Unfolding homogenization method applied to physiological and phenomenological bidomain models in electrocardiology - Archive ouverte HAL
Article Dans Une Revue Nonlinear Analysis: Real World Applications Année : 2019

Unfolding homogenization method applied to physiological and phenomenological bidomain models in electrocardiology

Résumé

In this paper, we apply a rigorous homogenization method based on unfolding operators to a microscopic bidomain model representing the electrical activity of the heart at a cellular level. The heart is represented by an arbitrary open bounded connected domain with smooth boundary and the cardiac cells’ (myocytes) domain is viewed as a periodic region. We start by proving the well posedness of the microscopic problem by using Faedo–Galerkin method and -compactness argument on the membrane surface without any restrictive assumptions on the conductivity matrices. Using the unfolding method in homogenization, we show that the sequence of solutions constructed in the microscopic model converges to the solution of the macroscopic bidomain model. Because of the nonlinear ionic function, the proof is based on the surface unfolding method and Kolmogorov compactness argument.
Fichier principal
Vignette du fichier
S1468121818312835.pdf (666.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02142028 , version 1 (28-05-2019)
hal-02142028 , version 2 (25-10-2021)

Licence

Identifiants

Citer

Mostafa Bendahmane, Fatima Mroue, Mazen Saad, Raafat Talhouk. Unfolding homogenization method applied to physiological and phenomenological bidomain models in electrocardiology. Nonlinear Analysis: Real World Applications, 2019, 50, pp.413-447. ⟨10.1016/j.nonrwa.2019.05.006⟩. ⟨hal-02142028v2⟩
205 Consultations
74 Téléchargements

Altmetric

Partager

More