Approximating Shortest Connected Graph Transformation for Trees - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Approximating Shortest Connected Graph Transformation for Trees

Nicolas Bousquet
Alice Joffard

Résumé

Let G, H be two connected graphs with the same degree sequence. The aim of this paper is to find a transformation from G to H via a sequence of flips maintaining connectivity. A flip of G is an operation consisting in replacing two existing edges uv, xy of G by ux and vy. Taylor showed that there always exists a sequence of flips that transforms G into H maintaining connec-tivity. Bousquet and Mary proved that there exists a 4-approximation algorithm of a shortest transformation. In this paper, we show that there exists a 2.5-approximation algorithm running in polynomial time. We also discuss the tightness of the lower bound and show that, in order to drastically improve the approximation ratio, we need to improve the best known lower bounds.
Fichier principal
Vignette du fichier
Approx_reconfiguration_degree_Arxiv.pdf (338.25 Ko) Télécharger le fichier
main.pdf (149.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02358489 , version 1 (18-12-2019)

Identifiants

Citer

Nicolas Bousquet, Alice Joffard. Approximating Shortest Connected Graph Transformation for Trees. 2019. ⟨hal-02358489⟩
99 Consultations
386 Téléchargements

Altmetric

Partager

More