities for locally symmetric spaces[END_REF] in higher rank, if G has Kazhdan's property (T), then the following conditions are actually equivalent:

(a) Γ is a lattice, (b) λ 0 (Y ) = 0, (c) δ(Γ) = 2 ρ , (d) δ (Γ) = 2 ρ .
Remark 1.6. As for the Green function, the heat kernel

h Y t (ΓxK, ΓyK) = γ∈Γ h t (Ky -1 γ -1 xK)
on a locally symmetric space Y = Γ\G/K can be expressed and estimated by using the heat kernel h t on the symmetric space X = G/K, whose behavior is well understood [START_REF] Anker | Heat kernel and Green function estimates on noncompact symmetric spaces[END_REF][START_REF] Anker | The heat kernel on noncompact symmetric spaces[END_REF]. By adapting straightforwardly the methods carried out in [START_REF] Davies | Heat kernel bounds on hyperbolic space and Kleinian groups[END_REF][START_REF] Weber | Heat kernel bounds, Poincaré series, and L 2 spectrum for locally symmetric spaces[END_REF], and by applying Theorem 1.4 instead of Theorem 1.1 and Theorem 1.2, we refine the Gaussian bounds of h Y t and get rid in particular of ρ min . The following estimates hold for all t > 0 and all x, y ∈ G:

(i) Assume that δ (Γ) < ρ and let δ (Γ) < s < ρ . Then h Y t (ΓxK, ΓyK) t -n 2 (1 + t) n-D 2 e -ρ 2 t e -d(ΓxK,ΓyK) 2 4t P s (xK, yK). (ii) Assume that ρ ≤ δ (Γ) < 2 ρ and let δ (Γ) -ρ < s 1 < s 2 < ρ . Then h Y t (ΓxK, ΓyK) t -n 2 e -( ρ 2 -s 2 2 )t P ρ +s 1 (xK, yK). (iii) Assume that δ (Γ) < 2 ρ . Let s > δ (Γ) and ε > 0. Then h Y t (ΓxK, ΓyK) t -n 2 e -( ρ 2 -(δ (Γ)-ρ ) 2 -2ε)t e - d(ΓxK,ΓyK) 2 4(1+ε)t P s (xK, xK) 1 2 P s (yK, yK) 1 2 .

First improvement

In this section, we replace the Riemannian distance d on X by a polyhedral distance

d (xK, yK) = ρ ρ , (y -1 x) + ∀ x, y ∈ G, (2.1) 
where (y -1 x) + denotes the a + -component of y -1 x in the Cartan decomposition G = K(exp a + )K.

The corresponding balls, which reflect the volume growth of X at infinity, played an important role in [START_REF] Anker | L p Fourier multipliers on Riemannian symmetric spaces of the noncompact type[END_REF] and [START_REF] Anker ; Helgason | The spherical Fourier transform of rapidly decreasing functions. A simple proof of a characterization due to Harish-Chandra[END_REF]. More general polyhedral sets were considered in [START_REF] Anker | Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces[END_REF] and

[AAS10]. Proposition 2.1. d is a G-invariant distance on X.
Proof. Notice first that (2.1) descends from G×G to X ×X, as the map z By G-invariance, we may reduce to the case where zK = eK. According to Lemma 2.2 below,

→ z + is K-bi-invariant on G. The G-invariance
x + + (y -1 ) + -(y -1 x) +
belongs to the cone generated by the positive roots.

Lemma 2.2. For every x, y ∈ G, we have the following inclusion

co[W.(xy) + ] ⊂ co[W.(x + + y + )] (2.3) between convex hulls.
Proof. The inclusion (2.3) amounts to the fact that

x + + y + -(xy) +
belongs to the cone generated by the positive roots or, equivalently, to the inequality λ, (xy

) + ≤ λ, x + + λ, y + ∀ λ ∈ a + . (2.4)
It is enough to prove (2.4) for all highest weights λ of irreducible finite-dimensional complex representations π : G -→ GL(V ) with K-fixed vectors. According to Weyl's unitary trick (see for instance [Kna02, Proposition 7.15]), there exists an inner product on V such that

π(k) is unitary ∀ k ∈ K, π(a) is self-adjoint ∀ a ∈ exp a.
As λ is the highest weight of π, then e λ,(xy) + = π(xy) ≤ π(x) π(y) = e λ,x + e λ,y + = e λ,x + +y + .

Remark 2.3. The distance d is comparable to the Riemannian distance d. Specifically,

ρ min ρ d(xK, yK) ≤ d (xK, yK) ≤ d(xK, yK) ∀ x, y ∈ G. (2.5)
This follows indeed from

ρ min ρ H ≤ ρ ρ , H ≤ H ∀ H ∈ a + .
The volume of balls

B r (xK) = {yK ∈ X | d (yK, xK) ≤ r} was determined in [Ank90, Lemma 6].
For the reader's convenience, we recall the statement and its proof.

Lemma 2.4. For every x ∈ G and r > 0, we have

1 |B r (xK)| r n if 0 < r < 1, r -1 e 2 ρ r if r ≥ 1.
Remark 2.5. Notice the different large scale behavior, in comparison with the classical ball volume

|B r (xK)| r n if 0 < r < 1, r -1 2 e 2 ρ r if r ≥ 1,
see for instance [START_REF] Strömberg | Weak type L 1 estimates for maximal functions on noncompact symmetric spaces[END_REF] or [START_REF] Knieper | On the asymptotic geometry of nonpositively curved manifolds[END_REF].

Proof. By translation invariance, we may assume that x = e. Recall the integration formula α, H mα r n if r is small. Let us turn to r large. On the one hand, we estimate from above

X dx f (x) = const. K dk a + dH ω(H) f (k(exp H)K), ( 
|B r (eK)| {H∈a + | ρ,H ≤ ρ r} dH e 2 ρ,H 2 ρ r 0 ds s -1 e s r -1 e 2 ρ r .
On the other hand, let

H 0 ∈ a + . As ω(H) e 2 ρ,H ∀ H ∈ H 0 + a + , we estimate from below |B r (eK)| {H∈H 0 +a + | ρ,H ≤ ρ r} dH e 2 ρ,H 2 ρ r C 0 ds s -1 e s r -1 e 2 ρ r ,
where C 0 > 0 is a constant depending on H 0 .

1 The symbol f g between two non-negative expressions means that there exist constants 0 < A ≤ B < +∞

such that Ag ≤ f ≤ Bg.
Consider now the modified Poincaré series

P s (xK, yK) = γ∈Γ e -sd (xK,γyK) ∀ s > 0, ∀ x, y ∈ G (2.7) associated with d , its critical exponent δ (Γ) = inf{s > 0 | P s (xK, yK) < +∞} (2.8)
and the modified orbital counting function

N R (xK, yK) = |{γ ∈ Γ | d (xK, γyK) ≤ R}| ∀ R ≥ 0, ∀ x, y ∈ G.
(2.9)

The following proposition shows that (2.7), (2.8) and (2.9) share the properties of their classical counterparts.

Proposition 2.6. The following assertions hold: (i) δ (Γ) does not depend on the choice of x and y. 

(ii) 0 ≤ δ (Γ) ≤ 2 ρ . (iii) For every x, y ∈ G, δ (Γ) = lim sup R→+∞ log N R (xK, yK) R . ( 2 
N R (xK, yK) ≤ N R (xK, yK) ≤ N ρ ρ min R (xK, yK). Hence 0 ≤ δ(Γ) ≤ δ (Γ) ≤ ρ ρ min δ(Γ).
Proof. (i) follows from the triangular inequality. More precisely, let x 1 , y 1 , x 2 , y 2 ∈ G and s > 0. Then

d (x 2 K, γy 2 K) ≤ d (x 2 K, x 1 K) + d (x 1 K, γy 1 K) + d (γy 1 K, γy 2 K) d (y 1 K, y 2 K) ∀ γ ∈ Γ, hence γ∈Γ e -s d (x 1 K,γy 1 K) P s (x 1 K,y 1 K) ≤ e s{d (x 1 K,x 2 K)+d (y 1 K,y 2 K)} γ∈Γ e -s d (x 2 K,γy 2 K) P s (x 2 K,y 2 K)
.

(ii) According to (i), let us show, without loss of generality, that P s (eK, eK) < +∞ for every s > 2 ρ . According to Lemma 2.9 below, there exists r > 0 such that the balls B r (γK), with γ ∈ Γ, are pairwise disjoint in G/K. Let us apply the integration formula (2.6) to the function

f s (xK) = γ∈Γ e -sd (γK,eK) 1 B r (γK) (xK).
On the one hand, as is finite. By applying Lemma 2.9 below to y -1 Γy, we deduce that there exists r > 0 such that the balls B r (γyK), with γ ∈ Γ, are pairwise disjoint. Set

d (xK, eK) -d (γK, eK) ≤ r ∀ xK ∈ B r (γK),
Γ R (xK, yK) = {γ ∈ Γ | d (xK, γyK) ≤ R} ∀ R ≥ 0, ∀ x, y ∈ G.
Then the ball B R+r (xK) contains the disjoint balls B r (γyK), with γ ∈ Γ R (xK, yK). By computing volumes, we estimate

N R (xK, yK) = |Γ R (xK, yK)| ≤ |B R+r (xK)| |B r (eK)| (1 + R) -1 e 2 ρ R . Hence L(xK, yK) ≤ 2 ρ . Let us next show that L(xK, yK) is actually independent of x, y ∈ G. Given x 1 , y 1 , x 2 , y 2 ∈ G and R 1 > 0, let R 2 = R 1 + d (x 1 K, x 2 K) + d (y 1 K, y 2 K).
Then the triangular inequality

d (x 2 K, γy 2 K) ≤ d (x 2 K, x 1 K) + d (x 1 K, γy 1 K) + d (γy 1 K, γy 2 K) d (y 1 K, y 2 K) implies successively Γ R 1 (x 1 K, y 1 K) ⊂ Γ R 2 (x 2 K, y 2 K), N R 1 (x 1 K, y 1 K) ≤ N R 2 (x 2 K, y 2 K), L(x 1 K, y 1 K) ≤ L(x 2 K, y 2 K).
Let us finally prove the equality between δ (Γ) and L = L(eK, eK). For this purpose, observe that

P s = 1 + R∈N * γ∈Γ R Γ R-1 e -s d (eK,γK) 1 + R∈N * N R -N R-1 e -sR R∈N N R e -sR , (2.11) 
where we have written for simplicity

P s = P s (eK, eK), Γ R = Γ R (eK, eK) and N R = N R (eK, eK).
One the one hand, let s > L and set

ε = s-L 2 . By definition of L, N R e (L+ε)R ∀ R ≥ 0. Hence P s R∈N e -εR < +∞.
One the other hand, let s < L. By definition of L, there exists a sequence of integers

1 < R 1 < R 2 < • • • → +∞ such that N R j ≥ e sR j ∀ j ∈ N * .
Hence the series (2.11) diverges.

Remark 2.8. Here is an example where δ < δ . Consider the product Γ \G/K = (Γ 1 \G 1 /K 1 )×(Γ 2 \G 2 /K 2 ) of two locally symmetric spaces of rank one, with parameters ρ 1 , δ 1 and ρ 2 , δ 2 . Then

δ ≤ δ 2 1 + δ 2 2
(2.12)

and δ ≥ ρ 2 1 + ρ 2 2 max δ 1 ρ 1 , δ 2 ρ 2 .
(2.13)

Hence δ < δ if δ 1 ρ 1 = δ 2 ρ 2 .
Notice that there are plenty of such products, starting with the case where δ 1 = 2ρ 1 and δ 2 = 0. Let us first prove (2.12) and begin with some notation. Write for simplicity

N 1,R = (N 1 ) R (eK 1 , eK 1 ), N 2,R = (N 2 ) R (eK 2 , eK 2 ) and N R = N R (eK, eK), for every R ≥ 0. Moreover, for every D ⊂ R 2 + , denote by N (D) the number of γ = (γ 1 , γ 2 ) in Γ = Γ 1 × Γ 2 such that d 1 (γ 1 K 1 , eK 1 ), d 2 (γ 2 K 2 , eK 2 ) belongs to D. In R 2 + we consider the covering of D R = {(R 1 , R 2 ) ∈ R 2 + | R 2 1 +R 2 2 ≤ R 2 } by the two segments [0,R]×{0}, {0}×[0,R] and by the squares Q j 1 , j 2 = (j 1 , j 1 +1] ×(j 2 , j 2 +1], with j 2 1 + j 2 2 < R 2 . Then N R = N (D R ) ≤ N 1,R + N 2,R + j 2 1 +j 2 2 <R 2 N (Q j 1 , j 2 ) , (2.14) 
with

N (Q j 1 , j 2 ) = (N 1, j 1 +1 -N 1, j 1 )(N 2, j 2 +1 -N 2, j 2 ) ≤ N 1, j 1 +1 N 2, j 2 +1 . (2.15) 
Given s 1 > δ 1 and s 2 > δ 2 , there exist C ≥ 1 such that

N 1,R ≤ C e s 1 R and N 2,R ≤ C e s 2 R (2.16) 
for every R ≥ 0. By combining (2.14), (2.15) and (2.16), we get

N R ≤ C e s 1 R + C e s 2 R + C 2 j 2 1 +j 2
2 <R 2 e s 1 (j 1 +1)+s 2 (j 2 +1) .

(2.17)

Up to a multiplicative constant, the right hand side of (2.17) is bounded above by the integral

R 2 + ∩B(0,R+2) dR 1 dR 2 e s 1 R 1 + s 2 R 2 = R+2 0 dr r π 2
0 dθ e r (s 1 cos θ + s 2 sin θ) .

(2.18)

As the function θ -→ s 1 cos θ + s 2 sin θ reaches its maximum s 2 1 + s 2 2 at θ 0 = arctan s 2 s 1 , the latter integral is itself bounded above by

π 2 R+2 0 dr r e r √ s 2 1 +s 2 2 ≤ π 2 R+2 √ s 2 1 +s 2 2 e (R+2) √ s 2 1 +s 2 2 (2.19)
In conclusion, we obtain 

log N R R ≤ 2 log C + log π-log 2 -1 2 log(s 2 1 +s 2 2 ) R + log(R+2) R + R+2 R s 2
ρ 1 ≥ δ 2 ρ 2 . As d (γ K, eK) = ρ 1 ρ d 1 (γ 1 K 1 , eK 1 ) + ρ 2 ρ d 2 (γ 2 K 2 , eK 2 ) , the set {γ ∈ Γ | d (γ K, eK) ≤ R} contains the product {γ 1 ∈ Γ 1 | d 1 (γ 1 K 1 , eK 1 ) ≤ ρ ρ 1 R} × {e} , for every R ≥ 0. Hence N R ≥ N 1, ρ ρ 1
R , where N R = N R (eK, eK), and conseqently δ ≥ ρ ρ 1 δ 1 .

Lemma 2.9. 2 There exists r > 0 such that the balls B r (γK), with γ ∈ Γ, are pairwise disjoint in G/K.

Proof. Let r > 0. As Γ is discrete in G, its intersection with the compact subset

G r = {y ∈ G | d (yK, eK) ≤ r} = K exp{H ∈ a + | ρ, H ≤ ρ r} K
is finite. Moreover, as Γ is torsion-free,

γ + = 0 ∀ γ ∈ Γ\{e}.
Hence there exists r > 0 such that Γ ∩ G 2r = {e}, which implies that the sets γG r are pairwise disjoint in G. In other words, the balls B r (γK) are pairwise disjoint in G/K.

By using δ (Γ), we prove Theorem 1.3, which improves the lower bound in Theorem 1.2.

Proof of Theorem 1.3. Let us resume the approach in [Cor90, Section 4] and [Leu04, Section 3]. It consists in studying the convergence of the positive series

g Γ ζ (ΓxK, ΓyK) = γ∈Γ g ζ (Ky -1 γ -1 xK), (2.20) 
which expresses the kernel g Γ ζ of (-∆-ρ 2 +ζ 2 ) -1 on the locally symmetric space Y = Γ\G/K in terms of the corresponding Green function g ζ on the symmetric space X = G/K. Here ζ > 0 and ΓxK = ΓyK. Recall [AnJi99, Theorem 4.2.2] that

g ζ (exp H) α∈Σ + red 1 + α, H H --1 2 -|Σ + red | e -ρ,H -ζ H (2.21) for H ∈ a + large, let say H ≥ 1 2 , while g ζ (exp H) H -(n-2) if n > 2 log 1 H if n = 2
for H small, lets say 0 < H ≤ 1 2 . Thus (2.20) converges if and only if 

γ∈Γ α∈Σ + red 1+ α, (y -1 γ -1 x) + × × d(xK, γyK) --1 2 -|Σ + red | e -ρ d
(Y ):      λ 0 (Y ) = ρ 2 if δ (Γ) ≤ ρ , ρ 2 -(δ (Γ) -ρ ) 2 ≤ λ 0 (Y ) ≤ ρ 2 if δ(Γ) ≤ ρ ≤ δ (Γ), ρ 2 -(δ (Γ) -ρ ) 2 ≤ λ 0 (Y ) ≤ ρ 2 -(δ(Γ) -ρ ) 2 if ρ ≤ δ(Γ).
2 As observed by the referee, Lemma 3 still holds without the torsion-free assumption, provided that γ runs through Γ\(Γ ∩ K).

Second improvement

In this section, we obtain the actual higher rank analog of Theorem 1.1 by considering a further family of distances on X, which reflects the large scale behavior (2.21) of the Green function. Specifically, for every s > 0 and x, y ∈ G, let 

  γyK) ≤ R}| denotes the orbital counting function. Finally, let ∆ Y be the Laplace-Beltrami operator on Y and let λ 0 (Y ) be the bottom of the L 2 spectrum of -∆ Y . The following celebrated result, due to Elstrodt ([Els73a], [Els73b], [Els74]), Patterson [Pat76], Sullivan [Sul87] and Corlette [Cor90], expresses λ 0 (Y ) in terms of ρ and δ(Γ) in rank one.

  of d is straightforward from the definition (2.1). The symmetry d (xK, yK) = d (yK, xK) follows from (y -1 ) + = -w 0 .y + and -w 0 .ρ = ρ, (2.2) where w 0 denotes the longest element in the Weyl group. Let us check the triangular inequality d (xK, yK) ≤ d (xK, zK) + d (zK, yK).

  d s (xK, yK) = min{s, ρ } d (xK, yK) + max{s -ρ , 0} d(xK, yK) = s d (xK, yK) if 0 < s ≤ ρ , ρ d (xK, yK) + (s -ρ ) d(xK, yK) if s ≥ ρ .

  1) defines a G-invariant distance on X such thats d (xK, yK) ≤ d s (xK, yK) ≤ s d(xK, yK) ∀ s > 0, ∀ x, y ∈ G. (3.2)Consider the associated Poincaré seriesP s (xK, yK) = γ∈Γ e -d s (xK,γyK) ∀ s > 0, ∀ x, y ∈ G (3.3)and its critical exponentδ (Γ) = inf{s > 0 | P s (xK, yK) < +∞}. It follows from (3.2) that 0 ≤ δ(Γ) ≤ δ (Γ) ≤ δ (Γ) ≤ 2 ρ . (3.4)Proof of Theorem 1.4. In the proof of Theorem 1.

  We conclude by using the fact [Cor90, Section 4] that λ 0 (Y ) is the supremum of ρ 2 -ζ 2 over all ζ > 0 such that (2.20) converges.

	On the other hand, as	
	d(xK, γyK) --1 2 -|Σ + red |	e -εd(xK,γyK)
	Next statement is obtained by combining this lower bound with the upper bound in Theorem
	1.2.	
	Corollary 2.10. The following estimates hold for λ 0	

(xK,γyK)

-ζd

(xK,γyK) 

(2.22) converges. Let us compare the series (2.22) with the Poincaré series (1.1) and (2.7). On the one hand, as (y -1 γ -1 x) + = d(xK, γyK), (2.22) is bounded from above by P ρ +ζ (xK, yK).

for every ε > 0, (2.22) is bounded from below by P ρ +ζ+ε (xK, yK). Hence (2.22

) converges if ρ + ζ > δ (Γ), i.e., ζ > δ (Γ) -ρ , while (2.22) diverges if ζ < δ(Γ) -ρ .

  3 and Corollary 2.10, we compared the series (2.20), or equivalently (2.22), with the Poincaré series (1.1) and (2.7). If we consider instead the Poincaré series (3.3), we obtain in the same way that (2.22) is bounded from above by P ρ +ζ (xK, yK) and from below by P ρ +ζ+ε (xK, yK), for every ε > 0. Hence (2.22) converges if ζ > δ (Γ) -ρ , while (2.22) diverges if ζ < δ (Γ) -ρ . We conclude as in the abovementioned proof.
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