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Abstract. Let G,H be two connected graphs with the same degree se-
quence. The aim of this paper is to find a transformation from G to H via
a sequence of flips maintaining connectivity. A flip of G is an operation
consisting in replacing two existing edges uv, xy of G by ux and vy.
Taylor showed that there always exists a sequence of flips that transforms
G into H maintaining connectivity. Bousquet and Mary proved that there
exists a 4-approximation algorithm of a shortest transformation. In this
paper, we show that there exists a 2.5-approximation algorithm running
in polynomial time. We also discuss the tightness of the lower bound and
show that, in order to drastically improve the approximation ratio, we
need to improve the best known lower bounds.

1 Introduction

Sorting by reversals problem. The problem of sorting by reversals has been widely
studied in the last twenty years in genomics. The reversal of a sequence of DNA
is a common mutation of a genome, that can lead to major evolutionary events.
It consists, given a DNA sequence that can be represented as a labelled path
x1, . . . , xn on n vertices, in turning around a part of it. More formally, a reversal
is a transformation that, given two integers 1 ≤ i < j ≤ n, transforms the path
x1, . . . , xn into x1, . . . , xi−1, xj , xj−1, . . . , xi, xj+1, . . . , xn. It is easy to prove that,
given two paths on the same vertex set (and with the same leaves), there exists
a sequence of reversals that transforms the first into the second. Biologists want
to find the minimum number of reversals needed to transform a genome (i.e.
a path) into another in order to compute the evolutionary distance between
different species.

An input of the SORTING BY REVERSALS problem consists of two paths P, P ′

with the same vertex set (and the same leaves) and an integer k. The output is
positive if and only if there exists a sequence of at most k reversals that trans-
forms P into P ′. Capraca proved that the SORTING BY REVERSALS problem
is NP-complete [4]. Kececioglu and Sankoff first proposed an algorithm that

⋆ This work was supported by ANR project GrR (ANR-18-CE40-0032).
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computes a sequence of reversals of size at most twice the length of an opti-
mal solution in polynomial time [10]. Then, Christie improved it into a 3/2-
approximation algorithm [5]. The best polynomial time algorithm known so
far is a 1.375-approximation due to Berman et al. [2].

A reversal can be equivalently defined as follows: given a path P and two
edges ab and cd, a reversal consists in the deletion of the edges ab and cd and
the addition of ac and bd that keeps the connectivity of the graph. Indeed, when
we transform x1, . . . , xn into x1, . . . , xi−1, xj , xj−1, . . . , xi, xj+1, . . . , xn, we have
deleted the edges xi−1xi and xjxj+1 and have created the edges xi−1xj and
xixj+1. In this paper, we study the generalization of the SORTING BY REVER-
SALS problem for trees and general graphs that has also been extensively stud-
ied in the last decades.

SHORTEST CONNECTED GRAPH TRANSFORMATION problem. Let G = (V,E)
be a graph where V denotes the set of vertices and E the set of edges. For
basic definitions on graphs, the reader is referred to [6]. All along the paper, the
graphs are loop-free but may admit multiple edges. A tree is a connected graph
which does not contain any cycle (a multi-edge being considered as a cycle).

The degree sequence of a graph G is the sequence of the degrees of its ver-
tices in non-increasing order. Given a non-increasing sequence of integers S =
{d1, . . . , dn}, a graph G = (V,E) whose vertices are labeled as V = {v1, . . . , vn}
realizes S if d(vi) = di for all i ≤ n. Senior [12] gave necessary and sufficient con-
ditions to guarantee that, given a sequence of integers S = {d1, . . . , dn}, there
exists a connected multigraph realizing S. Hakimi [7] then proposed a polyno-
mial time algorithm that outputs a connected (multi)graph realizing S if such a
graph exists or returns no otherwise.

A flip σ (also called swap or switch in the literature) on two edges ab and cd
consists in deleting the edges ab and cd and creating the edges ac and bd (or ad
and bc)3. The flip operation that transforms the edges ab and cd into the edges ac
and bd is denoted (ab, cd) → (ac, bd). When the target edges are not important
we will simply say that we flip the edges ab and cd.

Let S = {d1, . . . , dn} be a non-increasing sequence and let G and H be two
graphs on n vertices v1, . . . , vn realizing S. The graph G can be transformed into
H if there is a sequence (σ1, . . . , σk) of flips that transforms G into H . Note that
since flips do not modify the degree sequence, all the intermediate graphs also
realize S. Let G(S) be the graph whose vertices are the loop-free multigraphs
realizing S and where two vertices G and H of G(S) are adjacent if G can be
transformed into H via a single flip. Since the flip operation is reversible, the
graph G(S) is an undirected graph called the reconfiguration graph of S. Note
that there exists a sequence of flips between any pair of graphs realizing S if
and only if the graph G(S) is connected. Hakimi [8] proved that, for any non-
increasing sequence S, if the graph G(S) is not empty then it is connected.

3 In the case of multigraphs, we simply decrease by one the multiplicities of ab and cd

and increase by one the ones of ac and bd.
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One can wonder if the reconfiguration graph is still connected when we
restrict to graphs with stronger properties. For a graph property Π , let us de-
note by G(S,Π) the subgraph of G(S) induced by the graphs realizing S that
have the property Π . If we respectively denote by C and S the property of
being connected and simple, Taylor proved in [13] that G(S,C ), G(S,S ) and
G(S,C ∧S ) are connected (where ∧ stands for “and”). Let G,H be two graphs
of G(S,Π). A sequence of flips transforms G into H in G(S,Π) if the sequence of
flips transforms G into H and all the intermediate graphs also have the property
Π . In other words, a sequence of flips that transforms G into H in G(S,Π) is a
path between G and H in G(S,Π). Since [13] ensures that G(S,Π) is connected,
one can ask what is the minimum length of such a transformation between G
and H . This problem is known to be NP-hard, see e.g. [4]. In this paper we will
study the following problem:

SHORTEST CONNECTED GRAPH TRANSFORMATION

Input: Two connected multigraphs G,H with the same degree sequence.
Output: The minimum number of flips needed to transform G into H in G(S,C )
.

Note that SHORTEST CONNECTED GRAPH TRANSFORMATION is a general-
ization of SORTING BY REVERSALS since, when the degree sequence consists of
n− 2 vertices of degree 2 and two vertices of degree 1, we simply want to find
a sequence of reversals of minimum length between two paths. Bousquet and
Mary [3] proposed a 4-approximation algorithm for SHORTEST CONNECTED

GRAPH TRANSFORMATION. Our main result is the following:

Theorem 1. SHORTEST CONNECTED GRAPH TRANSFORMATION admits a 2.5-
approximation algorithm.

Section 3 is devoted to the proof of Theorem 1. In order to prove it, we
will mainly focus on the SHORTEST TREE TRANSFORMATION problem which
is the same as SHORTEST CONNECTED GRAPH TRANSFORMATION except that
the input consists of trees with the same degree sequence. Informally speaking,
it is due to the fact that if an edge of the symmetric difference appears in some
cycle, then we can reduce the size of the symmetric difference in one flip, as
observed in [3].

When we desire to give some explicit bound on the quality of a solution, we
need to compare it with the length of an optimal transformation. When we do
not want to keep connectivity, Will [14] gives an explicit formula of the number
of steps in a minimum transformation. When we want to keep connectivity, no
such formula is known. Our 5/2-approximation algorithm is obtained by com-
paring it to the formula of Will (which is a lower bound when we want to keep
connectivity). In Section 4, we discuss the tightness of this lower bound. We
exhibit two graphs G and H such that the length of a shortest transformation
between G and H is at least 1.5 times larger than the bound given by [14], and
even twice longer under some assumptions on the set of possible flips. In or-
der to prove this result, we generalize some notions introduced for sorting by
reversals in [5] to general graphs.
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This example ensures that if we want to find an approximation algorithm
with a ratio better than 1.5, we might have to improve the algorithm, but over-
all, we need to improve the lower bound. The formal point and the two graphs
G and H can be found in Section 4.

Related Works

Mass spectrometry. Mass spectrometry is a technique used by chemists in order
to obtain the formula of a molecule. It provides the mass-to-charge (m/z) ra-
tio spectrum of the molecule from which we can deduce how many atoms of
each element the molecule has. With this formula, we would like to find out the
nature of the molecule, i.e. the bonds between the different atoms. But the ex-
istence of structural isomers points out that there could exist several solutions
for this problem. Thus, we would like to find all of them. Since the valence of
each atom is known, this problem actually consists in finding all the connected
loop-free multigraphs whose degree sequence is the sequence of the valences
of those atoms. The reconfiguration problem we are studying here can be a tool
for an enumeration algorithm consisting in visiting the reconfiguration graph.

Flips and reconfiguration. The SHORTEST CONNECTED GRAPH TRANSFORMA-
TION problem belongs to the class of reconfiguration problems that received
a considerable attention in the last few years. Reconfiguration problems con-
sist, given two solutions of the same problem, in transforming the first solution
into the second via a sequence of ”elementary” transformations (such as flips)
maintaining some properties all along. For more information on reconfigura-
tion problems, the reader is referred for instance to [11].

2 Preliminaries

2.1 Symmetric Difference

Unless specified otherwise, we consider unoriented loop-free multigraphs. Let
G = (V (G), E(G)) be a graph where V (G) is the set of vertices of G and E(G)
is its set of edges. The intersection of two graphs G and H on the same set of
vertices V is the graph G ∩ H with vertex set V , and such that e ∈ E(G ∩ H),
with multiplicity m, if the minimum multiplicity of e in both graphs is m. Their
union, G ∪ H , has vertex set V , and e ∈ E(G ∪ H), with multiplicity m, if and
only if the maximum multiplicity of e in G and H is m. Finally, the difference
G − H has vertex set V and e ∈ E(G − H) with multiplicity m if and only if
the difference between its multiplicities in G and H is m > 0. The symmetric
difference of G and H is ∆(G,H) = (G −H) ∪ (H − G). We denote by δ(G,H)
the number of edges of ∆(G,H).

Let G,H be two graphs with the same degree sequence. An edge e of G is
good if it is in G ∩ H and is bad otherwise. Note that since G and H have the
same degree sequence, the graph ∆(G,H) has even degree on each vertex and
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the number of edges of G incident to v is equal to the number of edges of H
incident to v.

Each flip removes at most 4 edges of the symmetric difference. Therefore,
the length of a transformation from G to H is at least δ(G,H)/4. In fact, it is
possible to obtain a slightly better bound on the length of the transformation.
A cycle C in ∆(G,H) is alternating if edges of G and H alternate in C. Since
the number of edges of G incident to v is equal to the number of edge of H
incident to v in ∆(G,H), the graph ∆(G,H) can be partitioned into a collection
of alternating cycles. We denote by mnc(G,H) the maximal number of cycles in
a partition C of ∆(G,H) into alternating cycles. Will [14] proved the following:

Theorem 2 (Will [14]). Let G,H be two graphs with the same degree sequence. A
shortest sequence of flips that transforms G into H (that does not necessarily maintain

the connectivity of the intermediate graphs) has length exactly δ(G,H)
2 −mnc(G,H).

Note that Theorem 2 indeed provides a lower bound for a transformation of
SHORTEST CONNECTED GRAPH TRANSFORMATION .

2.2 Basic Facts Concerning Flips

Let G = (V,E) be an unoriented graph and v ∈ V (G). The set NG(v) of neigh-
bours of v in G is the set of vertices u such that uv ∈ E(G). Let D be a directed
graph and v ∈ V (D). The set N−

D (v) of in-neighbours of v in D is the set of ver-
tices u such that uv is an arc of D, and the set N+

D (v) of out-neighbours of v in D
is the set of vertices u such that vu is an arc of D. When G and D are obvious
from the context we will simply write N(v), N−(v), N+(v).

The inverse σ−1 of a flip σ is the flip such that σ ◦ σ−1 = id, i.e. applying σ
and then σ−1 leaves the initial graph. The opposite −σ of a flip σ is the unique
other flip that can be applied to the two edges of σ. If we consider a flip σ =
(ab, cd) → (ac, bd), then σ−1 = (ac, bd) → (ab, cd) and −σ = (ab, cd) → (ad, bc).
Note that −σ is a flip deleting the same edges as σ while σ−1 cancels the flip
σ. When we transform a graph G into another graph H , we can flip the edges
of G or the edges of H . Indeed, applying the sequence of flips (σ1, . . . , σi) to
transform G into a graph K , and the sequence of flips (τ1, . . . , τj) to transform
H into K is equivalent to applying the sequence (σ1, . . . , σi, τ

−1
j , . . . , τ−1

1 ) to
transform G into H .

Let G = (V,E) be a connected graph and let H be a graph with the degree
sequence of G. A flip is good if it flips bad edges and creates at least one good
edge. It is bad otherwise. A connected flip is a flip such that its resulting graph is
connected. Otherwise, it is disconnected. A path from a ∈ V to b ∈ V is a sequence
of vertices (v1, . . . , vk) such that a = v1, b = vk, for every integer i ∈ [k − 1],
vivi+1 ∈ E(G) and there is no repetition of vertices. Similarly, a path from e to
f with e, f ∈ E(G) is a path from an endpoint of e to an endpoint of f that does
not contain the other endpoint of e and of f . A path between x and y (vertices or
edges) is a path from x to y or a path from y to x. The content of a path is its set
of vertices. We say that an edge e belongs to (or is on) a path P if both endpoints
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of e appear consecutively in P . The intersection P1 ∩ P2 of two paths P1 and P2

is the intersection of their contents. The vertices of a sequence (v1, . . . , vk) are
aligned in G if there exists a path P which is the concatenation of k − 1 paths
P1P2 . . . Pk−1 where Pi is a path from vi to vi+1 for i ∈ [k − 1]. Note that we
might have vi = vi+1 and then Pi = vi.

Note that, for every connected graph G, if ab, cd ∈ E(G), ab 6= cd, then
(a, b, c, d), (a, b, d, c), (b, a, c, d), or (b, a, d, c) are aligned. Moreover, if G is a tree,
exactly one of them is aligned. Let G be a connected graph and a, b, c, d ∈ V (G)
such that (a, b, c, d) are aligned. The in-area of the two edges ab and cd is the
connected component of G \ {ab, cd} containing the vertices b and c. The other
components are called out-areas. The following lemma links the connectivity of
a flip and the alignment of its vertices:

Lemma 1. (⋆) Let G be a connected graph and ab, cd ∈ E(G) where a, b, c and d are
pairwise distinct vertices of G. If (a, b, c, d) or (b, a, d, c) are aligned in G, then the flip
(ab, cd) → (ac, bd) is connected. If G is a tree, then it is also a necessary condition.

The proofs of all the statements marked with a ⋆ are not included in this
extended abstract. Lemma 1 ensures that, for trees, exactly one of the two flips
σ and −σ is connected.

Let e and f be two vertex-disjoint edges of a tree T , and let σ2 be a flip in T
that does not flip e nor f . The flip σ2 depends on e and f if applying the connected
flip on e and f changes the connectivity of σ2. By abuse of notation, for any two
flips σ1 and σ2 on pairwise disjoint edges, σ2 depends on σ1 if σ2 depends on the
edges of σ1. The flip σ1 sees σ2 if exactly one of the edges of σ2 is on the path
linking the two edges of σ1 in G.

The following lemma links the dependency of two flips and the position of
their edges in a tree:

Lemma 2. (⋆) Let T be a tree and σ1 and σ2 be two flips on T , whose edges are pairwise
distinct. The three following points are equivalent:

1. σ2 depends on σ1,
2. σ1 depends on σ2,
3. σ2 sees σ1 and σ1 sees σ2.

We now give two consequences of applying a connected flip.

Lemma 3. (⋆) Let T be a tree and σ1 and σ2 be two flips on T with pairwise disjoint
edges, where σ1 is connected. Let T ′ be the tree obtained after applying σ1 to T . The
flip σ−1

1 sees σ2 in T ′ if and only if σ1 sees σ2 in T . And σ2 sees σ−1
1 in T ′ if and only

if σ2 sees σ1 in T .

Lemma 4. (⋆) Let T be a tree and σ1, σ2 and σ3 be three flips on T whose edges are
pairwise disjoint and such that σ1 sees σ2, σ2 sees σ3, and σ2 is connected. Let T ′ be
the tree obtained by applying the flip σ2 to T . The flip σ1 sees σ3 in T if and only if σ1

does not see σ3 in T ′.
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3 Upper Bound

Let us recall a result of [3].

Lemma 5. Let G,H be two connected graphs with the same degree sequence. There
exists a sequence of at most two flips that decreases δ(G,H) by at least 2. Moreover, if
there is an alternating C4 in ∆(G,H), it can be removed in at most 2 steps, without
modifying the rest of the graph.

Lemma 5 immediately implies the following:

Corollary 1. SHORTEST CONNECTED GRAPH TRANSFORMATION admits a poly-
nomial time 4-approximation algorithm.

The goal of the rest of this section is to improve the approximation ratio. The
crucial lemma is the following:

Lemma 6. Let G,H be two trees with the same degree sequence. There exists a se-
quence of at most 3 flips that decreases δ(G,H) by at least 4. Moreover, this sequence
only flips bad edges.

Proof. Let G′ be the graph whose vertices are the connected components of G∩
H and where two vertices S1 and S2 of G′ are incident if there exists an edge
in G between a vertex of S1 and a vertex of S2. In other words, G′ is obtained
from G by contracting every connected component of G∩H into a single vertex.
Note that the edges of G′ are the edges of G − H . Moreover, as G is a tree, G′

also is. We can similarly define H ′. Note that G′ and H ′ have the same degree
sequence.

Let S1 be a leaf of G′ and S2 be its parent in G′. Let us show that S2 is not a
leaf of G′. Indeed, otherwise G′ would be reduced to a single edge. In particular,
E(G − H) would contain only one edge. Since the degree sequence of G − H
and H − G are the same, the edge of H − G would have to be the same, a
contradiction. Thus, we can assume that S2 is not a leaf. Let u1u2 be the edge of
G − H between u1 ∈ S1 and u2 ∈ S2. Since G − H and H − G have the same
degree sequence and S1 is a leaf of G′, there exists a unique vertex v1 such that
u1v1 ∈ E(H −G). Moreover there exists a vertex v2 such that u2v2 ∈ E(H −G).

Let us first assume that v1 = v2. Then there exists a vertex w distinct from
u1 and u2 such that v1w ∈ E(G − H) since v1 has degree at least 2 in H − G.
Since S1 is a leaf of G′, w /∈ S1 and either (u1, u2, v1, w) or (u1, u2, w, v1) are
aligned in G. If (u1, u2, v1, w) are aligned then the flip (u1u2, v1w) → (u1v1, u2w)
in G is connected and creates the edge u1v1. If (u1, u2, w, v1) are aligned then
(u1u2, v1w) → (u1w, u2v1) is connected and creates the edge u2v1 = u2v2. In
both cases, we reduce the size of the symmetric difference by at least 2 in one
flip, and we can conclude with Lemma 5.

From now on, we assume that v1 6= v2. We focus on the alignment of u1, v1, u2

and v2 in H . Since S1 is a leaf of G′, it is also a leaf of H ′. Thus, v1 is on the
path from u1 to u2 and either (u1, v1, u2, v2) or (u1, v1, v2, u2) are aligned. If
(u1, v1, u2, v2) are aligned then Lemma 1 ensures that (u1v1, u2v2) → (u1u2, v1v2)
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is connected in H and reduces the size of the symmetric difference by at least
2. We can conclude with Lemma 5. Thus, we can assume that (u1, v1, v2, u2) are
aligned in H (see Figure 1 for an illustration).

Let us first remark that if u2 has degree at least 2 in H − G (or equiva-
lently in G − H), then we are done. Indeed, if there exists w 6= v2 such that
u2w ∈ E(H − G) then, since (u1, v1, v2, u2) are aligned, (u1, v1, u2, w) have to
be aligned. Indeed, v2u2 is the only edge of H − G on the path from v1 to u2

incident to u2. Thus the flip (u1v1, u2w) → (u1u2, v1w) is connected in H . Since
it reduces δ(G,H) by at least 2, we can conclude with Lemma 5.

From now on, we will assume that u2 has degree 1 in H − G. Let H3 (resp.
H4) be the connected component of v1 and v2 (resp. u2) in H \ {u1v1, u2v2},
which exists since (u1, v1, v2, u2) are aligned. Note that the third component of
H \ {u1v1, u2v2} is reduced to S1. By definition, H3 is the in-area of u1v1 and
u2v2.

We now show that there exists an edge u3u4 ∈ E(G − H), with u3 ∈ H3,
u4 ∈ H4, and such that the connected component S4 of G ∩ H containing u4 is
not a leaf of G′. Indeed, since G is connected, there exists a path P from v1 to
u2 in G. Since u1u2 is the only edge of G − H that has an endpoint in S1, this
path does not contain any vertex of S1. Thus, it necessarily contains an edge
u3u4 between a vertex u3 of H3 and a vertex u4 of H4. Since H3 and H4 are
anticomplete in G ∩H , u3u4 ∈ E(G−H). Moreover, the connected component
S4 of G ∩ H containing u4 is not a leaf of G′, as it is either S2 which is not a
leaf, or P has to leave S4 at some point with an edge of G −H since P ends in
u2 ∈ S2.

Since u3 and u4 have the same degree in G−H and H −G, there exist v3, v4
such that u3v3, u4v4 ∈ E(H−G). Moreover, since S4 is not a leaf of G′ (and thus
of H ′), there exists an edge of H − G between a vertex u5 ∈ S4 and a vertex
v5 ∈ V \ S4 where u5v5 6= u4v4.

Let us prove that u3, v3, u4 and v4 are pairwise distinct. By definition, we
have u3 6= v3, u4 6= v4 and u3 6= u4. Moreover, since u3u4 ∈ E(G −H), u3 6= v4
and u4 6= v3. Thus, the only vertices that can be identical are v3 and v4. If v3 = v4,
since u3 ∈ H3, u4 ∈ H4, and v2u2 is the only edge of H −G from H3 to H4, then
either v3 = v4 = v2 or v3 = v4 = u2. In the first case, u4 = u2 since v2u2 is the
only edge of H − G from H3 to H4. Thus, u2 is the endpoint of both u1u2 and
u2u3 in G −H . In the second case, u2 is the endpoint of both u2u3 and u2u4 in
H −G. Thus, in both cases, u2 has degree at least 2 in H −G, a contradiction.

We now focus on the alignment of u3, u4, v3 and v4 in H . If (v3, u3, v4, u4)
or (u3, v3, u4, v4) are aligned, then the flip (u3v3, u4v4) → (u3u4, v3v4) is con-
nected in H and reduces the size of the symmetric difference by at least 2, since
u3u4 ∈ E(G − H). Note that the flip is well-defined since all the vertices are
distinct. Thus, we can conclude with Lemma 5. Therefore, we can assume that
(u3, v3, v4, u4) or (v3, u3, u4, v4) are aligned in H .

We give, in each case, a sequence of three flips that decreases the size of
the symmetric difference by at least 4. Due to space restriction, the proof that
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those flips can be applied and maintain the connectivity are not included in this
extended abstract.

Case 1. (u3, v3, v4, u4) are aligned. (See Figure 1 for an illustration).
We successively apply the flips σ1 : (u2v2, u5v5) → (u2v5, u5v2), σ2 : (u3x, u4v4)
→ (u3u4, xv4) where x = u5 if u3 = v2 and v3 = u2, and x = v3 otherwise,
and σ3 : (u1v1, u2v5) → (u1u2, v1v5) in H . Since u1u2, u3u4 ∈ E(G − H), this
sequence of flips indeed reduces δ(G,H) by at least 4.

Case 2. (v3, u3, u4, v4) are aligned.
We apply σ1 : (u2v2, u4v4) → (u2v4, u4v2), σ2 : (u3v3, u4v2) → (u3u4, v2v3) then
σ3 : (u1v1, u2v4) → (u1u2, v1v4) to H . Again, u1u2, u3u4 ∈ E(G − H) and it
reduces δ(G,H) by at least 4.

u1

v1

v3

u3

v2
u2

v4

u4

u5

v5

S1

S2

S4

H3 H4

u1

v1

v3

u3

v2
u5

u4

v4
v5

u2

S1

S2

S4

u1

v1

v3

v4

v2
u5

u4

u3v5

u2

S1

S2

S4

v5
v1

v3

v4

v2
u5

u4

u3u1

u2
S1

S2

S4

σ1

σ2

σ3

Fig. 1: The three flips σ1 : (u2v2, u5v5) → (u2v5, u5v2), σ2 : (u3v3, u4v4) →
(u3u4, v3v4) and σ3 : (u1v1, u2v5) → (u1u2, v1v5) applied to the graph H where
(u3, v3, v4, u4) are aligned. The blue full edges are in E(H − G) and the red
dashed edges are in E(G−H).

Therefore, in all the cases, we have found a sequence of three flips whose
edges are in the symmetric difference and that reduce δ(G,H) by at least 4.
Moreover, the proof immediately provides a polynomial time algorithm to find
such a sequence. ⊓⊔
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Note that Lemma 6 allows to obtain a 3-approximation algorithm for SHORT-
EST CONNECTED GRAPH TRANSFORMATION. Indeed, as shown in the proof of
Lemma 1 in [3], as long as there exists an edge of the symmetric difference in
a cycle of G, one can reduce the size of the symmetric difference by 2 in one
step. Afterwards, we can assume that the remaining graphs G−H and H −G
are trees. By Lemma 6, in three flips, the symmetric difference of the optimal
solution decreases by at most 12 while our algorithm decreases it by at least 4.
(Note that free to try all the flips, finding these flips is indeed polynomial). But
we can actually improve the approximation ratio. The idea consists in treating
differently short cycles. A short cycle is a C4, a long cycle is a cycle of length at
least 6. We now give the main result of this section.

Theorem 3. SHORTEST CONNECTED GRAPH TRANSFORMATION admits a 5/2-
approximation algorithm running in polynomial time. It becomes a 9/4-approximation
algorithm if ∆(G,H) does not contain any short cycle.

Proof. Let C be an optimal partition of ∆(G,H) into alternating cycles, i.e. a
partition with mnc(G,H) cycles. Let c be the number of short cycles in C. Bereg
and Ito [1] provide a polynomial time algorithm to find a partition of ∆(G,H)
into alternating cycles having at least c

2 short cycles. Lemma 5 ensures that we
can remove their 2c edges from the symmetric difference in at most c flips. If
an edge of the symmetric difference is in a cycle of G or H , then in one step
we can reduce the symmetric difference by 2 [3]. Otherwise, by Lemma 6, we

can remove the remaining δ(G,H) − 2c edges using at most 3(δ(G,H)−2c)
4 flips

in polynomial time. Therefore, we can transform G into H with at most c +
3(δ(G,H)−2c)

4 flips.
Let us now provide a lower bound on the length of a shortest transformation

from G to H . By definition, C contains c short cycles. Theorem 2 ensures that we
need at least c steps to remove the short cycles, plus ℓ − 1 flips to remove each

cycle of length 2ℓ. Therefore, we need at least δ(G,H)−4c
3 flips to remove the

δ(G,H)− 4c remaining edges from the symmetric difference.
The ratio between the upper bound and the lower bound is

f(c) :=
c+ 3δ(G,H)−6c

4

c+ δ(G,H)−4c
3

=
3(3δ(G,H)− 2c)

4(δ(G,H)− c)
.

The function f being increasing and since the number of short cycles in C

cannot exceed δ(G,H)
4 , we have f(c) ≤ f( δ(G,H)

4 ) = 5
2 . It gives a 5

2 -approximation
in polynomial time. Moreover, when there is no alternating short cycle in ∆(G,H),
c = 0. Since f(0) = 9

4 , we obtain a 9
4 -approximation. ⊓⊔

4 Discussion on the Tightness of the Lower Bound

In this section, we discuss the quality of the lower bound of Theorem 2. We first
prove that if we only flip bad edges of the same cycle of the symmetric differ-
ence then the length of a shortest transformation can be almost twice longer



Approximating SHORTEST CONNECTED GRAPH TRANSFORMATION for Trees 11

than the one given by the lower bound of Theorem 2. In order to prove it, we
generalize several techniques and results of Christie [5], proved for the SORT-
ING BY REVERSALS problem.

Note that the result of Hannenhalli and Pevzner [9] actually proves that in
the case of paths, when the symmetric difference only contains vertex-disjoint
short cycles, it is not necessarily optimal to only flip edges of the same cycle.
However, studying this restriction gives us a better understanding of the gen-
eral problem.

We also prove that, if we only flip bad edges (which are not necessarily
in the same cycle of the symmetric difference), then the length of a shortest
transformation can be almost 3/2 times longer than the one given by the lower
bound. Note that all the existing approximation algorithms for SORTING BY RE-
VERSALS and SHORTEST CONNECTED GRAPH TRANSFORMATION only flip bad
edges. But again no formal proof guarantees that there always exists a shortest
transformation where we only flip bad edges.

c v1,1 v1,2

v1,3 v1,4v3,1v3,2

v3,3v3,4

v4,1

v4,2

v4,3

v4,4

v2,1

v2,2

v2,3

v2,4

Fig. 2: The graphs G4 and H4. The black thick edges are in E(G4 ∩H4), the blue
thin edges are in E(G4 −H4) and the red dashed edges are in E(H4 −G4).

Both results (whose proofs are not included in this extended abstract) are ob-
tained with the same graphs Gk and Hk represented in Figure 2 for k = 4. For
any k ≥ 2, let Gk = (Vk, E(Gk)) and Hk = (Vk, E(Hk)) be the graphs with Vk =
{vi,j , 1 ≤ i ≤ k, 1 ≤ j ≤ 4} ∪ {c}, E(Gk) =

⋃
i∈[k]{cvi,1, vi,1vi,2, vi,2vi,3, vi,3vi,4},

and E(Hk) =
⋃

i∈[k]{cvi,1, vi,1vi+1,3, vi,2vi,3, vi,2vi+1,4}, where the additions are

defined modulo k. One can easily check that, in this construction, both Gk

and Hk are the subdivisions of a star where each branch has 4 vertices. Note
that ∆(G,H) is the disjoint union of k short cycles. Moreover, the partition of
∆(G,H) into alternating cycles is unique.
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The proof of Lemma 5 ensures that there is a transformation from Gk to
Hk in at most 2k steps where we only flip bad edges in the same cycle of the
symmetric difference. So our first result is tight with our assumptions. We con-
jecture that the length of a shortest transformation from Gk to Hk is at least
2k − 1 without any assumption on the set of possible flips.
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