Existence and stability of infinite time blow-up in the Keller-Segel system - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Existence and stability of infinite time blow-up in the Keller-Segel system

Juan Davila
  • Fonction : Auteur
  • PersonId : 1059938
Manuel del Pino
  • Fonction : Auteur
  • PersonId : 1059939
Juncheng Wei
  • Fonction : Auteur
  • PersonId : 973928

Résumé

The simplest version of the parabolic-elliptic Patlak-Keller-Segel system in the two-dimensional Euclidean space has an 8π critical mass which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. Among functions with mass 8π, we find a neighborhood of a radial function such that any solution with initial condition in this neighborhood is globally defined and blows-up in infinite time with an explicit scaling involving the square root of the logarithm of the time.
Fichier principal
Vignette du fichier
ks-24-mar.pdf (469.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02394787 , version 1 (05-12-2019)
hal-02394787 , version 2 (28-02-2020)
hal-02394787 , version 3 (03-04-2020)
hal-02394787 , version 4 (23-02-2023)

Identifiants

Citer

Juan Davila, Manuel del Pino, Jean Dolbeault, Monica Musso, Juncheng Wei. Existence and stability of infinite time blow-up in the Keller-Segel system. 2020. ⟨hal-02394787v3⟩
178 Consultations
210 Téléchargements

Altmetric

Partager

More