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ON A HAMILTONIAN REGULARIZATION OF SCALAR

CONSERVATION LAWS

BILLEL GUELMAME

Abstract. In this paper, we study a regularization of a scalar conservation law (SCL),
which is obtained by modifying its Lagrangian. This regularization is parameterized by `
and conserves formally an H1-like energy. Proof of the existence of local smooth solutions are
given in this paper. In addition, we prove the existence of global weak solutions satisfying a
uniform (on `) one-sided Oleinik inequality for this regularization, and also for a generalized
Hunter�Saxton equation. Moreover, when ` → 0 (resp. ` →∞), we prove that the solutions
of the regularized equation converge up to a subsequence to u0 (resp. u∞) a solution of
the SCL (resp. a generalized Hunter�Saxton equation), at least before the appearance of
singularities.

AMS Classi�cation: 35L65; 35B65; 35B44; 35L67; 37K05.

Key words: Scalar conservation laws; nonlinear evolution equation; generalized Hunter�
Saxton equation; regularization; Hamiltonian; conservative and dissipative solutions; Oleinik
inequality.
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1. Introduction

Hyperbolic conservation laws (the inviscid Burgers equation and the shallow-water system
for example) are known to develop discontinuous shocks in �nite time, even if the initial
datum is a C∞ function. Those shocks are problematic for numerical simulations and also for
theory. To avoid those shocks, usually small dissipation or dispersion terms can be added to
the equation [1, 3, 2, 17, 18, 19, 12, 24]. In [9], Clamond and Dutykh have proposed a non-
dispersive regularization of the shallow-water equation that conserves an H1−like energy for
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smooth solutions. This regularization has been studied after in [20, 22]. Recently, a similar
regularization of the inviscid Burgers equation

ut + uux = `2 [utxx + 2ux uxx + uuxxx] , (1)

was proposed in [11], where ` is a positive parameter. This equation appeared before in the
literature as a particular case of a generalized Camassa�Holm equation [8], an existence of
local (in time) smooth solutions was given in [27, 26]. A proof of existence of global weak
solutions and a study of the limiting cases `→ 0,+∞ was done in [11]. The so-called dissipative
solutions of (1) satis�es (uniformly on `) the one-sided Oleinik inequality

ux(t, x) ⩽ 2/t, ∀ t > 0. (2)

Due to the H1−like energy equation, the solutions of (1) remains continuous for all time
(` > 0), which is not the case for the inviscid Burgers equation (` = 0). A natural question is:
Can we approximate the shocks of other interesting hyperbolic partial di�erential equations
conserving the same properties ? For example, the general scalar conservation law

ut + f(u)x = 0, (3)

some triangular systems, the isentropic Euler equations ?
The equation (3) can be used for tra�c �ow models and other physical phenomena [25].

The aim of this paper is to derive, introduce and study the equation

ut + f(u)x = `2 [uxxt + f ′(u)uxxx + 2 f ′′(u)ux uxx + 1
2 f

′′′(u)u3
x] , (4)

which regularizes the scalar conservation law (3). Note that for f(u) = u2/2, we obtain the
regularization of the inviscid Burgers equation (1). The equation (4) conserves an energy for
smooth solutions, it also has Hamiltonian and Lagrangian structures. Using Kato's Theorem
for quasi-linear hyperbolic equations [14], we prove in this paper for general �uxes that if
the initial datum u0 belongs to some space Hs with s > 3/2, then there exists a local (in
time) unique smooth solution. On the contrary of the Burgers case, the velocity f ′(u) being
nonlinear adds some di�culties to prove the estimates in Kato's Theorem (see Lemma 3). An
existence of blowing-up solutions in �nite time is also proven, where we give some estimates
of the blow-up time. In order to prove the existence of global solutions, a change of variables
is used inspired by Bressan and Constantin [6] yielding to an equivalent semi-linear nonlocal
system. The latest system is used to obtain global weak solutions that conserves an H1−like
energy for general (not necessarily convex) smooth �uxes, but do not satisfy the Oleinik
inequality. Inspired by [7], another type of global weak solutions for uniformly convex �uxes
(f ′′(u) ⩾ C > 0) is obtained, those solutions dissipate the energy on the singularities and
satisfy a one-sided Oleinik inequality (see (46) below). Using the Oleinik inequality, we
prove also that when ` → 0, (respectively ` → ∞) the dissipative solution converges up to a
subsequence to a function u0 (respectively u∞). We also prove that before the appearance
of the singularities, u0 is the classical solution of (3) and u∞ is a solution of the generalized
Hunter�Saxton equation

[ut + f(u)x]x = 1
2 u

2
x f

′′(u). (5)

A proof of the existence of dissipative solutions of the classical Hunter�Saxton equation
(f(u) = u2/2) can be found in [5]. For non-quadratic �uxes, the right-hand side of (5)
depends on u, thence the proof given in [5] must be modi�ed. In this paper, a Hamiltonian
structure and a proof of global existence of both conservative and dissipative solutions of the
equation (5) are given.
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The paper is organized as follows. In Section 2, an energy equation and Hamiltonian,
Lagrangian structures of the equation (4) are provided. Section 3 is devoted to prove the
local existence of smooth solutions. Some estimates on the blow-up time of the smooth
solutions are studies in Section 4. In Section 5 and Section 6, existence of two types of global
weak solutions of (4) and (5) respectively are proven. The limiting cases ` → 0 and ` → ∞
are studied in Section 7.

2. Modeling and properties

Inspired by [11], the scalar conservation law (3) can be suitable regularized as

ut + f(u)x = `2 [uxxt + f ′(u)uxxx + 2 f ′′(u)ux uxx + 1
2 f

′′′(u)u3
x ] , (6)

where ` > 0. The equation (6) can be written in the conservative form

[u − `2 uxx]t + [f(u) − `2 f ′(u)uxx − 1
2 `

2 f ′′(u)u2
x ]

x
= 0. (7)

Multiplying (7) by u we obtain the energy equation for smooth solutions

[1
2 u

2 + 1
2 `

2 u2
x]t + [K(u) − `2 K ′(u)uxx + 1

2 `
2 (uf ′′(u) − f ′(u)) u2

x − `2 uuxt]x = 0, (8)

where K ′(u) = uf ′(u).
Introducing the momentum m

def= u − `2uxx, the equation (7) can be rewritten as

mt + f ′(u)mx + 2 (m − u)ux f ′′(u) − 1
2 `

2f ′′′(u) u3
x = 0, (9)

or as
(1 − `2∂ 2

x ){ut + f(u)x } + 1
2 `

2 [ f ′′(u) u2
x ]

x
= 0. (10)

Applying the operator (1 − `2∂ 2
x )−1

to (10), the equation becomes

ut + f(u)x + 1
2 `

2 (1 − `2 ∂ 2
x )−1 [ f ′′(u) u2

x ]
x
= 0. (11)

This form is more tractable for numerical computations and also for proving the well-posedness
of the equation (see Section 3 and Section 5 below).
The classical conservation law (3) can be obtained as the Euler�Lagrange of the functional

J0 = ∫ t2t1 ∫
x2
x1
L0(φ)dxdt with the Lagrangian density

L0
def= 1

2 φx φt + F (φx), (12)

where φ is a velocity potential, i.e., u = φx and F ′(u) = f(u). The Euler�Lagrange equation
for this functional yields to (3) at once.
The equation (6) can be obtained as the Euler�Lagrange equation of the Lagrangian density

L` def= 1
2 φx φt + F (φx) − 1

2 `
2 φx [φtx + f(φx)x]x , (13)

this Lagrangian density is equivalent to

L̃` def= 1
2 φx φt + F (φx) + 1

2 `
2 [f ′(φx) φ2

xx − φxxxφt] . (14)

A Hamiltonian structure also exists for the equation (6), that can be obtained with the
Hamiltonian operator and functional

D
def= (1 − `2 ∂2

x)
−1
∂x, (15)

H
def= ∫ [F (u) + 1

2 `
2 f ′(u) u2

x ] dx, (16)
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so the equation of motion is given by

ut = −D δuH, (17)

which is the equation (7), where the operator D is a Hamiltonian operator [21].

3. Existence of local smooth solutions of the regularized conservation laws

This section is devoted to study the local (in time) well-posedness of the Cauchy problem

ut + [ f(u) + 1
2 `

2 G ∗ f ′′(u) u2
x ]

x
= 0, G

def= (2`)−1 exp(−∣x∣/`), (18)

with u(0, x) = u0(x). Let be
P = 1

2 G ∗ f ′′(u)u2
x, (19)

notice that P − `2Pxx = f ′′(u)u2
x/2. Di�erentiating (18) w.r.t x one obtains

uxt + f ′(u) uxx + 1
2 f

′′(u) u2
x + P = 0, (20)

multiplying (18) by u and (20) by `2 ux, an energy equations for smooth solutions is obtained

[ 1
2 u

2 + 1
2 `

2 u2
x ]

t
+ [K(u) + 1

2 `
2 f ′(u)u2

x + `2 uP ]
x
= 0. (21)

Another conservative equation that corresponds to the Hamiltonian (16) can be obtained

[F (u) + 1
2 `

2 u2
x f

′(u)]
t
+ [H(u) + `2 f(u)P + 1

2 `
2 f ′(u)2 u2

x + 1
2 `

4 P 2 − 1
2 `

6 P 2
x ]x = 0,

where H ′(u) = f(u)f ′(u).
Let s ∈ R and let be

Hs(R) def= {u ∈ S ′(R), ∫
R
(1 + ξ2)s ∣û(ξ)∣2 dξ < +∞} . (22)

The norm of the space Hs is given by

∥u∥2
Hs

def= ∫
R
(1 + ξ2)s ∣û(ξ)∣2 dξ = c ∥Λs u∥2

L2 ,

where Λs = (1 − ∂2
x)
s/2

and c > 0 is a constant depending only on the de�nition of the Fourier

transform. Let [A, B] def= AB − BA be the commutator of A and B. In order to prove the
well-posedeness of the equation (18), the following classical lemmas are needed:

Lemma 1. ([14, 16]) If r > 0, then there exists a constant c > 0, such that

∥f g∥H−r ⩽ ∥f∥L∞ ∥g∥H−r , (23)

∥f g∥Hr ⩽ c ( ∥f∥L∞ ∥g∥Hr + ∥f∥Hr ∥g∥L∞ ) , (24)

∥[Λr, f] g∥L2 ⩽ c ( ∥fx∥L∞ ∥g∥Hr−1 + ∥f∥Hr ∥g∥L∞ ) . (25)

Let f, g be smooth functions and h ∈ Hr, then

∣(f g, h)H−r,Hr ∣ = ∣∫
R
f g hdx ∣ ⩽ ∥f∥L∞ ∥g∥H−r ∥h∥Hr , (26)

which implies (23). A rigorous proof of (23) can be found in [14]. Inequalities (24) and (25)
can be found in [16].
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Lemma 2. ([10]) Let F ∈ Cm+2, if 1/2 < s ⩽ m, then there exist a continuous function F̃ ,
such that

∥F (u) − F (0)∥Hs ⩽ F̃ (∥u∥L∞) ∥u∥Hs . (27)

If 3/2 < s ⩽ m, then there exist a continuous function F̄ such that

∥F (u) − F (v)∥Hs ⩽ F̄ (∥u∥Hs , ∥v∥Hs) ∥u − v∥Hs . (28)

Proof. The proof of (27) can be found in [10]. The inequality (28) is also proven in [10], a
shorter proof is given here.

Let G′(u) def= F ′(u) − F ′(0), using (24) and (27) we obtain that for all s > 1/2
∥F (u) − F (v)∥Hs ≲ ∥F ′(u)ux − F ′(v) vx∥Hs−1

= ∥F ′(u)ux − F ′(u) vx + G′(u) vx − G′(v) vx∥Hs−1

≲ ∥F ′(u)∥L∞ ∥ux − vx∥Hs−1 + ∥G′(u)∥Hs−1 ∥ux − vx∥L∞
+ ∥vx∥L∞ ∥F ′(u) − F ′(v)∥Hs−1 + ∥vx∥Hs−1 ∥F ′(u) − F ′(v)∥L∞

≲ ∥u − v∥Hs + ∥F ′(u) − F ′(v)∥Hs−1 , (29)

where ≲ means ⩽ c with c = c(F, ∥u∥Hs , ∥v∥Hs) is a positive constant.
In order to prove (28), we suppose at �rst that s = n ∈ N and the proof will be done by

induction. It is clear that

∥F (u) − F (v)∥L2 ⩽ ∥F ′′∥L∞ ∥u − v∥L2 .

The equation (29) shows that if (28) is true for an integer 0 ⩽ k ⩽ n−1, then it remains true
for k + 1, which ends the proof of (28) for an integer s.
If s is not an integer, using (29) and using (28) for ⌊s⌋ one obtains

∥F (u) − F (v)∥Hs ≲ ∥u − v∥Hs + ∥F ′(u) − F ′(v)∥Hs−1

≲ ∥u − v∥Hs + ∥F ′(u) − F ′(v)∥H⌊s⌋
≲ ∥u − v∥Hs + ∥u − v∥H⌊s⌋
≲ ∥u − v∥Hs . �

Now, the conditions given in [14] to obtain the local well-posedness of

ut + A(u)u = F (u), (Q)

are recalled:

(X) X and Y are re�exive Banach spaces. Y is dense and continuously embedded in X.
There exists an isomorphism S from Y to X.

(A1) Let W = BY (y0,R0) be an open ball in Y , there exist β ∈ R, such that for all t > 0
and y ∈W

∥e−tA(y)∥X ⩽ eβt.

(A2) If y ∈W , then B(y) def= SA(y)S−1 −A(y) is bounded on X.
(A3) For y, z ∈W , we have A(y) is bounded from Y to X and

∥A(y) − A(z)∥Y,X ≲ ∥y − x∥X .
(A4) For all y ∈W , we have A(y)y0 ∈ Y .
(A5) For all y, z ∈W , we have

∥B(y) − B(z)∥X ≲ ∥y − z∥Y .
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(F1) F is a bounded function from W to Y and

∥F (y) − F (x)∥X ≲ ∥y − x∥X ∀y, z ∈W.
(F2)

∥F (y) − F (x)∥Y ≲ ∥y − x∥Y ∀y, z ∈W.
Now, the local well-posedness of (18) can be stated:

Theorem 1. [Local existence of smooth solutions] Let f ∈ Cm+3(R), m ⩾ 2 and let u0 ∈
Hs(R) with 3/2 < s ⩽m, then there exist a maximal time T > 0 that does not depend on s and
a unique solution u of (18) that depends continuously on u0, such that u ∈ C([0, T ), Hs(R))∩
C1([0, T ), Hs−1(R)). Moreover, if T < +∞, then lim sup

t→T
∥u(t, ⋅)∥Hs = +∞.

The proof is based on Kato's existence theorem of quasi-linear equations [14]. The following
de�nitions are used in order to prove Theorem 1

X = L2(R), Y = Hs(R), W = BY (0,R0) ⊂ Y.

A(y) = f ′(y)∂x, F (y) = − 1
2 `

2 ∂x (1 − `2 ∂2
x)

−1 (f ′(y)x yx) , y ∈ Y.

S = Λs = (1 − ∂2
x)
s/2
.

B(y) = [Λs, A(y)]Λ−s = [Λs, f ′(y) − f ′(0)] ∂xΛ−s.

Then, the equation (18) can be written as (Q). We start by proving the following lemma:

Lemma 3. Under the assumptions of Theorem 1, the conditions (X), (A1) to (A5), (F1)
and (F2) are satis�ed.

Proof. (A1) can be proved easily by following the proof of Lemma 2 in [23]. (X) and (A4)
are trivial. Let w ∈ X = L2(R), v ∈ Y = Hs(R) and y, z ∈ W .
Proof of (A2). Using (25) and (27) one obtains

∥B(y)w∥L2 ≲ ∥f ′′(y) yx∥L∞ ∥wx∥H−1 + ∥f ′(y) − f ′(0)∥Hs ∥Λ−swx∥∞,
≲ ∥f ′′(y)∥∞ ∥y∥Hs ∥w∥L2 + ∥y∥Hs ∥w∥L2 ,

≲ ∥w∥L2 .

Proof of (A3). It is clear that

∥A(y) v∥L2 = ∥f ′(y) vx∥L2 ≲ ∥f ′(y)∥L∞ ∥v∥Hs ≲ ∥v∥Hs , (30)

then A(y) ∈ B(Hs, L2). The Lipschitz-continuity of A(y) can be done as the following

∥ (A(y) − A(z)) v∥L2 = ∥ (f ′(y) − f ′(z)) vx∥L2

≲ ∥f ′′(y)∥L∞ ∥y − z∥L2 ∥vx∥L∞
≲ ∥y − z∥L2 ∥v∥Hs .

Proof of (A5). Using (25) and (28) one obtains

∥ (B(y) − B(z)) w∥L2 = ∥[Λs, f ′(y) − f ′(z)] ∂xΛ−sw∥
L2

≲ ∥f ′(y) − f ′(z)∥
W 1,∞ ∥wx∥H−1 + ∥f ′(y) − f ′(z)∥

Hs ∥Λ−swx∥L∞
≲ ∥y − z∥Hs ∥w∥L2 .
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Proof of (F1). Using the de�nition of F and the inequality (23) we get

∥F (y) − F (z)∥L2 ≲ ∥yx (f ′(y) − f ′(z))
x
+ f ′(z)x (y − z)x ∥H−1

≲ ∥yx∥L∞ ∥f ′(y) − f ′(z)∥L2 + ∥f ′′(z) zx∥L∞ ∥y − z∥L2

≲ ∥y − z∥L2 .

Proof of (F2). Using (24), (27) and (28) one obtains

∥F (y) − F (z)∥Hs ≲ ∥yx (f ′(y) − f ′(z))
x
+ f ′(z)x (y − z)x ∥Hs−1

≲ ∥yx∥L∞ ∥f ′(y) − f ′(z)∥Hs + ∥y∥Hs ∥f ′′(y) yx − f ′′(z) zx∥L∞
+ ∥f ′′(z) zx∥L∞ ∥y − z∥Hs + ∥f ′(z)∥Hs ∥yx − zx∥L∞

≲ ∥y − z∥Hs . �

Proof of Theorem 1. Theorem 6, Theorem 7 in [14] and Lemma 3 assure the exis-
tence of a unique solution u that depends continuously on the initial datum, such that u ∈
C([0, T ), Hs(R)) ∩ C1([0, T ), L2(R)). Using (18) one obtains that u ∈ C1([0, T ), Hs−1(R)).
The proof that T may be chosen independent on s, can be done by following [15]. �

For uniformly convex �uxes, the solution given in Theorem 1 satis�es the Oleinik inequality:

Proposition 1. [Oleinik inequality] Let f ∈ Cm+3(R), m ⩾ 2 and let u0 ∈ Hs(R) with
2 ⩽ s ⩽ m. If f ′′(u) ⩾ C > 0, then for all t ∈ [0, T [ the solution given in Theorem 1 satis�es
the Oleinik inequality

ux(t, x) ⩽ 1
C t /2 + 1 /M ⩽ M, (31)

where M
def= supx∈Ru

′
0(x).

Proof. Let x0 ∈ R and let y de�ned as the unique solution of the Cauchy problem

yt(t, x0) = f ′ (u (t, y(t, x0))) , y(0, x0) = x0. (32)

Let H(t, x0) def= ux(t, y(t, x0)). Using that P ⩾ 0, the equation (20) implies that

Ht + 1
2 CH

2 ⩽ Ht + 1
2 f

′′(u)H2 = −P ⩽ 0, (33)

implying that

H(t, x0) ⩽ 1
C t /2 + 1 /H(0,x0) . (34)

The Oleinik inequality (31) follows directly from (34). �

4. Blow-up of smooth solutions

This section is devoted to prove that the solutions given in Theorem 1 blows-up in �nite
time for uniformly convex �uxes. Estimates on the blow-up time T of those solutions is also
given. We start by the following proposition:

Proposition 2. [An upper bound of the blow-up time] Let f ∈ Cm+3(R), such that
f ′′(u) ⩾ C > 0 and m ⩾ 2. Let also u0 ∈Hs(R) with 2 ⩽ s ⩽m. If u′0(x0) < 0 for some x0 ∈ R,
then

T ⩽ −2

C inf
x ∈R

u′0(x)
.
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Proof. The inequality (34) implies that

lim
t→−2/(CH(0,x0))

H(t, x0) = −∞,

implying

lim
t→−2/(CH(0,x0))

∥u∥Hs ≳ lim
t→−2/(CH(0,x0))

∥ux∥L∞ = +∞. �

It is clear that if ∥ux∥L∞ blows-up then ∥u∥Hs blows-up also. The converse is not true in
general. The following Lemma shows that if u is a solution of (18), then the converse is true:

Lemma 4. Let f ∈ Cm+3(R), m ⩾ 2 and let u0 ∈ Hs(R) with 3/2 < s ⩽ m. If ∥ux∥L∞ is
bounded for t ∈ [0, T [, then ∥u∥Hs remains bounded for t ∈ [0, T [.

The proof of Lemma 4 can be done by following Theorem 3.1 in [26]. The following theorem
is devoted to improve the blow-up criteria in Theorem 1.

Theorem 2. [The blow-up criteria] Let f ∈ Cm+3(R), such that f ′′(u) ⩾ C > 0, m ⩾ 2. Let
also u0 ∈Hs(R) with 2 ⩽ s ⩽m, then

T < +∞ Ô⇒ lim inf
t→T

inf
x ∈R

ux(t, x) = −∞.

The proof of the latest Theorem follows directly from Proposition 1, Lemma 4 and the
blow-up criteria given in Theorem 1. �
Note that if u0 ∈Hs(R) with s ⩾ 2, the equation (21) implies that the energy

E(t) = ∫
R

(u2 + `2 u2
x) dx, (35)

is invariant. Then, the solutions remains bounded

∥u∥L∞ ⩽ ∥u∥H1 ⩽ α`
√
E(t) = α`

√
E(0). (36)

Let

C̃ = sup
∣u∣⩽α`

√
E(0)

f ′′(u), (37)

a lower bound of the blow-up time can also given by

Theorem 3. [A lower bound of the blow-up time] Let f ∈ Cm+3(R) such that f ′′(u) ⩾
C > 0, let also be u0 ∈Hs(R) with 2 ⩽ s ⩽m. If u0 is not the zero function, then

1/(C̃ sup ∣u′0∣) ⩽ T. (38)

Proof. Let be

m(t) def= inf
x∈R

ux(t, x) < 0 < M(t) def= sup
x∈R

ux(t, x), t < T.

The equation (33) implies that the functions m(⋅) and M(⋅) are decreasing in time. We
consider the three cases:

● M(t) > −m(t) for all t > 0. This implies that

0 < −m(0) ⩽ −m(t) = ∣m(t)∣ < M(t) = ∣M(t)∣ ⩽ M(0).

which implies with Lemma 4 that T = +∞.
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● There exists t0 ⩾ 0, such that −m(t0) = M(t0). Using the same argument as in [11]
one can show that

ṁ + C̃ m2 ⩾ 0, ∀ t ⩾ t0, (39)

where ṁ
def= lim infδ>0, δ→0

m(t+δ) − m(t)
δ is the generalized derivative of m. One can

easily shows that

m(t) ⩾ m(t0)
1 + m(t0) C̃ (t − t0)

,

then

T ⩾ t0 − 1

C̃ m(t0)
= t0 + 1

C̃ M(t0)
⩾ 1

C̃ sup
x ∈R

∣u′0(x)∣
.

● M(0) ⩽ −m(0). This case can be done as the previous one. �

Remark 1. Note that C̃ depends on `, then the estimate given in Theorem 3 depends also
on `. In Section 7 below, uniform (on `) estimates are needed, then the �ux f is assumed to

satisfy f ′′(u) ⩽ C̃, where C̃ is a �xed constant and not the constant de�ned in (37).

5. Existence of global weak solutions of the regularized conservation laws

As shown in Proposition 2 above, the solutions given in Theorem 1 do not hold for all time
due to the blow-up of ∥u∥Hs for s ⩾ 2. In order to obtain global solutions of (18), one needs
to look for weaker solutions in a bigger space. Thanks to the energy equation (21), the space
H1 is a natural candidate to obtain global solutions.
Inspired by [6, 7] (see also [11]), let ξ ∈ R and let y0(ξ) de�ned by

∫
y0(ξ)

0
(1 + u′0

2 )dx = ξ. (40)

Let also y be the characteristic starting from y0 with velocity f ′(u). The quantities v, q,P
and Px are de�ned as the following

v
def= 2 arctan(ux), q

def= (1 + u2
x ) yξ. (41)

P (t, ξ) = 1

4 `
∫
R

exp(−1

`
∣∫

ξ′

ξ
q(t, s) cos2(v(t, s)

2
)ds∣) q(t, ξ′) sin2(v(t, ξ

′)
2

) f ′′ (u(t, ξ′)) dξ′,

Px(t, ξ) = (∫
+∞

ξ
−∫

ξ

−∞
) exp(− ∣∫

ξ′

ξ
q(t, s) cos2(v(t, s)

2
) ds

`
∣) q(t, ξ′) sin2(v(t, ξ

′)
2

) f ′′ (u(t, ξ′)) dξ′

4 `2
.

Then, the equation (18) can be transformed to the equivalent system

yt = f ′(u), y(0, ξ) = y0(ξ), (42a)

ut = −`2 Px, u(0, ξ) = u0(y0(ξ)), (42b)

vt = −P (1 + cos(v)) − f ′′(u) sin2(v/2), v(0, ξ) = 2 arctan(u′0 (y0(ξ))) , (42c)

qt = q (f
′′(u)
2 − P) sin(v), q(0, ξ) = 1, (42d)

which can be used to prove the following theorem
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Theorem 4. [Global existence of conservative solutions] Let u0 ∈ H1(R) and f ∈
C3(R), then there exists a global weak solution u of the equation (18), such that ∀T > 0,
u ∈ Lip ([0, T ], L2(R)) and

∫
R
(u2(t) + `2 ux(t)2) dx = ∫

R
(u2

0 + `2 u′20 ) dx, for a.e. t ∈ R. (43)

This solution u is called a conservative solution. Moreover, if ∥u0,n − u0∥H1 → 0. Then, un
converges uniformly to u, for all t, x in any bounded set.

Note that v0 ∈ [−π,π], but for t > 0 the value of v is allowed not to be in [−π,π]. When v
crossed the value ±π, the value of ux jumps from ±∞ to ∓∞, which implies that the Oleinik
inequality

f ′(u)x ≲ t−1,

can not be satis�ed if the sign of f ′′(u) is constant. In order to obtain a solutions satisfying
the Oleinik inequality, we suppose that f ′′(u) ⩾ C > 0 and the system (42) is modi�ed as

yt = f ′(u), (44a)

ut = −`2 Px, (44b)

vt =
⎧⎪⎪⎨⎪⎪⎩

−P (1 + cos v) − f ′′(u) sin2(v/2), v > −π,
0, v ⩽ −π,

(44c)

qt =
⎧⎪⎪⎨⎪⎪⎩

q (f
′′(u)
2 − P) sin(v), v > −π

0, v ⩽ −π.
(44d)

P and Px are also modi�ed as

P (t, ξ) = 1

4 `
∫
R

exp{−1

`
∣∫

ξ′

ξ
q̄(t, s) cos2

v(t, s)
2

ds∣} q̄(t, ξ′) sin2 v(t, ξ′)
2

f ′′ (u(t, ξ′)) dξ′,

Px(t, ξ) = 1

4 `2
(∫

+∞

ξ
−∫

ξ

−∞
) exp{−1

`
∣∫

ξ′

ξ
q̄(t, s) cos2

v(t, s)
2

ds∣} q̄(t, ξ′) sin2 v(t, ξ′)
2

f ′′ (u(t, ξ′)) dξ′,

where q̄(t, ξ) = q(t, ξ) if v(t, ξ) > −π and q̄(t, ξ) = 0 if v(t, ξ) ⩽ −π. Following [7, 11] one can
proves the following result

Theorem 5. [Global existence of dissipative solutions] Let u0 ∈H1(R) and f ∈ C3(R)
such that f ′′(u) ⩾ C > 0, then there exists a global weak solution u of the equation (18),
satisfying u ∈ Lip ([0, T ], L2(R)) for all T > 0 and

∫
R
(u2(t) + `2 ux(t)2) dx ⩽ ∫

R
(u2

0 + `2 u′20 ) dx, ∀t ∈ R. (45)

This solution is called a dissipative solution. Moreover, for M = supx∈Ru′0(x) ∈ R+ ∪ {+∞}
we have

ux(t, x) ⩽ 1

C t/2 + 1/M . (46)

The Oleinik inequality (46) is a cornerstone of scalar conservation laws. In this paper, this
inequality plays an important role to study the limiting cases in Section 7. Thence, we are
more interested by the dissipative solutions in this paper, so the proof of Theorem 4 is omit-
ted, which can be done following [6, 11] and also the following proof:
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Proof of Theorem 5: Step 1: Local existence for the equivalent system. In order
to prove Theorem 5, we will prove the well-posedness of the system (44), and then we prove
that the solution of (44) yields to a dissipative solution of (18). Since the right hand sides
of (44b), (44c) and (44d) do not depend of y, it su�ces to show that the system of three
equations (44b), (44c), (44d) is well posed. Due to the discontinuity of the write hand of
(44c), we consider the following system

ut = −`2 Px, (47a)

vt =
⎧⎪⎪⎨⎪⎪⎩

−P (1 + cos v) − f ′′(u) sin2(v/2), v > −π,
−f ′′(u), v ⩽ −π,

(47b)

qt =
⎧⎪⎪⎨⎪⎪⎩

q (f
′′(u)
2 − P) sin(v), v > −π,

0, v ⩽ −π.
(47c)

It is clear that if (u, v, q) is a solution of (47), we can obtain a solution of (44) by replacing
v with max{v, −π}. The system (47) can be written as

Ut(t, ξ) = F (U(t, ξ)) + G(ξ,U(t, ⋅)), U = (u, v, q), (48)

such that

F (U) =
⎧⎪⎪⎨⎪⎪⎩

(0, −f ′′(u) sin2 v
2 ,

1
2 f

′′(u) q sin v) v > −π,
(0,−f ′′(u),0) v ⩽ −π,

G(U) =
⎧⎪⎪⎨⎪⎪⎩

(−`2 Px, −P (1 + cos v), −P q sin v) v > −π,
(−`2 Px,0,0) v ⩽ −π.

Our aim now is to prove local existence of solutions of (48). Let δ ∈]0, 2π
3 ] and let Λ de�ned

by

Λ
def= { ξ, v0(ξ) ∈ ] − π, δ − π] }. (49)

Note that (47b) implies that if v ∈] − π, δ − π] ⊂] − π, −π3 ], then vt ⩽ −C/2. Let X
def=

C([0, T ], L∞(R,R3)), c > 0 and let D ⊂X satisfying U(0, ξ) = U0(ξ) and
1 / c ⩽ q(t, ξ) ⩽ c ∀(t, ξ) ∈ [0, T ] ×R, (50a)

∣{ ξ, sin2 (v(t, ξ) /2) ⩾ 1
2
}∣ ⩽ c ∀t ∈ [0, T ], (50b)

∥U(t) − U(s) ∥∞ ⩽ c ∣t − s∣ ∀t, s ∈ [0, T ], (50c)

v(t, ξ) − v(s, ξ) ⩽ −c t − s
2 ∀0 ⩽ s ⩽ t ⩽ T, ξ ∈ Λ. (50d)

The equation (50b) implies that if ξ1 < ξ2, then

∫
ξ2

ξ1
q(ξ) cos2 v(ξ)

2
dξ ⩾ ∫

{ξ∈[ξ1,ξ2], sin2 v(t,ξ)
2 ⩽ 1

2}

c−1

2
dξ ⩾ [ξ2 − ξ1

2
− c

2
] c−1, (51)

implying that the term exp{− 1
`
∣∫

ξ′

ξ
q̄(t, s) cos2

v(t, s)
2

ds∣} in the de�nition of P and Px decays

exponentially when ∣ξ − ξ′∣ → +∞. De�ning Γ(ζ) = min{1, exp ( 1
2`
− ∣ζ∣

2`
C−1)} , then Young

inequality implies that

∥P ∥L∞ , ∥Px∥L∞ ≲ ∥Γ∥L1 ∥f ′′(u)∥L∞ . (52)
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Taking (u, v, q) ∈D and using (52) one can show that

∥P (U) − P (Ũ)∥
L∞

, ∥Px(U) − Px(Ũ)∥
L∞

≲ ∥U − Ũ∥
L∞

+ ∣{ ξ, (v(ξ) + π)(ṽ(ξ) + π) < 0}∣ ,

and

∥F (U) − F (Ũ))∥
L∞ ≲ ∥U − Ũ∥

L∞ , (53)

∥G(U) − G(Ũ)∥
L∞ ≲ ∥U − Ũ∥

L∞ + ∣{ξ, (v(ξ) + π)(ṽ(ξ) + π) < 0}∣. (54)

Now, we need to estimate the term ∣{ξ, (v(ξ) + π)(ṽ(ξ) + π) < 0}∣. For that purpose, let
the crossing time de�ned as

τ(ξ) def= sup {t ∈ [0, T ], v(t, ξ) > −π}. (55)

The equation (50c) implies ∣v(t, ξ) − v0(ξ)∣ ⩽ Ct, then if ξ ∉ Λ, i.e. v0(ξ) > δ − π we get

min {τ(ξ), τ̃(ξ)} ⩾ δ /C.

Let be T < δ/C, the equation (50d) implies

∫
T

0
∣{ξ, (v(τ, ξ) + π)(ṽ(τ, ξ) + π) < 0}∣ dτ ⩽ ∫

Λ
∣τ(ξ) − τ̃(ξ)∣ dξ

⩽ 2 ∣Λ ∣ ∥U − Ũ∥
L∞ /c.

The Picard operator

(P(U))(t, ξ) = U0 + ∫
t

0
[F (U) + G(U)] dτ, (56)

then satis�es

∥P(U) − P(Ũ)∥
L∞ ⩽ K̃ (T + ∣Λ ∣) ∥U − Ũ∥

L∞ , (57)

where K̃ depends only on C and `. The function sin2 v0
2 belongs to L1, then δ > 0 can be

chosen such that ∣Λ∣ is arbitrary small. Choosing also T small enough one obtains the local
existence of a solution of the system (47). Replacing v by max{v,−π} we obtain a solution
of (44).

Step 2: Global existence. The aim of this step is to show that the solution given in the
previous step holds globally in time. For that purpose, we need to show that the quantity

∥q∥L∞ + ∥1/q∥L∞ + ∥ sin2 v/2∥L1 + ∥v∥L∞ + ∥u∥L∞ , (58)



REGULARIZED SCALAR CONSERVATION LAWS 13

does not blow-up in �nite time. Following [7, 11] we can easily show the equalities

(q cos2 v/2)
t
= 1

2 q f
′′(u) sin v, (59a)

(q sin2 v/2)
t
= −q P sin v, (59b)

Pξ =
⎧⎪⎪⎨⎪⎪⎩

q Px cos2 v/2, v > −π,
0, v ⩽ π,

(59c)

`2 (Px)ξ =
⎧⎪⎪⎨⎪⎪⎩

q (P cos2 v/2 − 1
2 f

′′(u) sin2 v/2) , v > −π,
0, v ⩽ π,

(59d)

(1
2 q sin v)

t
=

⎧⎪⎪⎨⎪⎪⎩

−q (P cos2 v/2 − 1
2 f

′′(u) sin2 v/2) , v > −π,
0, v ⩽ π,

(59e)

uξ = 1
2 q sin v, (59f)

yξ = q cos2 v/2. (59g)

De�ning H(u) def= ∫ u0 w2f ′′(w)dw, we can deduce the energy equation

[q u2 cos2 v/2 + `2 q sin2 v/2]
t
+ [H(u) − 2 `2 uP ]

x
= 0. (60)

Integrating over ξ one obtains the conservation of the energy

d

dt
∫
R
(u2 cos2 v/2 + `2 sin2 v/2) q dξ = 0. (61)

Then we have

∥u∥2
L∞ ⩽ 2 ∫

R
∣uuξ ∣dξ = ∫

R
∣uq sin v∣ dξ = 2∫

R
∣u√

q cos v/2√
q sin v/2∣ dξ

⩽ ∫
R
(u2 cos2 v/2 + sin2 v/2) q dξ,

implying that ∥u∥L∞ is bounded for all time t > 0. The equation (52) implies that ∥P ∥L∞ +
∥Px∥L∞ is bounded for all t > 0. The equation (47c) implies that ∣qt∣/q ⩽ C̃/2 + ∥P ∥L∞ , which
implies with Gronwall lemma that ∥q∥L∞ + ∥1/q∥L∞ remains bounded in all interval [0, T ].
Using that q is far from zero and using the conservation of energy

Ẽ(t) def= ∫
R
(u2 cos2 v/2 + `2 sin2 v/2) q dξ = Ẽ(0), (62)

one obtains that ∥ sin2 v/2∥L1 does not blow-up in �nite time, which �nishs the proof of the
global existence.
Following [7, 11] and using the change of variables x = y(t, ξ), one can show that the solution
of (18) can be obtained as

u(t, x) = u(t, ξ), y(t, ξ) = x, (63)

which belongs to C([0, T ], L2
x(R)) and its derivative can be obtained if v(t, ξ) ≠ −π as

ux(t, x) = tan(v(t, ξ)
2

) = sin(v(t, ξ))
1 + cos(v(t, ξ)) . (64)
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Step 3: Dissipation of the energy and Oleinik inequality. Let ξ ∈ R, if v(t0, ξ) ⩽ 0
then v(t, ξ) ∈ [−π,0] for all t ⩾ t0. If v(0, ξ) > 0 then the equation (44c) implies that

(arctan
v

2
)
t
⩽ −C2 arctan2 v

2
.

Since arctan
v0(ξ)

2 ⩽M , we have

ux = arctan
v(t, ξ)

2
⩽ 1

C t/2 + 1/M . (65)

To prove the dissipation of the energy (45), we use the change of variables x = y(t, ξ), using
also (35) and (62) one can show that

E(t) = ∫
R
(u2 + `2 u2

x) dx = ∫
{ξ, v(t,ξ)>−π}

(u2 cos2 v/2 + `2 sin2 v/2) q dξ

⩽ ∫
R
(u2 cos2 v/2 + `2 sin2 v/2) q dξ = Ẽ(0) = E(0). �

Due to the Oleinik inequality, we will be only interested by the dissipative solutions given
in Theorem 5. As mentioned in the introduction above, taking formally ` → ∞ we obtain
the generalized Hunter�Saxton equation (5). The next section is devoted to study the global
well-posedness of the equation (5).

6. On a generalized Hunter�Saxton equation

Note that taking `→∞ in (18), we have `2Gx → −sgn(x)/2. Then, we formally obtain the
generalized Hunter�Saxton (gHS) equation

ut + f(u)x = 1

4
(∫

x

−∞
− ∫

+∞

x
) u2

x f
′′(u)dx. (66)

Di�erentiating w.r.t x we obtain

[ut + f(u)x]x = 1
2 u

2
x f

′′(u). (67)

a second di�erentiation gives

uxxt + f ′(u)uxxx + 2 f ′′(u)ux uxx + 1
2 f

′′′(u)u3
x = 0. (68)

Since P → 0 when ` → ∞, note that the equation (67) (resp. (68)) can also be obtained by
taking formally `→∞ in (20) (resp. (4)). Multiplying (67) by ux we obtain the conservation

of the Ḣ1 energy

[u2
x]t + [f ′(u)u2

x]x = 0, (69)

for smooth solutions.
The generalized Hunter�Saxton equation has the Hamiltonian structure

ut = −D1 δuH1, (70)

where

H1
def= 1

2 ∫ f ′(u)u2
x dx, D1 u = ∂−1

x u
def= 1

2
(∫ x−∞ − ∫ +∞x ) udx.

The gHS equation can also obtained by the Hamiltonian H2
def= 1

2 ∫ u2
x dx and the operator

D2
def= ∂−2

x [(f
′(u)
u

uxx +
f ′′(u)u − f ′(u)

2u2
u2
x)∂x + ∂x (

f ′(u)
u

uxx +
f ′′(u)u − f ′(u)

2u2
u2
x)]∂−2

x .
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If f(u) = u2/2, we obtain the bi-Hamiltonian Hunter�Saxton equation [13] and

D2 = ∂−2
x [uxx ∂x + ∂x uxx] ∂−2

x = ux ∂
−2
x − ∂−2 ux.

For general �uxes, the operator D2 is not a Poisson operator [21], so the integrability of the
generalized Hunter�Saxton equation remains an open question.
The goal of this section is to prove the existence of global weak solutions of the generalized

Hunter�Saxton equation (66). The classical Hunter�Saxton equation can be obtained by
taking f(u) = u2/2, a proof of global dissipative solutions of the classical Hunter�Saxton
equation can be found in [5]. If the �ux f is quadratic, the right hand side of (66) depends
only on ux and not on u which makes the proof easier. The main result of this section is the
following theorem:

Theorem 6. Let u0 ∈ Ḣ1 ∩L∞ and f ∈ C3(R) such that f (3) is bounded, then

● There exists a global weak solution u (called conservative) of (66), satisfying u ∈
Lip ([0, T ], L2

loc(R)) for all T > 0 and

∫
R
ux(t)2 dx = ∫

R
u′20 dx for almost all t ∈ R. (71)

● If the �ux is uniformly convex f ′′(u) ⩾ C > 0, then there also exists a global weak
solution u (called dissipative) of the equation (66), satisfying u ∈ Lip ([0, T ], L2

loc(R))
for all T > 0 and

∫
R
ux(t)2 dx ⩽ ∫

R
u′20 dx for almost all t ∈ R. (72)

Moreover, for M = supx∈Ru
′
0(x) ∈ R+ ∪ {+∞} the dissipative solution satis�es the

Oleinik inequality

ux(t, x) ⩽ 1

C t/2 + 1/M . (73)

Remark 2. The condition "f (3) is bounded" is important to show that the solution is globally
well-de�ned. Otherwise, local (in time) weak solutions exist even if f (3) is not bounded.

The proof of the existence of the conservative solutions in Theorem 6 can be done following
[6, 11]. To prove the existence of dissipative solutions, one follows the proof of Theorem 5
with small modi�cations to obtain the equivalent system

yt = f ′(u), (74a)

ut = −Q, (74b)

vt =
⎧⎪⎪⎨⎪⎪⎩

− f ′′(u) sin2(v/2), v > −π,
0, v ⩽ −π,

(74c)

qt =
⎧⎪⎪⎨⎪⎪⎩

1
2 q f

′′(u) sin(v), v > −π
0, v ⩽ −π,

(74d)

where Q is de�ned as

Q(t, ξ) = 1

4
(∫

+∞

ξ
−∫

ξ

−∞
) q̄(t, ξ′) sin2 v(t, ξ′)

2
f ′′ (u(t, ξ′)) dξ′, (75)

where q̄(t, ξ) = q(t, ξ) if v(t, ξ) > −π and q̄(t, ξ) = 0 if v(t, ξ) ⩽ −π.
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Remark 3. If the �ux f is quadratic, the condition u0 ∈ L∞ can be removed (see [5]). Indeed,
in this case the right-hand sides of (74b), (74c) and (74d) do not depend on u, so to prove
that the system (74) is well-posed it su�ces to prove the well-posedness of (74c) and (74d).

On the contrary of the de�nition of P and Px in the previous section, the exponential term
does not appear in the de�nition of Q in (75), which means that the inequality (52) can not
be used. To avoid this problem, the existence for the equivalent system (74b), (74c) and

(74d) is done in the space X
def= C ([0, T ], L∞ × (L∞ ∩L2) ×L∞) and the inequality (52) can

be replaced then by

∥Q∥L∞ ≲ ∥q sin2 v/2∥L1 ∥f ′′(u)∥L∞ ≲ ∥q∥L∞ ∥f ′′(u)∥L∞ ∥v∥L2 . (76)

Since f (3) is bounded, then

∥f ′′(u)∥L∞ ⩽ ∥f (3)∥L∞ ∥u∥L∞ + ∣f ′′(0)∣.
The rest of the proofs of local existence, dissipation of the energy and the Oleinik inequality
are the same as the previous section, so it is omitted. In order to prove that the solution
holds for all time, one can show that the quantity

∥q∥L∞ + ∥1/q∥L∞ + ∥v∥L2 + ∥v∥L∞ + ∥u∥L∞ , (77)

does not blow-up in �nite time. �
In next section, we study the convergence of the dissipative solutions given in Theorem 5

(when ` → 0 and when ` → ∞) using a BV estimate that is based on the Oleinik inequality
(46).

7. The limiting cases `→ 0 and `→∞
In this section we study the convergence of the dissipative solutions of (18) when ` → 0

and when `→∞. For that purpose we denote u` the dissipative solution given in Theorem 5
and we start by the uniform (on `) BV estimate of the solution

Lemma 5. [BV estimate] Let f ∈ C3 such that C̃ ⩾ f ′′(u) ⩾ C > 0, let also u0 ∈H1(R) such
that u′0 ∈ L1(R) and u′0(x) ⩽M < +∞, then

TVu`(t) = ∥u`x(t)∥L1 ⩽ ∥u′0∥L1 (CM t/2 + 1)2 C̃/C . (78)

Proof. Let be s
def= sgn(u`ξ) = sgn(v`). Di�erentiating (44b) w.r.t ξ, multiplying by s, integrat-

ing over ξ, using the Oleinik inequality (46) and (59) one obtains

d

dt
∫
R
∣u`ξ ∣dξ = −`2 ∫

R
(Px)ξ sdξ,

= −`2 ∫
{s⩾0}

(Px)ξ dξ + `2 ∫
{s<0}

(Px)ξ dξ,

= −2 `2 ∫
{s⩾0}

(Px)ξ dξ + `2 ∫
R
(Px)ξ dξ,

= ∫
{s⩾0, v`>−π}

q (f ′′(u`) sin2 v`/2 − 2P cos2 v`/2) dξ,

⩽ ∫
{s⩾0, v`>−π}

1
2 q f

′′(u`) sin v` tan v`/2 dξ,

⩽ C̃

C t/2 + 1/M ∫
R
∣u`ξ ∣dξ.
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Using Gronwall lemma we deduce that TVξu
`(t) = ∥u`ξ∥L1 ⩽ ∥u′0∥L1 (CMt/2 + 1)2C̃/C , where

TVξ is the total variation with respect to ξ. Since the characteristics y(t, ⋅) are monotonic,
then (78) follows. �

Following [11], one can easily prove the following theorem:

Theorem 7. Let f ∈ C3 such that C̃ ⩾ f ′′(u) ⩾ C > 0, let also u0 ∈H1(R) such that u′0 ∈ L1(R)
and u′0(x) ⩽M < +∞. Then, there exist

● u0 ∈ L∞([0, T ], L1(I)) ∩L∞([0, T ],BV (R)),
● u∞ ∈ C([0, T ], L1(I)) ∩L∞([0, T ],BV (R)),
● µ, ν ∈ L∞([0, T ],M1) non-negative Radon measures,
● a sub-sequence of (u`), noted also (u`)

for all T > 0, I ⋐ R, such that

● u0 and u∞ satisfy the Oleinik inequalities

u0
x(t, x) ⩽ 1

C t/2 + 1/M , u∞x (t, x) ⩽ 1

C t/2 + 1/M in D′(R), (79)

● we have the convergences

u`
`→0ÐÐ→ u0 in L∞([0, T ], L1(I)), u`

`→∞ÐÐ→ u∞ in C([0, T ], L1(I)),
● u0 and µ satisfy the equation

u0
t + f(u0)x = −µx, (80)

● u∞ and ν satisfy the equation

[u∞t + f(u∞)x]x = ν. (81)

Remark 4.

● If µ = 0, then u0 is the entropy solution of the scalar conservation law (3).
● If ν = 1

2(u
∞
x )2f ′′(u∞), then u∞ is a dissipative solution of the generalized Hunter�

Saxton equation (67).

Proof. We �rst study the case ` → 0, so we suppose that ` ⩽ 1. Following [11] we de-

�ne the Banach space W (I) def= {f ∈ D′(I), ∃F ∈ L1(I) such that F ′ = f} , with the norm

∥f∥W (I)
def= infc ∈R ∥F + c ∥L1(I) = minc ∈R ∥F + c ∥L1(I). Then

W 1,1(I) ↪ L1(I) ↪ W (I), (82)

where the �rst embedding is compact and the second is continuous. Using the dissipation of
the energy (45) and (78) we obtain that (u`)2, u` and `2P are bounded in L∞([0, T ], L1(I)).
Then, the inequality

∣f(u) − f(0)∣ ⩽ C̃ u2 + ∣f ′(0)∣ ∣u∣,
with (18) imply that u`t is bounded in L∞([0, T ],W (I)). Aubin theorem implies the com-
pactness of the sequence (u`). Since `2P is bounded in L∞([0, T ], L1), then there exists a
non negative Radon measure µ such that `2P converges weakly to µ. Taking ` → 0 in the
weak formulation of (18) we obtain (80).
The proof of the case `→∞ can be done following the proof of Theorem 6 in [11]. �
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Since we suppose that f ′′(u) ⩽ C̃, the lower bound of the interaction time and of the
quantity ∥ux∥L∞ given in Theorem 3 is uniform on `, which implies that `2P → 0 when `→ 0.
Thence, one can easily prove the following proposition:

Proposition 3. Under the conditions of Theorem 3, if f ′′(u) ⩽ C̃ and TV u0 < +∞, then

∀t < (C̃ sup
x∈R

∣u′0(x)∣)
−1

we have

µ(t) = 0, ν(t) = 1
2 (u∞x )2 f ′′(u∞). (83)

This proposition shows that before the appearance of the singularities, the limit u0 (respec-
tively u∞) is the entropy solution of the scalar conservation law (3) (respectively a dissipative
solution of the generalized Hunter�Saxton equation (67)).

8. Conclusion

In this paper, the classical scalar conservation law (SCL) (3) is regularized by the equation
(18) that is parameterized by `. This regularization is derived modifying the Lagrangian of
(3). In this paper, we prove the local (in time) existence of smooth solutions, blow-up and
global existence of weak solutions of the regularized equation. A new generalized Hunter�
Saxton (gHS) equation has been introduced, studied and a proof of existence of global weak
solutions is presented. In the last section, we have proved that the dissipative solutions
converge up to a sub-sequence to a solution of SCL when ` → 0 and a solution of gHS when
`→∞ before the appearance of the singularities. Several questions are still open, and deserve
to be studied:

● We have shown in this paper that the regularization (18) and the gHS (5) are Hamil-
tonian equations. Do bi-Hamiltonian structures exist for those equations?

● Can the uniqueness of the global weak solutions be obtained? following [4] for example.
● Do the solutions of the regularized equation converge to the expected solution � the
equation (83) holds � even after the appearance of the singularities?

● Is it possible to regularize other interesting hyperbolic systems conserving the same
properties given in this paper and in [9, 20, 22, 11]?
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