Bottom of the $L^2$ spectrum of the Laplacian on locally symmetric spaces - Archive ouverte HAL
Journal Articles Geometriae Dedicata Year : 2022

Bottom of the $L^2$ spectrum of the Laplacian on locally symmetric spaces

Abstract

We estimate the bottom of the $L^2$ spectrum of the Laplacian on locally symmetric spaces in terms of the critical exponents of appropriate Poincaré series. Our main result is the higher rank analog of a characterization due to Elstrodt, Patterson, Sullivan and Corlette in rank one. It improves upon previous results obtained by Leuzinger and Weber in higher rank.
Fichier principal
Vignette du fichier
AZ2021.pdf (446.93 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-02865274 , version 1 (11-06-2020)
hal-02865274 , version 2 (22-07-2021)

Identifiers

  • HAL Id : hal-02865274 , version 2

Cite

Jean-Philippe Anker, Hong-Wei Zhang. Bottom of the $L^2$ spectrum of the Laplacian on locally symmetric spaces. Geometriae Dedicata, 2022, 216 (1), paper 3. ⟨hal-02865274v2⟩
146 View
161 Download

Share

More