On a Hamiltonian regularization of scalar conservation laws - Archive ouverte HAL
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series A Année : 2023

On a Hamiltonian regularization of scalar conservation laws

Résumé

In this paper, we propose a Hamiltonian regularization of scalar conservation laws, which is parametrized by $\ell>0$ and conserves an $H^1$ energy. We prove the existence of global weak solutions for this regularization. Furthermore, we demonstrate that as $\ell$ approaches zero, the unique entropy solution of the original scalar conservation law is recovered, providing justification for the regularization. This regularization belongs to a family of non-diffusive, non-dispersive regularizations that were initially developed for the shallow-water system and extended later to the Euler system. This paper represents a validation of this family of regularizations in the scalar case.
Fichier principal
Vignette du fichier
rSCL.pdf (536.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02512810 , version 1 (19-03-2020)
hal-02512810 , version 2 (03-04-2023)
hal-02512810 , version 3 (05-10-2023)

Identifiants

  • HAL Id : hal-02512810 , version 2

Citer

Billel Guelmame. On a Hamiltonian regularization of scalar conservation laws. Discrete and Continuous Dynamical Systems - Series A, In press. ⟨hal-02512810v2⟩
523 Consultations
285 Téléchargements

Partager

More