On a Hamiltonian regularization of scalar conservation laws - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

On a Hamiltonian regularization of scalar conservation laws

Résumé

In this paper, we study a regularization of a scalar conservation law (SCL), which is obtained by modifying its Lagrangian. This regularization is parameterized by $\ell$ and conserves formally an $H^1$-like energy. Proof of the existence of local smooth solutions are given in this paper. In addition, we prove the existence of global weak solutions satisfying a uniform (on $\ell$) one-sided Oleinik inequality for this regularization, and also for a generalized Hunter--Saxton equation. Moreover, when $\ell \to 0$ (resp. $\ell \to \infty$), we prove that the solutions of the regularized equation converge up to a subsequence to $u^0$ (resp.$ u^\infty$) a solution of the SCL (resp. a generalized Hunter--Saxton equation), at least before the appearance of singularities.
Fichier principal
Vignette du fichier
rSCL.pdf (454.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02512810 , version 1 (19-03-2020)
hal-02512810 , version 2 (03-04-2023)
hal-02512810 , version 3 (05-10-2023)

Identifiants

  • HAL Id : hal-02512810 , version 1

Citer

Billel Guelmame. On a Hamiltonian regularization of scalar conservation laws. 2020. ⟨hal-02512810v1⟩
523 Consultations
285 Téléchargements

Partager

More