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Abstract. Let G,H be two connected graphs with the same degree sequence. The aim of this paper is
to find a transformation from G to H via a sequence of flips maintaining connectivity. A flip of G is an
operation consisting in replacing two existing edges uv, xy of G by ux and vy.
Taylor showed that there always exists a sequence of flips that transforms G into H maintaining connec-
tivity. Bousquet and Mary proved that there exists a 4-approximation algorithm of a shortest transfor-
mation. In this paper, we show that there exists a 2.5-approximation algorithm running in polynomial
time. We also discuss the tightness of the lower bound and show that, in order to drastically improve the
approximation ratio, we need to improve the best known lower bounds.

1 Introduction

Sorting by reversals problem. The problem of sorting by reversals has been widely studied in the last twenty
years in genomics. The reversal of a sequence of DNA is a common mutation of a genome, that can lead
to major evolutionary events. It consists, given a DNA sequence that can be represented as a labelled path
x1, . . . , xn on n vertices, in turning around a part of it. More formally, a reversal is a transformation that,
given two integers 1 ≤ i < j ≤ n, transforms the path x1, . . . , xn into x1, . . . , xi−1, xj , xj−1, . . . , xi, xj+1, . . . ,
xn. It is easy to prove that, given two paths on the same vertex set (and with the same leaves), there exists a
sequence of reversals that transforms the first into the second. Biologists want to find the minimum number
of reversals needed to transform a genome (i.e. a path) into another in order to compute the evolutionary
distance between different species.

An input of the SORTING BY REVERSALS problem consists of two paths P, P ′ with the same vertex set
(and the same leaves) and an integer k. The output is positive if and only if there exists a sequence of
at most k reversals that transforms P into P ′. Capraca proved that the SORTING BY REVERSALS problem is
NP-complete [4]. Kececioglu and Sankoff first proposed an algorithm that computes a sequence of reversals
of size at most twice the length of an optimal solution in polynomial time [10]. Then, Christie improved
it into a 3/2-approximation algorithm [5]. The best polynomial time algorithm known so far is a 1.375-
approximation due to Berman et al. [2].

A reversal can be equivalently defined as follows: given a path P and two edges ab and cd, a reversal
consists in the deletion of the edges ab and cd and the addition of ac and bd that keeps the connectivity of
the graph. Indeed, when we transform x1, . . . , xn into x1, . . . , xi−1, xj , xj−1, . . . , xi, xj+1, . . . , xn, we have
deleted the edges xi−1xi and xjxj+1 and have created the edges xi−1xj and xixj+1. In this paper, we study
the generalization of the SORTING BY REVERSALS problem for trees and general graphs that has also been
extensively studied in the last decades.

SHORTEST CONNECTED GRAPH TRANSFORMATION problem. Let G = (V,E) be a graph where V denotes
the set of vertices and E the set of edges. For basic definitions on graphs, the reader is referred to [6]. All
along the paper, the graphs are loop-free but may admit multiple edges. A tree is a connected graph which
does not contain any cycle (a multi-edge being considered as a cycle).
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The degree sequence of a graph G is the sequence of the degrees of its vertices in non-increasing order.
Given a non-increasing sequence of integers S = {d1, . . . , dn}, a graphG = (V,E) whose vertices are labeled
as V = {v1, . . . , vn} realizes S if d(vi) = di for all i ≤ n. Senior [12] gave necessary and sufficient conditions to
guarantee that, given a sequence of integers S = {d1, . . . , dn}, there exists a connected multigraph realizing
S. Hakimi [7] then proposed a polynomial time algorithm that outputs a connected (multi)graph realizing
S if such a graph exists or returns no otherwise.

A flip σ (also called swap or switch in the literature) on two edges ab and cd consists in deleting the edges
ab and cd and creating the edges ac and bd (or ad and bc)3. The flip operation that transforms the edges ab
and cd into the edges ac and bd is denoted (ab, cd) → (ac, bd). When the target edges are not important we
will simply say that we flip the edges ab and cd.

Let S = {d1, . . . , dn} be a non-increasing sequence and letG andH be two graphs on n vertices v1, . . . , vn
realizing S. The graph G can be transformed into H if there is a sequence (σ1, . . . , σk) of flips that transforms
G into H . Note that since flips do not modify the degree sequence, all the intermediate graphs also realize
S. Let G(S) be the graph whose vertices are the loop-free multigraphs realizing S and where two vertices
G and H of G(S) are adjacent if G can be transformed into H via a single flip. Since the flip operation is
reversible, the graph G(S) is an undirected graph called the reconfiguration graph of S. Note that there ex-
ists a sequence of flips between any pair of graphs realizing S if and only if the graph G(S) is connected.
Hakimi [8] proved that, for any non-increasing sequence S, if the graph G(S) is not empty then it is con-
nected.

One can wonder if the reconfiguration graph is still connected when we restrict to graphs with stronger
properties. For a graph property Π , let us denote by G(S,Π) the subgraph of G(S) induced by the graphs
realizing S that have the propertyΠ . If we respectively denote by C and S the property of being connected
and simple, Taylor proved in [13] that G(S,C ), G(S,S ) and G(S,C ∧S ) are connected (where ∧ stands for
“and”). LetG,H be two graphs of G(S,Π). A sequence of flips transformsG intoH in G(S,Π) if the sequence
of flips transforms G into H and all the intermediate graphs also have the property Π . In other words, a se-
quence of flips that transformsG intoH in G(S,Π) is a path betweenG andH in G(S,Π). Since [13] ensures
that G(S,Π) is connected, one can ask what is the minimum length of such a transformation betweenG and
H . This problem is known to be NP-hard, see e.g. [4]. In this paper we will study the following problem:

SHORTEST CONNECTED GRAPH TRANSFORMATION
Input: Two connected multigraphs G,H with the same degree sequence.
Output: The minimum number of flips needed to transform G into H in G(S,C ).

Note that SHORTEST CONNECTED GRAPH TRANSFORMATION is a generalization of SORTING BY RE-
VERSALS since, when the degree sequence consists of n − 2 vertices of degree 2 and two vertices of degree
1, we simply want to find a sequence of reversals of minimum length between two paths. Bousquet and
Mary [3] proposed a 4-approximation algorithm for SHORTEST CONNECTED GRAPH TRANSFORMATION.
Our main result is the following:

Theorem 1. SHORTEST CONNECTED GRAPH TRANSFORMATION admits a 2.5-approximation algorithm.

Section 3 is devoted to the proof of Theorem 1. In order to prove it, we will mainly focus on the SHORT-
EST TREE TRANSFORMATION problem which is the same as SHORTEST CONNECTED GRAPH TRANSFOR-
MATION except that the input consists of trees with the same degree sequence. Informally speaking, it is
due to the fact that if an edge of the symmetric difference appears in some cycle, then we can reduce the
size of the symmetric difference in one flip, as observed in [3].

When we desire to give some explicit bound on the quality of a solution, we need to compare it with
the length of an optimal transformation. When we do not want to keep connectivity, Will [14] gives an
explicit formula of the number of steps in a minimum transformation. When we want to keep connectivity,
no such formula is known. Our 5/2-approximation algorithm is obtained by comparing it to the formula

3 In the case of multigraphs, we simply decrease by one the multiplicities of ab and cd and increase by one the ones of
ac and bd.
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of Will (which is a lower bound when we want to keep connectivity). In Section 4, we discuss the tightness
of this lower bound. We exhibit two graphs G and H such that the length of a shortest transformation
between G and H is at least 1.5 times larger than the bound given by [14], and even twice longer under
some assumptions on the set of possible flips. In order to prove this result, we generalize some notions
introduced for sorting by reversals in [5] to general graphs.

This example ensures that if we want to find an approximation algorithm with a ratio better than 1.5, we
might have to improve the algorithm, but overall, we need to improve the lower bound. The formal point
and the two graphs G and H can be found in Section 4.

Related works

Mass spectrometry. Mass spectrometry is a technique used by chemists in order to obtain the formula of a
molecule. It provides the mass-to-charge (m/z) ratio spectrum of the molecule from which we can deduce
how many atoms of each element the molecule has. With this formula, we would like to find out the nature
of the molecule, i.e. the bonds between the different atoms. But the existence of structural isomers points out
that there could exist several solutions for this problem. Thus, we would like to find all of them. Since the
valence of each atom is known, this problem actually consists in finding all the connected loop-free multi-
graphs whose degree sequence is the sequence of the valences of those atoms. The reconfiguration problem
we are studying here can be a tool for an enumeration algorithm consisting in visiting the reconfiguration
graph.

Flips and reconfiguration. The SHORTEST CONNECTED GRAPH TRANSFORMATION problem belongs to the
class of reconfiguration problems that received a considerable attention in the last few years. Reconfigu-
ration problems consist, given two solutions of the same problem, in transforming the first solution into
the second via a sequence of ”elementary” transformations (such as flips) maintaining some properties all
along. For more information on reconfiguration problems, the reader is referred for instance to [11].

2 Preliminaries

2.1 Symmetric difference

Unless specified otherwise, we consider unoriented loop-free multigraphs. Let G = (V (G), E(G)) be a
graph where V (G) is the set of vertices of G and E(G) is its set of edges. The intersection of two graphs G
and H on the same set of vertices V is the graph G∩H with vertex set V , and such that e ∈ E(G∩H), with
multiplicitym, if the minimum multiplicity of e in both graphs ism. Their union,G∪H , has vertex set V , and
e ∈ E(G∪H), with multiplicitym, if and only if the maximum multiplicity of e inG andH ism. Finally, the
difference G−H has vertex set V and e ∈ E(G−H) with multiplicity m if and only if the difference between
its multiplicities in G and H is m > 0. The symmetric difference of G and H is ∆(G,H) = (G−H)∪ (H −G).
We denote by δ(G,H) the number of edges of ∆(G,H).

Let G,H be two graphs with the same degree sequence. An edge e of G is good if it is in G∩H and is bad
otherwise. Note that since G and H have the same degree sequence, the graph ∆(G,H) has even degree on
each vertex and the number of edges of G incident to v is equal to the number of edges of H incident to v.

Each flip removes at most 4 edges of the symmetric difference. Therefore, the length of a transformation
from G to H is at least δ(G,H)/4. In fact, it is possible to obtain a slightly better bound on the length of the
transformation. A cycle C in ∆(G,H) is alternating if edges of G and H alternate in C. Since the number of
edges of G incident to v is equal to the number of edge of H incident to v in ∆(G,H), the graph ∆(G,H)
can be partitioned into a collection of alternating cycles. We denote by mnc(G,H) the maximal number of
cycles in a partition C of ∆(G,H) into alternating cycles. Will [14] proved the following:

Theorem 2 (Will [14]). Let G,H be two graphs with the same degree sequence. A shortest sequence of flips that
transforms G into H (that does not necessarily maintain the connectivity of the intermediate graphs) has length
exactly δ(G,H)

2 −mnc(G,H).
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Note that Theorem 2 indeed provides a lower bound for a transformation of SHORTEST CONNECTED
GRAPH TRANSFORMATION .

2.2 Basic facts concerning flips

Let G = (V,E) be an unoriented graph and v ∈ V (G). The set NG(v) of neighbours of v in G is the set of
vertices u such that uv ∈ E(G). Let D be a directed graph and v ∈ V (D). The set N−D (v) of in-neighbours of v
in D is the set of vertices u such that uv is an arc of D, and the set N+

D (v) of out-neighbours of v in D is the set
of vertices u such that vu is an arc of D. When G and D are obvious from the context we will simply write
N(v), N−(v), N+(v).

The inverse σ−1 of a flip σ is the flip such that σ ◦σ−1 = id, i.e. applying σ and then σ−1 leaves the initial
graph. The opposite −σ of a flip σ is the unique other flip that can be applied to the two edges of σ. If we
consider a flip σ = (ab, cd) → (ac, bd), then σ−1 = (ac, bd) → (ab, cd) and −σ = (ab, cd) → (ad, bc). Note
that −σ is a flip deleting the same edges as σ while σ−1 cancels the flip σ. When we transform a graph G
into another graph H , we can flip the edges of G or the edges of H . Indeed, applying the sequence of flips
(σ1, . . . , σi) to transform G into a graph K, and the sequence of flips (τ1, . . . , τj) to transform H into K is
equivalent to applying the sequence (σ1, . . . , σi, τ

−1
j , . . . , τ−11 ) to transform G into H .

Let G = (V,E) be a connected graph and let H be a graph with the degree sequence of G. A flip is good
if it flips bad edges and creates at least one good edge. It is bad otherwise. A connected flip is a flip such that
its resulting graph is connected. Otherwise, it is disconnected. A path from a ∈ V to b ∈ V is a sequence of
vertices (v1, . . . , vk) such that a = v1, b = vk, for every integer i ∈ [k − 1], vivi+1 ∈ E(G) and there is no
repetition of vertices. Similarly, a path from e to f with e, f ∈ E(G) is a path from an endpoint of e to an
endpoint of f that does not contain the other endpoint of e and of f . A path between x and y (vertices or
edges) is a path from x to y or a path from y to x. The content of a path is its set of vertices. We say that an
edge e belongs to (or is on) a path P if both endpoints of e appear consecutively in P . The intersection P1 ∩P2

of two paths P1 and P2 is the intersection of their contents. The vertices of a sequence (v1, . . . , vk) are aligned
in G if there exists a path P which is the concatenation of k − 1 paths P1P2 . . . Pk−1 where Pi is a path from
vi to vi+1 for i ∈ [k − 1]. Note that we might have vi = vi+1 and then Pi = vi.

Note that, for every connected graph G, if ab, cd ∈ E(G), ab 6= cd, then (a, b, c, d), (a, b, d, c), (b, a, c, d), or
(b, a, d, c) are aligned. Moreover, if G is a tree, exactly one of them is aligned. Let G be a connected graph
and a, b, c, d ∈ V (G) such that (a, b, c, d) are aligned. The in-area of the two edges ab and cd is the connected
component of G \ {ab, cd} containing the vertices b and c. The other components are called out-areas. The
following lemma links the connectivity of a flip and the alignment of its vertices:

Lemma 1. Let G be a connected graph and ab, cd ∈ E(G) where a, b, c and d are pairwise distinct vertices of G. If
(a, b, c, d) or (b, a, d, c) are aligned in G, then the flip (ab, cd)→ (ac, bd) is connected. If G is a tree, then it is also a
necessary condition.

Proof. The deletion of ab and cd leaves at most three connected components. Let us assume that (a, b, c, d)
are aligned, the other case being symmetrical. Let Gb,c be the in-area of ab, cd. Let Ga (resp. Gd) be the
connected component containing a (resp. d). Note that some of these components might be identical. The
addition of ac and bd connects Ga, Gb,c and Gd back again. Thus, (ab, cd)→ (ac, bd) is connected.

Assume now that G is a tree. Supposed that (a, b, c, d) and (b, a, d, c) are not aligned. Then, (a, b, d, c) or
(b, a, c, d) are. Thus, the deletion of ab and cd splits G into exactly three components Ga, Gb,d and Gc, or Gb,
Ga,c and Gd. In both cases, when we create ac and bd, we create an edge in the in-aera of ab and cd. The
resulting graph then contains a cycle, and thus cannot be connected since the total number of edges is still
|V | − 1. ut

Lemma 1 ensures that, for trees, exactly one of the two flips σ and −σ is connected. For paths, we
have seen that applying a connected flip is equivalent to reversing the portion of the path between the two
involved edges. A similar statement holds for trees:
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Remark 1. Let T be a tree. Let e1, f1, e2, f2 be four pairwise distinct edges of T , and let σ1 be the flip of e1, f1
such that the resulting tree T ′ is connected. Let P1 be the path from e1 to f1 in T , P2 be the path from e2 to
f2 in T , and P ′2 be the path from e2 to f2 in T ′.

– If both e2 and f2 are in the in-area of e1 and f1, P2 = P ′2.
– If both e2 and f2 are in the out-areas of e1 and f1, the contents of P2 and P ′2 are the same, but the order

of the portion of the path that corresponds to P1 is reversed (if it exists).
– If e2 is in the in-area of e1 and f1, and f2 is in the out-areas (or the converse), the content of P ′2 is

distinct from the content of P2. Indeed, the edges that belong to P1 ∩ P2 are changed for the edges of
P1 \ ((P1 ∩ P2) ∪ e2). (See Figure 1 for an illustration of this case).

We can also remark the following:

Remark 2. Let T be a tree and e1, f1, e be three pairwise distinct edges. The edge e is in the in-area of e1, f1
if and only if it is in the in-area of e′1, f ′1 where e′1, f ′1 are the edges created by the unique connected flip on
e1 and f1. Moreover e is on the path between e1 and f1 in T if and only if e is on the path between e′1 and f ′1
in the resulting tree.

a
+b

c
xd

a
c

b
d(ab, cd) → (ac, bd)

Fig. 1: The consequences of a connected flip in a tree. The blue thick path goes from an edge of the in-area
of ab and cd to an edge of an out-area before the flip, and links the two same edges afterwards.

Let e and f be two vertex-disjoint edges of a tree T , and let σ2 be a flip in T that does not flip e nor f .
The flip σ2 depends on e and f if applying the connected flip on e and f changes the connectivity of σ2. By
abuse of notation, for any two flips σ1 and σ2 on pairwise disjoint edges, σ2 depends on σ1 if σ2 depends on
the edges of σ1. The flip σ1 sees σ2 if exactly one of the edges of σ2 is on the path linking the two edges of σ1
in G.

The following lemma links the dependency of two flips and the position of their edges in a tree:

Lemma 2. Let T be a tree and σ1 and σ2 be two flips on T , whose edges are pairwise distinct. The three following
points are equivalent:

1. σ2 depends on σ1,
2. σ1 depends on σ2,
3. σ2 sees σ1 and σ1 sees σ2.

Proof. Since T is a tree, Lemma 1 ensures that exactly one flip amongst σ1 and −σ1 is connected. Moreover
this connected flip modifies the connectivity of σ2 : (ab, cd) → (ac, bd) if and only if σ1 modifies the align-
ment of a,b,c and d from (a, b, c, d) or (b, a, d, c) to (a, b, d, c) or (b, a, c, d) (or conversely). Equivalently the
orientation of one of the two edges ab and cd is modified relatively to the other. Equivalently, by Remark 2,
one of the edges ab and cd belongs to the path between the two edges e1 and f1 of σ1 in T , and the other
is in an out-area of e1 and f1. Let us call this property (1′). We thus have (1 ⇔ 1′). Let us now show that
(1′ ⇔ 3). It will indeed give (1⇔ 3) and, by symmetry, (2⇔ 3).
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(1′ ⇒ 3). If one of the edges ab and cd belongs to the path from e1 to f1 and the other is in a out-area of e1
and f1, then in particular, one edge is the in-area of e1 and f1 and the other is in an out-area. Thus, exactly
one edge of σ1 is on the path from ab to cd, and σ2 sees σ1. Moreover, one of the edges ab and cd belongs to
the path from e1 to f1 and the other does not, so that σ1 sees σ2.
(3 ⇒ 1′). Since σ1 sees σ2, exactly one edge of σ2 is on the path from e1 to f1. We can assume without loss
of generality that ab is, and cd is not. Moreover, since σ2 sees σ1, exactly one edge of σ1 is on the path from
ab to cd, which means that one is in the in-area of e1 and f1, and the other is in an out-area. Since ab is on
the path from e1 to f1, ab is in the in-area of e1, f1. And thus bc is in one out-area of e1, f1. ut

We now give two consequences of applying a connected flip.

Lemma 3. Let T be a tree and σ1 and σ2 be two flips on T with pairwise disjoint edges, where σ1 is connected. Let
T ′ be the tree obtained after applying σ1 to T . The flip σ−11 sees σ2 in T ′ if and only if σ1 sees σ2 in T . And σ2 sees
σ−11 in T ′ if and only if σ2 sees σ1 in T .

Proof. The flip σ1 sees σ2 in T whenever exactly one edge of σ2 is on the path between the edges of σ1 in T .
By Remark 2, the number of edges of {e2, f2} between the edges of σ1 is equal to the number of edges of
{e2, f2} between the edges of σ−11 in T ′. Thus σ1 sees σ2 in T if and only if σ−11 sees σ2 in T ′.

On the other hand, σ2 sees σ1 if and only if exactly one edge of σ2 is in the in-area of the edges of σ1, and
the other is in an out-area. By Remark 2, the same holds in T ′ for the edges of σ−11 , and thus σ2 sees σ−11 in
T ′ if and only if σ2 sees σ1 in T . ut

Lemma 4. Let T be a tree and σ1, σ2 and σ3 be three flips on T whose edges are pairwise disjoint and such that σ1
sees σ2, σ2 sees σ3, and σ2 is connected. Let T ′ be the tree obtained by applying the flip σ2 to T . The flip σ1 sees σ3 in
T if and only if σ1 does not see σ3 in T ′.

Proof. Let e1 and f1 (resp. e2, f2 and e3, f3) be the edges of σ1 (resp. σ2 and σ3). Let P1 be the path from e1
to f1 in T , P ′1 be the path from e1 to f1 in T ′, and P2 be the path from e2 to f2 in T .

Since σ1 sees σ2 in T , exactly one edge of σ2 is on the path P1. Thus, one edge of σ1 is in the in-area of
e2 and f2, and the other is in an out-area. We can assume without loss of generality that f1 is in the in-area.
Thus, as described in Remark 1, the edges that belong to P ′1 differ from the ones that belong to P1 in the
following way: the portion P1 ∩ P2 is replaced by the portion P2 \ ((P1 ∩ P2) ∪ f1).

Now, since σ2 sees σ3, exactly one edge of σ3 is on the path P2 in T . Thus, exactly one edge of σ3 is either
on P1 ∩ P2 or on P2 \ ((P1 ∩ P2) ∪ f1). Therefore, in T ′, P ′1 has either exactly one edge of σ3 which is added
or removed compared to P1.

Thus, if exactly one edge of σ3 belongs to P1, either both or none of the edges of σ3 belong to P ′1, and
if both or none of the edges of σ3 belong to P1, exactly one edge of σ3 belongs to P ′1. This concludes the
proof. ut

3 Upper bound

Let us first give a short proof of a result of Bousquet and Mary [3].

Lemma 5. Let G,H be two connected graphs with the same degree sequence. There exists a sequence of at most two
flips that decreases δ(G,H) by at least 2. Moreover, if there is an alternating C4 in ∆(G,H), it can be removed in at
most 2 steps, without modifying the rest of the graph.

Proof. Let C be a partition of ∆(G,H) into alternating cycles, and u, v, w, x, y be five consecutive vertices
of a cycle C of C, with uv,wx ∈ E(G) and vw, xy ∈ E(H). Note that we may have y = u, if C is a C4. At
least one of the two flips σ1 : (uv,wx) → (uw, vx) and −σ1 : (uv,wx) → (ux, vw) is connected in G. If −σ1
is connected, then we can apply it. Since vw ∈ E(H), δ(G,H) decreases by at least 2 (resp. 4 if C is a C4).
Similarly, at least one of the two flips σ2 : (vw, xy) → (vx,wy) and −σ2 : (vw, xy) → (vy, wx) is connected
in H . If−σ2 is connected then we can apply it and δ(G,H) decreases by at least 2 (resp. 4 if C is a C4). Thus,
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we can assume that σ1 and σ2 are the only flips that are connected. We apply σ1 to G and σ2 to H , and
reduce δ(G,H) by 2, since both flips create the edge vx (resp. 4 if C is a C4 since both flips also create the
edge uw). ut

It immediately implies the following since, in an optimal solution, the size of the symmetric difference
decreases by at most 4 at each step.

Corollary 1. SHORTEST CONNECTED GRAPH TRANSFORMATION admits a polynomial time 4-approximation
algorithm.

The goal of the rest of this section is to improve the approximation ratio. The crucial lemma is the
following:

Lemma 6. Let G,H be two trees with the same degree sequence. There exists a sequence of at most 3 flips that
decreases δ(G,H) by at least 4. Moreover, this sequence only flips bad edges.

Proof. Let G′ be the graph whose vertices are the connected components of G ∩H and where two vertices
S1 and S2 of G′ are incident if there exists an edge in G between a vertex of S1 and a vertex of S2. In other
words,G′ is obtained fromG by contracting every connected component ofG∩H into a single vertex. Note
that the edges of G′ are the edges of G−H . Moreover, as G is a tree, G′ also is. We can similarly define H ′.
Note that G′ and H ′ have the same degree sequence.

Let S1 be a leaf of G′ and S2 be its parent in G′. Let us show that S2 is not a leaf of G′. Indeed, otherwise
G′ would be reduced to a single edge. In particular,E(G−H) would contain only one edge. Since the degree
sequence of G−H and H −G are the same, the edge of H −G would have to be the same, a contradiction.
Thus, we can assume that S2 is not a leaf. Let u1u2 be the edge of G−H between u1 ∈ S1 and u2 ∈ S2. Since
G−H and H −G have the same degree sequence and S1 is a leaf of G′, there exists a unique vertex v1 such
that u1v1 ∈ E(H −G). Moreover there exists a vertex v2 such that u2v2 ∈ E(H −G).

Let us first assume that v1 = v2. Then there exists a vertex w distinct from u1 and u2 such that v1w ∈
E(G −H) since v1 has degree at least 2 in H − G. Since S1 is a leaf of G′, w /∈ S1 and either (u1, u2, v1, w)
or (u1, u2, w, v1) are aligned in G. If (u1, u2, v1, w) are aligned then the flip (u1u2, v1w) → (u1v1, u2w) in
G is connected and creates the edge u1v1. If (u1, u2, w, v1) are aligned then (u1u2, v1w) → (u1w, u2v1) is
connected and creates the edge u2v1 = u2v2. In both cases, we reduce the size of the symmetric difference
by at least 2 in one flip, and we can conclude with Lemma 5.

From now on, we assume that v1 6= v2. We focus on the alignment of u1, v1, u2 and v2 in H . Since S1 is a
leaf ofG′, it is also a leaf ofH ′. Thus, v1 is on the path from u1 to u2 and either (u1, v1, u2, v2) or (u1, v1, v2, u2)
are aligned. If (u1, v1, u2, v2) are aligned then Lemma 1 ensures that (u1v1, u2v2)→ (u1u2, v1v2) is connected
in H and reduces the size of the symmetric difference by at least 2. We can conclude with Lemma 5. Thus,
we can assume that (u1, v1, v2, u2) are aligned in H (see Figure 2 for an illustration).

Let us first remark that if u2 has degree at least 2 in H −G (or equivalently in G−H), then we are done.
Indeed, if there exists w 6= v2 such that u2w ∈ E(H−G) then, since (u1, v1, v2, u2) are aligned, (u1, v1, u2, w)
have to be aligned. Indeed, v2u2 is the only edge of H − G on the path from v1 to u2 incident to u2. Thus
the flip (u1v1, u2w)→ (u1u2, v1w) is connected in H . Since it reduces δ(G,H) by at least 2, we can conclude
with Lemma 5.

From now on, we will assume that u2 has degree 1 in H −G. Let H3 (resp. H4) be the connected compo-
nent of v1 and v2 (resp. u2) in H \ {u1v1, u2v2}, which exists since (u1, v1, v2, u2) are aligned. Note that the
third component of H \ {u1v1, u2v2} is reduced to S1. By definition, H3 is the in-area of u1v1 and u2v2.

We now show that there exists an edge u3u4 ∈ E(G − H), with u3 ∈ H3, u4 ∈ H4, and such that the
connected component S4 ofG∩H containing u4 is not a leaf ofG′. Indeed, sinceG is connected, there exists
a path P from v1 to u2 in G. Since u1u2 is the only edge of G−H that has an endpoint in S1, this path does
not contain any vertex of S1. Thus, it necessarily contains an edge u3u4 between a vertex u3 of H3 and a
vertex u4 of H4. Since H3 and H4 are anticomplete in G ∩ H , u3u4 ∈ E(G − H). Moreover, the connected
component S4 of G ∩ H containing u4 is not a leaf of G′, as it is either S2 which is not a leaf, or P has to
leave S4 at some point with an edge of G−H since P ends in u2 ∈ S2.
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Since u3 and u4 have the same degree in G − H and H − G, there exist v3, v4 such that u3v3, u4v4 ∈
E(H −G). Moreover, since S4 is not a leaf of G′ (and thus of H ′), there exists an edge of H −G between a
vertex u5 ∈ S4 and a vertex v5 ∈ V \ S4 where u5v5 6= u4v4.

Let us prove that u3, v3, u4 and v4 are pairwise distinct. By definition, we have u3 6= v3, u4 6= v4 and
u3 6= u4. Moreover, since u3u4 ∈ E(G − H), u3 6= v4 and u4 6= v3. Thus, the only vertices that can be
identical are v3 and v4. If v3 = v4, since u3 ∈ H3, u4 ∈ H4, and v2u2 is the only edge of H−G from H3 to H4,
then either v3 = v4 = v2 or v3 = v4 = u2. In the first case, u4 = u2 since v2u2 is the only edge of H −G from
H3 to H4. Thus, u2 is the endpoint of both u1u2 and u2u3 in G−H . In the second case, u2 is the endpoint of
both u2u3 and u2u4 in H −G. Thus, in both cases, u2 has degree at least 2 in H −G, a contradiction.

We now focus on the alignment of u3, u4, v3 and v4 in H . If (v3, u3, v4, u4) or (u3, v3, u4, v4) are aligned,
then the flip (u3v3, u4v4)→ (u3u4, v3v4) is connected in H and reduces the size of the symmetric difference
by at least 2, since u3u4 ∈ E(G − H). Note that the flip is well-defined since all the vertices are distinct.
Thus, we can conclude with Lemma 5. Therefore, we can assume that (u3, v3, v4, u4) or (v3, u3, u4, v4) are
aligned in H .

We give, in each case, a sequence of three flips that decreases the size of the symmetric difference by at
least 4. We first state the three flips that reduce the symmetric difference in each case and then prove that
these sequences of flips can be applied.

Case 1. (u3, v3, v4, u4) are aligned. (See Figure 2 for an illustration).
We successively apply the flips σ1 : (u2v2, u5v5) → (u2v5, u5v2), σ2 : (u3x, u4v4) → (u3u4, xv4) where
x = u5 if u3 = v2 and v3 = u2, and x = v3 otherwise, and σ3 : (u1v1, u2v5) → (u1u2, v1v5) in H . Since
u1u2, u3u4 ∈ E(G−H), this sequence of flips indeed reduces δ(G,H) by at least 4.

u1
v1

v3

u3

v2
u2

v4

u4

u5

v5

S1

S2

S4

H3 H4

u1
v1

v3

u3

v2
u5

u4

v4
v5

u2

S1

S2

S4

u1

v1

v3

v4

v2
u5

u4

u3v5

u2

S1

S2

S4

v5
v1

v3

v4

v2
u5

u4

u3u1

u2
S1

S2

S4

σ1

σ2

σ3

Fig. 2: The three flips σ1 : (u2v2, u5v5) → (u2v5, u5v2), σ2 : (u3v3, u4v4) → (u3u4, v3v4) and σ3 :
(u1v1, u2v5) → (u1u2, v1v5) applied to the graph H where (u3, v3, v4, u4) are aligned. The blue full edges
are in E(H −G) and the red dashed edges are in E(G−H).

Let us now show that this sequence of flips can be applied. We first prove that the flip σ1 : (u2v2, u5v5)→
(u2v5, u5v2) is well-defined since the vertices are pairwise distinct. Indeed, by definition, u5 6= v5 and u2 6=
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v2. Since u5 ∈ H4 and v2 6∈ H4, we have u5 6= v2. Similarly, let us show that v5 ∈ H4, and thus v5 6= v2.
Firstly, since u4 6= u2 (otherwise the degree of u2 inG−H is at least 2, a contradiction), we have v4 6= v2 and
thus v4 ∈ H4. Moreover, by hypothesis, (u3, v4, u4) are aligned in H , and since u4, u5 ∈ S4 and v4, v5 6∈ S4

, (u3, v4, u5, v5) are aligned in H . But u3 ∈ H3 and v4 ∈ H4 where v2u2 is the only edge from H3 to H4.
This ensures that (v2, u2, u5, v5) are aligned in H , and since v2u2 is the only edge from H3 to H4, v5 ∈ H4.
Thus we can only have u2 = u5 or u2 = v5. But, in both cases, u2 would have degree at least 2 in H − G, a
contradiction.

We have shown that (v2, u2, u5, v5) are aligned in H . Thus, Lemma 1 ensures that σ1 is connected.
Let Hσ1

be the graph obtained after applying σ1 to H (which is connected). We apply the flip σ2 :
(u3x, u4v4)→ (u3u4, xv4) in Hσ1

, where x = u5 if u3 = v2 and v3 = u2 and where x = v3 otherwise.
Let us first prove that σ2 is well-defined. The vertices of σ2 are pairwise distinct. Indeed, we have previ-

ously shown that the vertices u3, v3, u4 and v4 are pairwise distinct which gives the conclusion in the second
case. When x = u5, since v4 6∈ S4 and u3 6∈ H4, we also have u5 6= v4 and u5 6= u3. Moreover, if x = u5 and
u5 = u4, by definition of x we have v2 = u3 and σ1 created the edge v2u5 = u3u4 ∈ G −H , so that we can
conclude with Lemma 5. Therefore, all the vertices of σ2 are distinct.

Let us now show that its two edges, u3x and u4v4, exist in Hσ1
. In order to do it, we have to prove that

these edges are not the edges of σ1. By definition, we first have u4v4 6= u5v5. Moreover, if u4v4 = u2v2, since
v2 ∈ H3 and u4 6∈ H3, we then have v2 = v4 and u2 = u4. Thus, u2 is the endpoint of both u1u2 and u2u3 in
G −H , a contradiction with its degree assumption. Thus we can assume that u4v4 6= u2v2 and u4v4 is not
equal to any of the edges of σ1. Since u4v4 is in H , it is in Hσ1 . If x = v3 then u3v3 6= u2v2 by definition of x.
And u3v3 with both endpoints in H3 is distinct from u5v5 which has both endpoints in H4. If x = u5, then
u3 = v2 and v3 = u2. But in this case, u3x = v2u5 was created by σ1 and thus is in Hσ1

. So both edges of σ2
exist in Hσ1

and then σ2 can be applied.
We now show that σ2 is connected in Hσ1

. By hypothesis, (u3, v3, v4, u4) are aligned in H . Moreover, as
u4, u5 ∈ S4 and v4, v5 6∈ S4, (v4, u4, u5, v5) are aligned. Therefore, if u3 = v2 and v3 = u2, (u3, v3, v4, u4, u5, v5)
are aligned in H and (u3, u5, u4, v4, v3, v5) are aligned in Hσ1 . In particular, since x = u5 in this case,
(u3, x, u4, v4) are aligned and σ2 is connected. Otherwise, (u3, v3, v2, u2, v4, u4, u5, v5) are aligned in H and
(u3, v3, v2, u5, u4, v4, u2, v5) are aligned in Hσ1

. In particular, since x = v3 in this case, (u3, x, u4, v4) are
aligned and σ2 is also connected.

Let Hσ2
be the graph obtained after applying σ2 to Hσ1

. We want to apply the flip σ3 : (u1v1, u2v5) →
(u1u2, v1v5) in Hσ2 . Let us first prove that it is well-defined. By definition, we have u1 6= u2 and u1 6= v1.
Since v1 ∈ H3 and u2 6∈ H3, v1 6= u2. Since v5 ∈ H4 while u1, v1 6∈ H4, we have v5 6= u1 and v5 6= v1. Finally,
v5 6= u2 was proven before applying σ1. So the vertices of σ3 are pairwise distinct. Let us now prove that
both u1v1 and u2v5 exist in Hσ2

. Since u1 is the only vertex of S1 defined in our construction and u1 does
not appear as an endpoint in σ1 and σ2, u1v1 exits in Hσ2

. The edge u2v5 is created by σ1, so u2v5 ∈ E(Hσ1
).

Since u2, v5 ∈ H4 and u3 6∈ H4, we have u2v5 6= u3x. Moreover, v5 6∈ S4 and v5 6= v4 and then u2v5 6= u4v4.
Thus u2v5 is not an edge of σ2, and u2v5 ∈ E(Hσ2).

In order to prove that σ3 is connected, we will use Lemma 2. Let us first prove that σ3 is connected in
Hσ1

. In H , (u1, v1, v2, u2) and (v2, u2, u5, v5) are aligned. Thus, in Hσ1
, (u1, v1, v2, u5, u2, v5) are aligned. In

particular, (u1, v1, u2, v5) are aligned and σ3 is connected in Hσ1
.

Finally, we prove that in Hσ1
, σ3 does not depend on σ2. We claim that σ2 does not see σ3, as none of

its two edges are on the path from u3x to u4v4. Since S1 is a leaf of G ∩H , u1v1 is not on it. If x = v3, since
(u3, v3, v2, u5, u4, v4, u2, v5) are aligned in Hσ1 , u2v5 is not on it either, and if x = u5, (u3, u5, u4, v4, v3, v5) are
aligned in Hσ1 but since u2 = v3 in this case, u2v5 is not on the path either. Thus, by Lemma 2, σ2 and σ3 are
independent. Therefore, σ3 is still connected in Hσ2

.

Case 2. (v3, u3, u4, v4) are aligned.
We apply σ1 : (u2v2, u4v4) → (u2v4, u4v2), σ2 : (u3v3, u4v2) → (u3u4, v2v3) then σ3 : (u1v1, u2v4) →
(u1u2, v1v4) to H . Again, u1u2, u3u4 ∈ E(G−H) and it reduces δ(G,H) by at least 4.

Let us first prove that we can apply this sequence of flips. We first prove that the vertices of σ1 are
pairwise distinct. Since, by hypothesis, (v3, u3, u4, v4) are aligned in H , with u3 ∈ H3 and u4 ∈ H4, we have
that (v2, u2, u4, v4) are aligned in H . By definition, v2 6= u2 and u4 6= v4. Thus, the only vertices that might
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be identical are u2 and u4. But if u2 = u4, then u2 is both the endpoint of u1u2 and u2u3 in G−H . Thus, u2
has degree at least 2 in G−H , a contradiction.

Moreover, since (v2, u2, u4, v4) are aligned, σ1 is connected.
Let Hσ1

be the graph obtained after applying σ1 to H . We apply in Hσ1
the flip σ2 : (u3v3, u4v2) →

(u3u4, v2v3).
Let us show that its vertices are pairwise distinct. We have previously shown that u3, v3 6= u4. By def-

inition, we have u3 6= v3. Since u4 ∈ S4 and v2 6∈ S4, u4 6= v2. Now, if v2 = u3, then σ1 created the
edge u3u4 ∈ E(G − H) and we can conclude with Lemma 5. Finally, since (v3, u3, u4, v4) are aligned in
H with v3, u3 ∈ H3 and v4, u4 ∈ H4 and since v2u2 is the only edge of H from H3 to H4, we know that
(v3, u3, v2, u2, u4, v4) are aligned in H . As v3 6= u3, this gives v3 6= v2.

Let us now show that the two edges of σ2, u3v3 and u4v2, exist in Hσ1
. We know that u4v2 is created by

σ1, so that u4v2 ∈ E(Hσ1). Moreover, u3v3 ∈ E(H). Thus, we only have to show that u3v3 is not an edge of
σ1. Since u3, v3 6= u4 and u3, v3 6= v2, it is straightforward.

Finally, let us show that σ2 is connected in Hσ1
. We have seen that (v3, u3, v2, u2, u4, v4) are aligned in H .

Thus, in Hσ1
, (v3, u3, v2, u4, u2, v4) are aligned. In particular, (v3, u3, v2, u4) are aligned and, by Lemma 1 σ2

is connected.
Let Hσ2 be the graph obtained after applying σ1 to Hσ1 . We apply in Hσ2 the flip σ3 : (u1v1, u2v4) →

(u1u2, v1v4). Let us prove that the endpoints of its edges are all distinct, that both its edges exist in Hσ2 , and
that it is connected.

We have seen that (u1, v1, v2, u2) are aligned in H , and since v4 ∈ H4, (u1, v1, u2, v4) are aligned in H .
Moreover, by definition, u1 6= v1, we have previously shown that u2 6= v4, and since v1 ∈ H3 and u2 6∈ H3,
u2 6= v1. Therefore, the vertices of σ3 are all pairwise distinct.

Let us now prove that its edges exist in Hσ2 . Since u1 is the only vertex of S1 we considered, we know
that it is distinct from all the other vertices and thus u1v1 is distinct from all the other edges. Therefore, it
is not an edge of σ1 nor σ2 and since u1v1 ∈ E(H), u1v1 ∈ E(Hσ2

). Since u2v4 is created by σ1, we have
u2v4 ∈ E(Hσ1

). Since u2, v4 ∈ H4 and u3, v2 6∈ H4, we have u2v4 6= u3v3 and u2v4 6= u4v2. Thus, u2v4 is not
identical to any edge of σ2, and u2v4 ∈ E(Hσ2

).
We now show that σ3 is connected in Hσ2 . Since (u1, v1, v2, u2) and (v2, u2, u4, v4) are aligned in H ,

(u1, v1, v2, u2, u4, v4) are aligned inH and (u1, v1, v2, u4, u2, v4) are aligned inHσ1 . In particular, (u1, v1, u2, v4)
are aligned and σ3 is connected in Hσ1

.
Let us prove that in Hσ1

, σ3 does not depend on σ2. We claim that σ2 does not see σ3. Since S1 is a leaf of
G ∩H , u1v1 is not on the path from u3v3 to v2u4 in Hσ1

. Moreover, since (v3, u3, v2, u4, u2, v4) are aligned in
Hσ1 , u2v4 is not on it either. Thus, by Lemma 2, σ2 and σ3 are independent. Therefore, σ3 is still connected
in Hσ2 .

Therefore, in all the cases, we have found a sequence of three flips whose edges are in the symmetric
difference and that reduce δ(G,H) by at least 4. Moreover, the proof immediately provides a polynomial
time algorithm to find such a sequence. ut

Note that Lemma 6 allows to obtain a 3-approximation algorithm for SHORTEST CONNECTED GRAPH
TRANSFORMATION. Indeed, as shown in the proof of Lemma 1 in [3], as long as there exists an edge of
the symmetric difference in a cycle of G, one can reduce the size of the symmetric difference by 2 in one
step. Afterwards, we can assume that the remaining graphs G − H and H − G are trees. By Lemma 6, in
three flips, the symmetric difference of the optimal solution decreases by at most 12 while our algorithm
decreases it by at least 4. (Note that free to try all the flips, finding these flips is indeed polynomial). But we
can actually improve the approximation ratio. The idea consists in treating differently short cycles. A short
cycle is a C4, a long cycle is a cycle of length at least 6. We now give the main result of this section.

Theorem 3. SHORTEST CONNECTED GRAPH TRANSFORMATION admits a 5/2-approximation algorithm run-
ning in polynomial time. It becomes a 9/4-approximation algorithm if ∆(G,H) does not contain any short cycle.

Proof. Let C be an optimal partition of∆(G,H) into alternating cycles, i.e. a partition withmnc(G,H) cycles.
Let c be the number of short cycles in C. Bereg and Ito [1] provide a polynomial time algorithm to find a
partition of ∆(G,H) into alternating cycles having at least c

2 short cycles. Lemma 5 ensures that we can
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remove their 2c edges from the symmetric difference in at most c flips. If an edge of the symmetric difference
is in a cycle of G or H , then in one step we can reduce the symmetric difference by 2 [3]. Otherwise, by
Lemma 6, we can remove the remaining δ(G,H) − 2c edges using at most 3(δ(G,H)−2c)

4 flips in polynomial
time. Therefore, we can transform G into H with at most c+ 3(δ(G,H)−2c)

4 flips.
Let us now provide a lower bound on the length of a shortest transformation fromG toH . By definition,

C contains c short cycles. Theorem 2 ensures that we need at least c steps to remove the short cycles, plus
` − 1 flips to remove each cycle of length 2`. Therefore, we need at least δ(G,H)−4c

3 flips to remove the
δ(G,H)− 4c remaining edges from the symmetric difference.

The ratio between the upper bound and the lower bound is

f(c) :=
c+ 3δ(G,H)−6c

4

c+ δ(G,H)−4c
3

=
3(3δ(G,H)− 2c)

4(δ(G,H)− c)
.

The function f being increasing and since the number of short cycles in C cannot exceed δ(G,H)
4 , we

have f(c) ≤ f( δ(G,H)
4 ) = 5

2 . It gives a 5
2 -approximation in polynomial time. Moreover, when there is no

alternating short cycle in ∆(G,H), c = 0. Since f(0) = 9
4 , we obtain a 9

4 -approximation. ut

4 Discussion on the tightness of the lower bound

In this section, we discuss the quality of the lower bound of Theorem 2. We first prove that if we only flip
bad edges of the same cycle of the symmetric difference then the length of a shortest transformation can be
almost twice longer than the one given by the lower bound of Theorem 2. In order to prove it, we generalize
several techniques and results of Christie [5], proved for the SORTING BY REVERSALS problem.

Note that the result of Hannenhalli and Pevzner [9] actually proves that in the case of paths, when the
symmetric difference only contains vertex-disjoint cycles, it is not necessarily optimal to only flip edges of
the same cycle. However, studying this restriction gives us a better understanding of the general problem.

We also prove that, if we only flip bad edges (which are not necessarily in the same cycle of the sym-
metric difference), then the length of a shortest transformation can be almost 3/2 times longer than the one
given by the lower bound. Note that all the existing approximation algorithms for SORTING BY REVERSALS
and SHORTEST CONNECTED GRAPH TRANSFORMATION only flip bad edges. But again no formal proof
guarantees that there always exists a shortest transformation where we only flip bad edges.

Both results are obtained with the same graphs Gk and Hk represented in Figure 3 for k = 4. For any
k ≥ 2, let Gk = (Vk, E(Gk)) and Hk = (Vk, E(Hk)) be the graphs with Vk = {vi,j , 1 ≤ i ≤ k, 1 ≤ j ≤ 4} ∪
{c}, E(Gk) =

⋃
i∈[k]{cvi,1, vi,1vi,2, vi,2vi,3, vi,3vi,4}, and E(Hk) =

⋃
i∈[k]{cvi,1, vi,1vi+1,3, vi,2vi,3, vi,2vi+1,4},

where the additions are defined modulo k. One can easily check that, in this construction, both Gk and Hk

are the subdivisions of a star where each branch has 4 vertices. Note that ∆(G,H) is the disjoint union of k
short cycles. Moreover, the partition of ∆(G,H) into alternating cycles is unique.

4.1 Flipping bad edges of the same cyle

Let G and H be two trees with the same degree sequence. The digraph of flips F(G,H) of G and H is the
labelled directed graph whose vertices are the good flips in G−H (i.e. the flips that create at least one edge
of G ∩ H , regardless of the fact that they maintain the connectivity of G or not). Every vertex σ is labelled
as a connected or non-connected flip. And (σ1, σ2) is an arc of F(G,H) if and only if σ1 sees σ2. Note that
every vertex of the digraph of flips corresponds to a good flip σ in G−H and thus corresponds to a pair of
edges of G−H . Since there exists a connected flip between any pair of edges in a tree, if σ is disconnected,
then −σ is connected and thus any vertex of F(G,H) can be associated to a connected flip, either itself or
its opposite.

If G and H are paths, if exactly one of the two edges of a flip σ1 is on the path between the two edges of
a flip σ2, then exactly one of the two edges of σ2 is on the path between the two edges of σ1. Thus, for paths,
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c v1,1 v1,2

v1,3 v1,4v3,1v3,2

v3,3v3,4

v4,1

v4,2

v4,3

v4,4

v2,1

v2,2

v2,3

v2,4

Fig. 3: The graphsG4 andH4. The black thick edges are inE(G4∩H4), the blue thin edges are inE(G4−H4)
and the red dashed edges are in E(H4 −G4).

σ4,1

σ1,2

σ2,3

σ3,4

D

D

D

D

Fig. 4: The digraph of flips of G4 and H4, where σi,j := (vi,1vi,2, vj,3vj,4)→ (vi,1vj,3, vi,2vj,4) for any i and j,
and the label D stands for disconnected.

the digraph of flips is a non-oriented graph, and it corresponds to the reversal graph introduced by Christie
[5]. The reversal graph is related to the interleaving graph introduced in [9] for the sorting by reversals
of signed permutations (which corresponds to the case where G and H are paths and the partition C of
∆(G,H) into alternating cycles is unique). The vertices of the interleaving graph are the cycles of C, labeled
as connected if there exists a connected good flip between two edges of C and disconnected otherwise, and
there is an edge between two cycles C1 and C2 if there exists a connected flip between two edges of C1 that
changes the connectivity of a flip between two edges of C2. Again, for paths, the converse is also true and
the graph is therefore non-directed.

For paths, Christie gives in [5] a characterization of the resulting reversal graph when we apply a flip
(of bad edges). Unfortunately, his proof cannot be extended easily to the case of trees for the digraph of
flips. Indeed, the arcs and the labels above are not enough to determine the connectivity of the flips in the
resulting graph. However, when we restrict to the case where the partition C of ∆(G,H) into alternating
cycles is unique and only contains short cycles, the model becomes simple enough to be understood. The
first part of this section consists in proving that, under these assumptions, we can characterize the resulting
digraph of flips when we apply a good flip (or, if the flip is disconnected, its opposite) on the digraph of
flips.

Two graphs G and H with the same degree sequence are close if ∆(G,H) admits a unique partition into
alternating cycles C and all the cycles of C are short. Note that Gk and Hk are close. All along the proofs of
the section, we will implicitly use the following remarks:
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Remark 3. Let G,H be two close trees. Let C be the unique partition of ∆(G,H) into alternating cycles.
The digraph of flips contains |C| flips and each vertex corresponds to the unique good flip that removes
some cycle C of the symmetric difference. Moreover, if we flip edges on the same cycle of the symmetric
difference, then we either use the flips of the digraph of flips or their opposite.

Remark 4. Let G,H be two close trees. If we apply any connected flip between edges of the same cycle of
G−H , then, the resulting graph G′ and H are still close.

Proof. Since G and H are close, the decomposition C of ∆(G,H) into alternating cycles is unique and only
contains short cycles. Thus, if we apply a connected flip (ab, cd) → (ac, bd), with ab and cd in the same
cycle of C, then (a, b, d, c, a) or (a, b, c, d, a) is an alternating C4 in ∆(G,H). In the first case, σ is good and
the corresponding C4 disappears from ∆(G,H) and in the second case, it is replaced by (a, c, b, d, a). Since
the edges of the other cycles are unchanged, in both cases, the partition of ∆(G′, H) into alternating cycles
remains unique and still contains only short cycles (where G′ is the resulting graph).

A vertex σ′ of a digraph of flips F ′ replaces a vertex σ of a digraph of flips F if V (F ′) = (V (F) \ σ) ∪ σ′,
and the label, the in-neighbours and the out-neighbours of σ′ in F ′ are exactly the label, the in-neighbours
and the out-neighbours of σ in F .

Lemma 7. Let G and H be two close trees and let F := F(G,H). Let σ ∈ V (F) and G′ be the graph obtained
from G by applying σ if it is connected and by applying −σ otherwise. The graph F ′ := F(G′, H) is characterized as
follows:

1. If σ is connected, then V (F ′) = V (F) \ {σ}. If σ is disconnected, then −((−σ)−1) replaces σ.
2. For every σ1 6∈ N−F (σ) ∩N

+
F (σ), σ1 is connected in F if and only if σ1 is connected in F ′.

3. For every σ1 ∈ N−F (σ) ∩N
+
F (σ), σ1 is connected in F if and only if σ1 is disconnected in F ′.

4. For every σ1, σ2 ∈ V (F ′), with σ1 6∈ N−F (σ) or σ2 6∈ N+
F (σ), σ1σ2 ∈ E(F) if and only if σ1σ2 ∈ E(F ′).

5. For every σ1 ∈ N−F (σ) and every σ2 ∈ N+
F (v) such that σ1 6= σ2, σ1σ2 ∈ E(F) if and only if σ1σ2 6∈ E(F ′).

Proof. Let a, b, c and d be the vertices of G such that σ = (ab, cd)→ (ac, bd). First, notice that since the parti-
tion of ∆(G,H) is unique and only contains short cycles, and since we only apply good flips, or opposites
of good flips, all the different flips we consider here are on disjoint edges.
Proof of (1).
First note that after applying the flip, all the flips of the graph of flips distinct from σ still exist. Indeed, all
the cycles of C distinct from the one of σ are still in C′. Thus, by Remark 3, the set of vertices V (F) \ σ is in
V (F ′). Moreover, all the cycles of C′ distinct from the one of the edges created by σ are also in C. Thus, by
Remark 3, V (F ′) \ {((−σ)−1),−((−σ)−1)} is in V (F).

If σ is connected, then the number of cycles in the partition decreases by one and the vertex is removed.
The vertex corresponding to σ disappears but all the other vertices still exist.

Let us now show that if σ is disconnected, then −((−σ)−1) replaces σ. Firstly, if σ is disconnected in
G, then −σ is applied to G. Since the partition of ∆(G,H) into alternating cycles is unique, each vertex of
∆(G,H) is incident to exactly one edge of G−H and one edge of H −G, and as σ is a good flip, −σ is not.
Thus, the edges created by −σ are in ∆(G′, H). That being said, (−σ)−1 is not a good flip of F ′. Indeed,
(−σ)−1 = (ad, bc) → (ab, cd), and we know that ab and cd are in ∆(G,H). On the other hand, the flip
−((−σ)−1) = (ad, bc)→ (ac, bd) is good, as it creates the same edges as σ. Therefore, −((−σ)−1) ∈ V (F ′).

Moreover, −((−σ)−1) is disconnected. Indeed otherwise σ would be connected in F since σ and
−((−σ)−1) create the same edges. Thus, −((−σ)−1) has in F ′ the label of σ in F .

Finally, by Lemma 3, (−σ)−1 has the same in and out neighbourhoods as −σ. Thus, as −((−σ)−1) is
flipping the same edges as (−σ)−1, and−σ is flipping the same edges as σ,−((−σ)−1) and σ have the same
in and out neighbourhoods.
Proof of (2) and (3).
The points 2 and 3 are a direct consequence of Lemma 2: the label of σ is considering the fact that the edges,
and thus the in-neighbours and out-neighbours, of σ and −σ are the same.
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Proof of (4).
By Remark 1, applying a flip on the edges e and f to a tree T can modify the content of a path P only if one
endpoint of P is in the in-area of e and f and the other is in their out-area. When it changes, the portion
P1 ∩ P of P is replaced by P1 \ (P1 ∩ P ), where P1 is the path from e to f in T .

Suppose that an arc σ1σ2 is in F but not in F ′, or conversely, and let e1 and f1 be the edges of σ1, and
e2 and f2 be the edges of σ2. The content of the path P1 from e1 to f1 in G is different from the content of
the path P ′1 from e1 to f1 in G′, as either P1 contains exactly one edge of σ2 and P ′1 contains both or neither
edges of σ2, or conversely. Thus, one of the edges of σ1 is in the in-area of ab and cd, and the other is in an
out-area. Therefore, σ1 sees σ in G.

Moreover, in P ′1, exactly one edge of σ2 is either added or removed compared to the content of P1. Thus,
either one edge is on the portion of the path from ab to cd that is common to P1 and none were on the other
portion, or the opposite. Thus, exactly one edge of σ2 is on the path from ab to cd in G, and σ sees σ2 in G.
Proof of (5).
Finally, point 5 is a consequence of Lemma 4. ut

Note that Lemma 7 generalizes the results of [5] when G,H are paths. Indeed, in that case, the graph
is non-directed and then the subgraph induced by the neighbourhood of σ in F is complemented after the
flip.

Lemma 8. Let G and H be two close trees. Every disconnected flip of F(G,H) belongs to an oriented cycle in
F(G,H).

Proof. Let F := F(G,H). Assume by contradiction that there exists a disconnected flip σ ∈ V (F) such that
σ does not belong to any oriented cycle of F .

Since the the partition of∆(G,H) into alternating cycles only contains short cycles, the proof of Lemma 5
ensures that there exists a sequence of flips transforming G into H that only flips edges that are in the same
short cycle. In other words, there always exists a sequence of flips using flips of F that transforms G into
H . By Remark 4, all the intermediate graphs and H are close, so Lemma 7 holds at any step. Moreover,
during such a transformation, every vertex of F has to be removed at some point (since F(H,H) is empty).
By Lemma 7.1, a vertex σ2 can be removed only if σ2 is connected and we apply σ2. Thus, the label of σ2
has to change at some point. Lemma 7 ensures that for if the label of σ2 changes then σ2 is the in- and
out-neighbourhood of one flip, and thus is in a oriented cycle of F (of size 2).

Let F1 be the last step where σ2 is not in a cycle of the digraph of flips. Assume that we apply a flip σ1
and let F ′1 be the new digraph of flips. Let us prove by contradiction that σ2 was in a cycle of F1.

Let C ′ be a cycle of F ′1 containing σ2. If σ2 does not belong to any oriented cycle in F1, since no vertices
have been added to F1, there exists an arc σ3σ4 of C ′ that is not in F1. By Lemma 7, σ3σ1, σ1σ4 ∈ E(F1). By
replacing every arc σ3σ4 of C ′ that is not in F1 by the two arcs σ3σ1 and σ1σ4, we obtain a union of oriented
cycles ofF1, one of them containing σ2. Therefore, σ2 belongs to an oriented cycle in F1, a contradiction. ut

Note that Lemma 8 generalizes a result of Christie [5] which ensures that when G,H are paths, no
disconnected flip is isolated in the graph of flips.

Lemma 9. Let G and H be two close trees. Let F := F(G,H) and C be the unique partition of ∆(G,H) into
alternating cycles. If we only flip pairs of edges that are in the same cycle of C, then the shortest transformation from
G to H has length at least |V (F)|+ γ(F), where γ(F) is defined as follows:

– If there is no oriented cycle in F , or if there exists an oriented cycle in F that only contains connected flips,
γ(F) = 0.

– Otherwise, γ(F) = nd(F)− 1, where nd(F) is the minimum number of disconnected flip in any oriented cycle
of F .

Proof. We prove Lemma 9 by induction on (|V (F)| + γ(F)). If (|V (F)| + γ(F)) = 0, then F is the empty
graph and thus G = H . Assume now that (|V (F)| + γ(F)) ≥ 1. Let σ be a good flip between two edges
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that are in the same cycle of C. Either σ or −σ is connected. Let G′ be the graph obtained after applying the
connected flip, σ or −σ, and F ′ := F(G′, H). We will show that (|V (F ′)|+ γ(F ′))− (|V (F)|+ γ(F)) ≥ −1.
Since we only flip edges of the same short cycle, Remark 4 ensures that G′ and H are close and the proof
immediately follows.

By Lemma 7.1, we have |V (F ′)| − |V (F)| = −1 if σ is connected and 0 if σ is disconnected. We call this
property the property (*). Let us now bound the quantity γ(F ′)− γ(F).

Assume that there exists σ1 ∈ V (F) such that σ1 ∈ N−F (σ) ∩ N
+
F (σ). Note that σ, σ1 forms a cycle

of size 2. If σ or σ1 are connected then γ(F) = 0. So we have γ(F ′) − γ(F) ≥ 0. If both σ and σ1 are
disconnected then γ(F) ≤ 1. And then γ(F ′) − γ(F) ≥ −1. Thus, in both cases, the property (*) gives
(|V (F ′)|+ γ(F ′))− (|V (F)|+ γ(F)) ≥ −1 and the result is proven.

So we can assume that no vertex σ1 of F satisfies σ1 ∈ N−F (σ)∩N
+
F (σ). By Lemma 7.2 and 7.3, the labels

of the vertices of F ′ and F are the same. Thus, if γ(F ′) < γ(F), it is because F ′ has no oriented cycle, or
because at least one cycle of F ′ is not in F . Let us consider both cases.

Suppose that F ′ has no oriented cycle. Lemma 8 ensures that every flip of F ′ is connected. Since the
labels are the same in F and F ′, only σ can be disconnected in F if it has been removed in F ′, but by
Lemma 7, if σ has been removed, σ is connected in F . Thus, F only contains connected flips, and either
there are no oriented cycles in F , or the only oriented cycles contain only connected flips. Thus, combining
γ(F) = γ(F ′) = 0 with property (*), we have (|V (F ′)|+ γ(F ′))− (|V (F)|+ γ(F)) ≥ −1.

So we can assume that at least one oriented cycle C ′ of F ′ is not in F . Since V (F ′) ⊆ V (F) and the labels
are the same in F and F ′, at least one arc of C ′ is not in F . Let us prove that there exists a cycle C in F such
that V (C) ⊆ V (C ′) ∪ {σ}.

If exactly one arc σ1σ2 of C ′ is not in F then, by Lemma 7.4 and 7.5, σ1 ∈ N−F (σ) and σ2 ∈ N+
F (σ).

Moreover, the path P of C ′ from σ2 to σ1 is also in F , so that in F , P plus σ1σ and σσ2 form an oriented
cycle C in F , with V (C) ⊆ V (C ′) ∪ {σ}. If at least two distinct arcs of C ′ are not in F , let σ1σ2 and σ3σ4 be
two such arcs. We can choose σ1σ2 and σ3σ4 so that the oriented path P from σ2 to σ3 in C ′ only contains
arcs that are in F . Lemma 7 ensures that σ1, σ3 ∈ N−F (σ) and σ2, σ4 ∈ N+

F (σ). If σ2 = σ3 or σ4 = σ1,
N−F (σ)∩N

+
F (σ) is not empty, a contradiction with the assumptions. Thus, σ1σ2 and σ3σ4 are not consecutive

in C ′. Since σ3 ∈ N−F (σ) and σ2 ∈ N+
F (σ), in F , P plus σ3σ and σσ2 forms an oriented cycle C in F , with

V (C) ⊆ V (C ′) ∪ {σ}.
Therefore, in both cases, there exists an oriented cycle C in F such that V (C) ⊆ V (C ′) ∪ {σ}. Since all

the vertices have the same label in F and F ′, the minimum number of disconnected flips in an oriented
cycle of F is therefore at most the number of disconnected flips in C if σ is connected, and the number
of disconnected flips in C +1 if σ is disconnected. Thus, if σ is connected, γ(F ′) − γ(F) ≥ 0, and if σ
is disconnected, γ(F ′) − γ(F) ≥ −1. Again, in both cases, property (*) ensures that (|V (F ′)| + γ(F ′)) −
(|V (F)|+ γ(F)) ≥ −1. ut

Note that the lower bound given by Lemma 9 corresponds to the upper bound given by Christie [5] for
paths when the graph of flips is connected. Indeed, Christie gives an algorithm to transform any path G
into another one H by using |V (F(G,H))|+ s good flips, where s is the number of connected components
of F(G,H) that only have disconnected flips. Thus, if the graph of flips is connected, s is equal to 0 if there
exists a connected flip in it, and 1 otherwise. As the graph is unoriented in this case, s is thus equal to
γ(F(G,H))).

In our case, the lower bound given by Lemma 9 is not necessarily tight when we only flip bad edges
of the same cycle. Indeed, let us consider for example the graphs G′k and H ′k obtained from Gk and Hk

by adding a connected and a disconnected C4, that see each other, on the same branch of the original
subdivided star (see Figure 3).

We claim that a proof similar to the one of Lemma 11 can be adapted to prove that the shortest trans-
formation from G′k to H ′k has length at least 3k

2 . On the other hand, the addition of the two cycles on a leaf
of a branch created in F(G′k, H ′k) an oriented cycle of length 2 with a connected and a disconnected vertex.
Thus, Lemma 9 gives the lower bound k + 2.

We can now apply Lemma 9 to prove the following. Recall thatGk andHk were defined at the beginning
of the section.
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Fig. 5: G′4 and H ′4. The black thick edges are in E(G′4 ∩H ′4), the blue thin edges are in E(G′4 −H ′4) and the
red dashed edges are in E(H ′4 −G′4).

Lemma 10. If we only flip pairs of edges that are in the same cycle of C, then the shortest transformation from Gk to
Hk has length at least 2k − 1.

Proof. Let us first show that Gk and Hk are close. We thus need to prove that ∆(Gk, Hk) has a unique
partition into alternating cycles, containing only short cycles. In the proof all the indices have to be read
modulo k. By construction, the vertex c is not incident to any edge of ∆(Gk, Hk) and all the other vertices
are incident to one edge of Gk − Hk and one edge of Hk − Gk. For every i, vi,1 is incident to an edge of
Gk −Hk, namely vi,1vi,2. The vertex vi,2 is incident to an edge of Hk −Gk, namely vi,2vi+1,4, which in turn
is incident to an edge of Gk −Hk, vi+1,4vi+1,3. And vi+1,3 is incident to an edge of Hk −Gk, vi+1,3vi,1. This
set of four edges create a short cycle, denoted by Ci. Since this property holds for every i, ∆(Gk, Hk) can be
partitioned into k short cycles. The uniqueness of the edges of Gk − Hk and Hk − Gk incident to a vertex
vi,j ensures the uniqueness of the decomposition into cycles.

Let us now prove that F := F(Gk, Hk) only contains disconnected flips. Since there are 4k edges in
∆(Gk, Hk), there are therefore k vertices in F . Let us prove that, for every i, the good flip σi ∈ F(Gk, Hk)
for Ci is disconnected. Since vi,2vi+1,4 and vi+1,3vi,1 are the edges of Hk − Gk in Ci, the good flip of F is
σi : (vi,1vi,2, vi+1,4vi+1,3)→ (vi,1vi+1,3, vi,2vi+1,4). By construction, (vi,2, vi,1, vi+1,3, vi+1,4) are aligned in Gk
and then Lemma 1 ensures that σi is disconnected.

Let us finally show thatF is an oriented cycle of length k. For every i, the path from vi,1vi,2 to vi+1,4vi+1,3

in Gk is Pi := (vi,1, c, vi+1,1, vi+1,2, vi+1,3). The only edge of Gk−Hk that belongs to Pi is vi+1,1vi+1,2, which
is an edge of σi+1. So σi only sees σi+1.

Therefore, F is an oriented cycle of length k containing only disconnected flips.
SinceGk, Hk are close, Lemma 9 ensures that a shortest transformation when we only flip pairs of edges

that are in the same cycle of C has length at least |V (F)|+γ(F) = 2k−1. Indeed |V (F)| = k and γ(F) = k−1.
ut

We claim that the lower bound given by Lemma 10 is also an upper bound. Indeed, by Lemma 5, every
short cycle can be removed within two steps. We can apply this strategy for k− 1 cycles which needs 2k− 2
steps. When there only remains one cycle in the symmetric difference, then it is easy to check that the good
flip indeed keeps the connectivity of the graph. Thus the last short cycle can be removed in one step.

From Lemma 10, we can finally deduce the following corollary:

Corollary 2. There exist some connected graphs G and H with the same degree sequence for which, if we only flip
edges of the same cycle of any decomposition of∆(G,H) into alternating cycles, the shortest connected transformation
from G to H has length at least 2( δ(G,H)

2 −mnc(G,H))− 1.
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4.2 Flipping bad edges

The restriction of flipping only edges that are in the same cycle of the partition of∆(Gk, Hk) into alternating
cycles might seem strong.

That being said, we have also studied the transformation from Gk to Hk under a weaker assumption,
which is the one of only flipping bad edges.

Lemma 11. If at any time, we only flip pairs of bad edges, then the shortest transformation from Gk to Hk has length
at least d 3k2 e − 1.

Proof. Let Gt be a graph obtained after applying t arbitrary flips, whose edges are in ∆(Gk, Hk), to Gk. The
branch Bi of Gt is the unique path from vi,1 to a leaf of Gt (that is therefore identified as the leaf of the
branch) that does not contain the vertex c. Note that since we only flip bad edges, in Gt, one of the two
edges incident to vi,1 is cvi,1. A core of a branch Bi is an edge vj,2vj,3 that belongs to the branch Bi. Note
that a branch might contain no core. An edge of Gt −H is external if is incident to a leaf of Gt, and internal
otherwise. An inversion of Bi is a flip whose edges are both on Bi. A displacement between two branches Bi
and Bj is a flip between one edge of Bi and one edge of Bj . Note that all the flips are either inversions or
displacements.

Let S be a sequence of flips that transforms Gk into Hk using only bad edges, and let us show that S has
length at least d 3k2 e − 1.

Let us first show that S contains at least k− 2 displacements if k is even, and k− 1 if k is odd. First note
that the only way to change the leaf of the branch Bi consists in making a displacement between Bi and
another branch Bj . Indeed, an inversion flips two edges of the same branch, and therefore does not change
its content. On the other hand, a displacement between the branches Bi and Bj permutes the leaves of the
two branches.

Since the leaf of the branchBi is vi,4 inGk, and vi+2,4 inHk (the addition being modulo k), the leaves as-
sociated to the branches (B1, . . . , Bk) must be changed from (v1,4, v2,4, . . . , vk−2,4, vk−1,4, vk,4) to (v3,4, v4,4,
. . . , vk,4, v1,4, v2,4), only using displacements, i.e. transpositions of the leaves. The canonical notation of the
permutation (i.e partition into cycles) from (1, 2, . . . , k− 2, k− 1, k) to (3, 4, . . . , k, 1, 2) is either (1, 3, . . . , k−
1)(2, 4, . . . , k) if k is even, or (1, 3, . . . , k, 2, 4, . . . , k − 1) if k is odd. Thus, it is partitioned into 2 orbits if k is
even, and 1 orbit if k is odd, and therefore its decomposition into transpositions contains k − 2 transposi-
tions if k is even, and k − 1 if k is odd. Therefore, in order to put the leaves vi+2,4 on the branches Bi for
any i, at least k − 2 transpositions are needed if k is even, and at least k − 1 transpositions are needed if k
is odd. Therefore, if ` is the number of inversions in S, then S has length at least ` + k − 2 if k is even, and
`+ k − 1 if k is odd.

Let us now prove that S has length at least 2k−`. Assume that S contains ` inversions. First note that, in
bothGk andHk, the vertices vi,2vi,3 appear in the same branch, but inGk, (c, vi,2, vi,3) are aligned and inHk,
(c, vi,3, vi,2) are aligned. Thus, the order of vi,2vi,3 in the branch has to change during the transformation.
The only way to change the order of vi,2 and vi,3 in a branch is to make an inversion of a subpath containing
the edge vi,2vi,3. Since S contains only ` inversions, it means that there exist at least k−` indices j for which
the edge vj,1vj,2 has to belong to a flip before its inversion. Moreover, after each inversion, at most one core
belongs to its final branch. Thus, there exist at least k− ` indices j such that the bad edge incident to vj,2 has
to belong to a flip after the inversion of vj,1vj,2 in order to connect it with vj−1,1. So 2k − 2` internal edges
have to be flipped during displacements.

Let us now focus on the leaves. Since S contains ` inversions, at most ` indices j satisfy that vj,3 is
incident to a leaf just before the inversion of vj,2vj,3. Since all the edges vi,2vi,3 have to be inversed during
the transformation and since in Gk, every vertex vi,3 is incident to a leaf, at least k − ` external edges have
to be belong to a flip before the inversion of the core they are incident to in Gk. Similarly, at most ` indices j
satisfy that vj,2 is incident to a leaf just after the inversion of vj,2vj,3. Since inHk, every vertex vi,2 is incident
to a leaf, at least k− ` external edges have to belong to a flip after the inversion of the core they are incident
to in Hk. So at least 2k − 2` external edges have to be flipped during displacements.

Therefore, in total, we need to flip at least 4k − 4` edges during displacements. So at leat 2k − 2` dis-
placements are needed in addition to the ` inversions, and the total number of flips in S is at least 2k − `.
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Thus, if k is even, S has length at least max(` + k − 2, 2k − `) and if k is odd, S has length at least
max(` + k − 1, 2k − `). In both cases, the two lower bounds meet for ` = bk2 c + 1 at the value d 3k2 e − 1.
Therefore, S has length at least d 3k2 e − 1. ut

From Lemma 11, we can deduce the following:

Corollary 3. There exist some connected graphs G and H with the same degree sequence for which, if we only flip
edges of∆(G,H), the shortest connected transformation fromG toH has length at least 3

2 (
δ(G,H)

2 −mnc(G,H))−1.

Conjecture 1. The shortest transformation from Gk to Hk has length 2k − 1.
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