Infinite time blow-up in the Keller-Segel system: existence and stability - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Infinite time blow-up in the Keller-Segel system: existence and stability

Juan Davila
  • Fonction : Auteur
  • PersonId : 1059938
Manuel del Pino
  • Fonction : Auteur
  • PersonId : 1059939
Juncheng Wei
  • Fonction : Auteur
  • PersonId : 973928

Résumé

The simplest version of the parabolic-elliptic Patlak-Keller-Segel system in the two-dimensional Euclidean space has an 8π critical mass which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. Among functions with mass 8π, we find a neighborhood of a radial function such that any solution with initial condition in this neighborhood is globally defined and blows-up in infinite time with an explicit scaling involving the square root of the logarithm of the time.
Fichier principal
Vignette du fichier
1911.12417v2.pdf (448.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02394787 , version 1 (05-12-2019)
hal-02394787 , version 2 (28-02-2020)
hal-02394787 , version 3 (03-04-2020)
hal-02394787 , version 4 (23-02-2023)

Identifiants

Citer

Juan Davila, Manuel del Pino, Jean Dolbeault, Monica Musso, Juncheng Wei. Infinite time blow-up in the Keller-Segel system: existence and stability. 2020. ⟨hal-02394787v2⟩
178 Consultations
210 Téléchargements

Altmetric

Partager

More