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UNFOLDING HOMOGENIZATION METHOD APPLIED TO

PHYSIOLOGICAL AND PHENOMENOLOGICAL BIDOMAIN MODELS

IN ELECTROCARDIOLOGY

MOSTAFA BENDAHMANE, FATIMA MROUE, MAZEN SAAD, AND RAAFAT TALHOUK

Abstract. In this paper, we apply a rigorous homogenization method based on unfold-
ing operators to a microscopic bidomain model representing the electrical activity of the
heart at a cellular level. The heart is represented by an arbitrary open bounded connected
domain with smooth boundary and the cardiac cells’ (myocytes) domain is viewed as a pe-
riodic region. We start by proving the well posedness of the microscopic problem by using
Faedo-Galerkin method and L2-compactness argument on the membrane surface without
any restrictive assumptions on the conductivity matrices. Using the unfolding method in ho-
mogenization, we show that the sequence of solutions constructed in the microscopic model
converges to the solution of the macroscopic bidomain model. Because of the nonlinear ionic
function, the proof is based on the surface unfolding method and Kolmogorov compactness
argument.

1. Introduction

The heart is the muscular organ that contracts to pump blood throughout the body. Its
contraction is initiated by an electrical signal called action potential. At a microscopic level,
the cardiac tissue is a complex structure composed of elongated connected cells (cardiomy-
ocytes) that have a cylindrical shape and that are aligned in preferential directions forming
fibers. Cardiomyocytes are encapsulated in a dynamic cell membrane (the sarcolemma) that
separates the interior of the cell from the surrounding medium and maintains a potential
difference (the transmembrane potential) between the two media due to the different concen-
trations of various ionic species on both sides. The elongated cardiomyocytes are endowed
with special end-to-end connections (the gap junctions) that form the long fiber structure of
the muscle, as well as with lateral junctions that permit the connection between the intracel-
lular spaces of the elongated fibers. Since those connections have a low resistance, the cardiac
tissue can be viewed as a single intracellular connected domain, separated from the extracel-
lular domain by the surface of the cell membrane [29]. Moreover, the sarcolemma consists
of a phospholipid bilayer in which are embedded ionic channels that ensure the flow of ionic
currents from the extra- to intracellular space or vice versa. As a consequence of this transfer
of ionic species between the two-spaces (intra- and extracellular spaces) a current flows across
the cell membrane (transmembrane current). The capacitive, diffusive and conductive effects
contribute to this current flux across the membrane [29, 18, 38].
From a physical point of view, the cardiac tissue can be viewed as partitioned into two ohmic
conducting volumes (intra- and extracellular spaces). The intra- and extracellular domains
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act as volume conductors and can be described by a quasi-static approximation of ellip-
tic equations in both spaces. These equations are complemented by a dynamical boundary
equation at the interface of the two regions. It is worth mentioning in the sequel that the
approximation of the ionic current flow is based on Ohm’s law and charge conservation and
that these equations depend (at the microscopic level) on a small parameter (0 < ε << 1)
whose order of magnitude is the ratio of the two macro- and microscopic space scales.
In this paper we derive a macroscopic bidomain model of cardiac electrophysiology based on
a microscopic bidomain model, using a rigorous homogenization method. Indeed, the micro-
scopic model is unsuitable for numerical computations due to the complexity of the underly-
ing geometry, which highlights the importance of the rigourous derivation of the macroscopic
model while taking into account the properties of the physiological and microscopic structure.
Classically, homogenization has been done by means of the multiple-scale method which per-
mits to formally obtain the homogenized problem based on a formal asymptotic expansion
[16, 11]. There are now various mathematical methods related to this theory: the oscillating
test functions method due to L. Tartar in [39], the two-scale convergence method introduced
by G. Nguetseng in [34], and further developed by G. Allaire in [1] (see also [3]) and recently
the periodic unfolding method introduced by D. Cioranescu, A. Damlamian and G. Griso
for the study of classical periodic homogenization in the case of fixed domains and adapted
to homogenization in domains with holes in [17]. The idea of the unfolding operator was
used in [13, 7, 43] under the name of periodic modulation or dilation operator. The name
“unfolding operator” was then introduced in [17] and deeply studied in [15, 14]. The interest
of the unfolding method comes, on one hand, from the fact that it only deals with functions
and classical notions of convergence in Lp spaces and it does not necessitate the use of a
special class of test functions. On the other hand, the unfolding operator maps functions
defined on oscillating domains into functions defined on fixed domains. Hence, the proof of
homogenization results becomes quite simple.

Regarding the asymptotic behavior of a microscopic-level modeling problem for the bioelec-
tric activity of the heart, there is the work by M. Pennachio, G. Savaré, and P. Franzone that
rigourously studies the derivation of the bidomain model in the framework of Γ-convergence
theory presented in [36]. Recently, the two-scale method has been used in [19, 27] to ob-
tain the homogenized macroscopic model using different ionic models and assumptions on
the conductivity matrices. In [19], the authors derive a macroscopic bidomain model using
simplified ionic models whereas in [27], the authors use the FitzHugh-Nagumo ionic model.
In the present work, we treat a generalized class of ionic models including the FitzHugh-
Nagumo model along with physiological models involving ionic concentrations that appear as
arguments of a logarithmic function and that must be shown to be bounded away from 0. We
further note that in [19, 27], the cardiac domain was assumed to be a cube in R3. Regarding
the mathematical analysis of the microscopic model, we point out that in [42], the author
used Schauder’s fixed point theorem and in [22], the authors used a variational approach to
establish the well-posedness of the microscopic problem under different initial and boundary
conditions. In the present work, we prove the existence of solution of the microscopic prob-
lem by a constructive method based on the Faedo-Galerkin approach without the restrictive
assumption, usually found in the literature, on the conductivity matrices to have the same
basis of eigenvectors or to be diagonal matrices (see for instance [12] where the authors prove
the existence of a local in time strong solution of the bidomain equations after introducing
the so-called bidomain operator). It is worth to mention that our approach is innovative and
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cannot be found in the literature in the context of existence of solutions to the microscopic
bidomain model. The convergence of solutions of a sequence of microscopic problems to the
solution of the macroscopic problem is established in properly chosen function spaces. We use
the unfolding method in perforated domains [15, 17], for sequences of functions bounded in

L2, H1 or in H1/2 on a micro-periodic domain. The difficulty of the homogenization problem
for the bidomain equations is due, on one hand, to the degenerate structure of the equations,
in combination with the highly oscillating underlying geometry. As a consequence, standard
parabolic a priori estimates are not immediately available [22]. On the other hand, the (non-
linear) dynamics of the cellular model take place on the cell membrane which is a wildly
oscillating surface. Hence, an ambiguity arises in defining a proper notion of “strong con-
vergence” of functions in this context. However, some kind of strong convergence is required
to pass to the limit in the nonlinear equations. For this reason, we also use the boundary
unfolding operator along with a Kolmogorov-Riesz compactness argument [4, 23]. We stress
that we do not restrict our study to the homogenization method of the bidomain model with
nonlinear ionic function of FitzHugh-Nagumo type but also with physiological ionic function
of Luo-Rudy type. Moreover, the approach presented herein can be extended to electroper-
meabilization models. We cite for instance [6] where a dynamical homogenization scheme is
obtained from a physiological cell model and [5] where a conductivity dependent macroscopic
tissue model is for the first time derived from first principles.
Note that thanks to homogenization, the resulting macroscopic bidomain model describes av-
eraged intra and extracellular potential by a nonlinear anisotropic reaction-diffusion system.
The cardiac tissue is then considered (at the macroscopic level) as the superposition of two
anisotropic continuous media: the intra- and extracellular spaces, coexisting along with the
cell membrane, at each point of the tissue. The most substantial mathematical description of
the bidomain model is found in the review paper by Henriquez [28], which presents a formal
definition of the model from its origins in the core conductor model, and outlines many of the
approximations that can be made under certain assumptions.
The plan of this paper is outlined as follows. The microscopic problem and the main as-
sumptions used for homogenization are presented in Section 2 and the main result is stated.
In Section 3, existence of weak solutions to the microscopic problem is proved based on a
Faedo-Galerkin approach, a priori estimates and a compactness argument. In Section 4, some
estimates on the solutions of the microscopic problem are obtained and the microscopic prob-
lem is formulated using the unfolding operator. The passage to the limit using compactness
and the unfolding method are established in Section 5. Then in Section 6, the macroscopic
bidomain equations are recuperated from the limit equations obtained in Section 5 and the cell
problem is decoupled. Finally, in Section 7, a microscopic bidomain model with physiological
ionic model is homogenized to obtain the corresponding macroscopic model.

2. The microscopic bidomain model

We first list in the following paragraphs the assumptions used in sections 3, 4, 5 and 6.

Assumptions on the domain. For our model we assume that Ω (the cardiac tissue) is a
bounded open subset of R3 with smooth boundary ∂Ω. The cardiac tissue is composed of
two connected regions, the intracellular Ωi,ε and the extracellular Ωe,ε. These two regions are
separated by an active membrane surface Γε = ∂Ωi,ε ∩ ∂Ωe,ε. Here ε > 0 is the small dimen-
sionless parameter which is proportional to the ratio between the micro scale of the length of
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the cells and the macro scale of the length of the cardiac fibers. Following the standard ap-

Figure 1. Left: A 2D section of the simplified periodic network of cells.
Right: A 2D section of the reference cell Y .

proach of the homogenization theory, we are assuming that the cells are distributed according
to an ideal periodic organization similar to a regular lattice of interconnected cylinders.
Let Y := [0, 1]3 be the representation of the unit cell in R3. We denote by Yi,e ⊂ Y its
intra- and extracellular parts and by Γ the common boundary of the intra- and extracellular
domains Yi and Ye (Γ = ∂Yi∩∂Ye). So Yi∪Ye∪Γ = Y . The elementary unit cell Y represents
a reference unit volume box containing a single cell Yi.
The main geometrical assumption is that the physical intra- or extracellular regions are the
ε-dilation of the reference lattices Yi,e extended periodically, defined as: for k ∈ Z3 each cell

Yj,k,ε := εk + εYj = {εξ : ξ ∈ k + Yj},

and the corresponding common periodic boundary

Γk,ε := εk + εΓ = {εξ : ξ ∈ k + Γ}.

Therefore, the physical region Ω occupied by the heart is decomposed into the intra- and
extracellular domains Ωj,ε for j = i, e that can be simply obtained by intersecting Ω with
Yj,k,ε for j = i, e, i.e.:

Ωj,ε = Ω ∩
⋃
k∈Z3

Yj,k,ε.

Similarly,

Γε = Ω ∩
⋃
k∈Z3

Γk,ε.

One can observe that the domain Ωi,ε may be considered as a perforated domain obtained
from Ω by removing the perforations which correspond to the extracellular domain Ωe,ε. The
same observation holds for the extracellular domain. The boundary Γ is a smooth manifold
such that Γε is smooth and connected. Furthermore, Ωj,ε are both assumed to be connected
bounded domains in R3 so that a Poincaré-Wirtinger inequality is satisfied in both domains.
(We refer the reader to the geometrical hypothesis Hp in [14] for such domains.)
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Assumptions on the data. The electric properties of the tissue are described by the in-
tracellular ui,ε and extracellular ue,ε electric potentials. Herein, uj,ε : Ωj,ε → R for j = i, e,
and vε := (ui,ε − ue,ε) |Γε : Γε → R is known as the transmembrane potential and satisfies a
dynamic condition on Γε involving the auxiliary function wε : Γε → R (the so called gating
variable).
The following coupled reaction-diffusion system forms the microscopic bidomain model: for
j = i, e (see e.g. [38, 44]):

−div (Mj,ε∇uj,ε) = 0 in Ωj,ε,T := (0, T )× Ωj,ε, (1a)

ε(∂tvε + Iion(vε, wε)− Iapp,ε) = Im on Γε,T := (0, T )× Γε, (1b)

Im = −Mi,ε∇ui,ε · µi = Me,ε∇ue,ε · µe on Γε,T , (1c)

∂twε −H(vε, wε) = 0 on Γε,T . (1d)

We augment (1) with no-flux boundary conditions

(Mj(x)∇uj,ε) · µj = 0 on (0, T )× (∂Ωj,ε \ Γε), j ∈ {e, i}, (2)

and appropriate initial conditions for the transmembrane potential and gating variable

vε(0, ·) = v0,ε(·), wε(0, ·) = w0,ε(·) on Γε. (3)

The conductivity tensors, the ionic functions, the source term and the initial data satisfy the
following assumptions:

(E.1) The conductivity of the tissue is represented by scaled symmetric Lipschitz contin-
uous tensors Mi,ε(x) = Mi(x, x/ε) and Me,ε(x) = Me(x, x/ε) satisfying (the ellipticity and
periodicity conditions): there exists constants m1,m2 > 0 such that for j = i, e

m1 |ζ|2 ≤Mj(x, ξ)ζ · ζ ≤ m2 |ζ|2 , (4a)

Mj(x, ξ + ek) = Mj(x, ξ), (4b)

for all (x, ξ) ∈ Ω × Yj and for all ζ ∈ R3. Furthermore, note that µj are the exterior unit
normals to the boundaries of Ωj,ε, for j = i, e respectively, and µi = −µe on Γε.

(E.2) The ionic current Iion(u,w) is assumed to be decomposed into I1,ion(u) and I2,ion(w),
where Iion(u,w) = I1,ion(u)+I2,ion(w). Furthermore, the function I1,ion : R→ R is considered
as a C1 function, and the functions I2,ion : R→ R and H : R2 → R are considered as linear
functions. Also, we assume that there exists r ∈ (2,+∞) and constants α1, α2, α3, L > 0, l ≥ 0
such that

1

α1
|v|r−1 ≤ |I1,ion(v)| ≤ α1

(
|v|r−1 + 1

)
,

and I2,ion(w)v − α2H(v, w)w ≥ α3 |w|2 ,
(5)

Ĩ1,ion : z 7→ I1,ion(z) + Lz + l is strictly increasing on R with lim
z→0

Ĩ1,ion(z)/z = 0 (6a)

and ∀ z, s ∈ R (Ĩ1,ion(z)− Ĩ1,ion(s))(z − s) ≥ 1

C
(1 + |z|+ |s|)r−2|z − s|2. (6b)

Remark 2.1. One can easily show that: I1,ion(0) = −l, I ′1,ion(0) = −L and I ′1,ion(z) ≥ −L
for all z ∈ R.
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Remark 2.2. The function H in the ODE of (1)-(2) and the function Iion, may correspond to
one of the simplified models for the membrane and ionic currents. We mention, for instance,
the Mitchell-Schaeffer membrane model [32]

H(v, w) =
w∞(v/vp)− w
Rmcmη∞(v/vp)

, (7a)

Iion(v, w) =
vp
Rm

(
v

vpη2
− v2(1− v/vp)w

v2
pη1

)
, (7b)

where the dimensionless time constant and state variable constant are respectively given by

η∞(s) =

{
η3 for s < η5,

η4 otherwise,
w∞(s) =

{
1 for s < η5,

0 otherwise.

The quantity Rm is the surface resistivity of the membrane, and vp, η1, η2, η3, η4, η5 are given
parameters. A simpler choice for the membrane kinetics is given by the widely known
FitzHugh-Nagumo model [21], often used by researchers to avoid computational difficulties.
In this case,

H(v, w) = av − bw, (8a)

Iion(v, w) =
(
λv(1− v)(v − θ)

)
+ (−λw) := I1,ion(v) + I2,ion(w), (8b)

where a, b, λ, θ are given parameters with a, b ≥ 0, λ < 0 and 0 < θ < 1. According to the
Mitchell-Shaeffer and FitzHugh-Nagumo models, the most appropriate value is r = 4, which
means that the non-linearity Iion is of cubic growth at infinity (recall that in the Mitchell-
Shaeffer membrane model, the gating variable w is bounded in L∞). Assumptions (5), (6) are
automatically satisfied by any cubic polynomial Iion with positive leading coefficient. This is
indeed the case for the FitzHugh-Nagumo model but not for the Mitchell-Shaeffer model.

(E.3) There exists a constant C independent of ε such that the source term Iapp,ε satisfies
the following bound:

‖ε1/2Iapp,ε‖L2(Γε,T ) ≤ C. (9)

Furthermore, Iapp is the weak limit of the corresponding unfolding sequence.

(E.4) The initial data v0,ε and w0,ε satisfy

‖ε1/rv0,ε‖Lr(Γε) + ‖ε1/2v0,ε‖L2(Γε) + ‖ε1/2w0,ε‖L2(Γε) ≤ C, (10)

for some constant C independent of ε. Moreover, v0,ε and w0,ε are assumed to be traces of
uniformly bounded sequences in C1(Ω̄).

Observe that the equations in (1) are invariant under the change of ui,ε and ue,ε into ui,ε+k;
ue,ε + k, for any k ∈ R. Hence, we may impose the following normalization condition:∫

Ωe,ε

ue,ε(t, x) dx = 0 for a.e. t ∈ (0, T ). (11)

Finally, We end this section by stating the main results of the paper as given in the following
theorems.
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Theorem 2.1 (Microscopic Bidomain Model). Assume conditions (E.1), ..., (E.4) hold.
Then the microscopic bidomain problem (1), (2), (3) possesses a unique weak solution in the
sense of Definition 3.1.

Theorem 2.2 (Macroscopic Bidomain Model). A sequence of solutions (ui,ε, ue,ε, wε)ε of the
microscopic system (1)-(3)(obtained in Theorem 2.1) converges to a weak solution (ui, ue, w)
with v = ui−ue, ui, ue ∈ L2(0, T ;H1(Ω)), v ∈ L2(0, T ;H1(Ω))∩Lr(ΩT ), ∂tv ∈ L2(0, T ; (H1(Ω))′)+

Lr/(r−1)(ΩT ) and w ∈ C(0, T ;L2(Ω)), of the macroscopic problem

|Γ|∂tv − div (Mi(x)∇ui) + |Γ|Iion(v, w) = |Γ|Iapp in ΩT , (12a)

|Γ|∂tv + div (Me(x)∇ue) + |Γ|Iion(v, w) = |Γ|Iapp in ΩT , (12b)

∂tw −H(v, w) = 0 in ΩT . (12c)

supplemented with no-flux boundary conditions, representing an insulated cardiac tissue

(Mj(x)∇uj) · n = 0 on ΣT := ∂Ω× (0, T ), j ∈ {e, i}, (13)

and appropriate initial conditions in Ω, namely v0 and w0 ∈ L2(Ω), for the transmembrane
potential and gating variable

v(0, x) = v0(x), w(0, x) = w0(x). (14)

Herein, n is the outward unit normal to the boundary of Ω and the tensors Mi and Me are
defined by

Mj :=

∫
Yj

(
Mj + Mj∇yfj

)
for j = i, e, where the components fk,j of fj (k = 1, 2, 3) are the corrector functions, solutions
of the cell problems

−∇y · (Mj∇yfk,j) = −∇y · (Mjek) in Yj ,
Mj∇yfk,j · µj = Mjek · µj on Γ,∫
Yj

fk,j = 0, fk,j Y − periodic.

3. Existence of solutions to the microscopic model

This section is devoted to proving existence of solutions to the microscopic bidomain model
for fixed ε > 0. The existence proof is based on the Faedo-Galerkin method, a priori estimates,
and the compactness method.
We start with a weak formulation of the microscopic model.

Definition 3.1 (Weak Formulation). A solution of problem (1), (2), (3) is a four tuple
(ui,ε, ue,ε, vε, wε) such that ui,ε ∈ L2(0, T ;H1(Ωi,ε)), ue,ε ∈ L2(0, T ;H1(Ωe,ε)), vε = (ui,ε −
ue,ε) |Γε∈ L2(0, T ;H1/2(Γε)) ∩ Lr(Γε,T ), wε ∈ L2(Γε,T )), ∂tvε, ∂twε ∈ L2(Γε,T ), and satisfying
the following weak formulation for a.e. t ∈ (0, T )∫

Γε

ε∂tvεϕds(x) +
∑
j=i,e

∫
Ωj,ε

Mj,ε(x)∇uj,ε · ∇ϕj dx

+

∫
Γε

εIion(vε, wε)ϕds(x) =

∫
Γε

εIapp,ε ϕds(x),

(15)

∫
Γε

∂twεζ ds(x)−
∫

Γε

H(vε, wε)ζ ds(x) = 0, (16)
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for all ϕj ∈ H1(Ωj,ε) with ϕ := (ϕi − ϕe) |Γε∈ H1/2(Γε) ∩ Lr(Γε) for j = i, e and ζ ∈ L2(Γε).

We prove now Theorem 2.1.

Proof. In this proof, we will remove the ε-dependence in the solution (vε, ui,ε, ue,ε, wε) for
simplification of notation. To prove existence of weak solutions, we use a Faedo-Galerkin
approach and a priori estimates. For this sake, we first carefully construct an appropriate
basis for our systems.

Step 1: Construction of the basis
We first consider functions φ ∈ C0(Ω̄j,ε) and we define the inner product denoted 〈·, ·〉V0,j by

〈Θ, Θ̃〉V0,j :=

∫
Ωj,ε

φφ̃dx+

∫
Γε

φ|Γε φ̃|Γεds, for j = i, e

where Θ =

(
φ
φ|Γε

)
and Θ̃ =

(
φ̃

φ̃|Γε

)
. Then we let V0,j denote the completion of C0(Ω̄j,ε)

under the norm induced by the inner product 〈·, ·〉V0,j . Similarly, for functions φ, φ̃ ∈ C1(Ω̄j,ε),
we define the inner product denoted 〈·, ·〉V1,j by:

〈Θ, Θ̃〉V1,j :=

∫
Ωj,ε

Mj,ε∇φ · ∇φ̃dx+

∫
Γε

φ|Γε φ̃|Γεds+

∫
Γε

∇Γεφ · ∇Γε φ̃ds,

where ∇Γε denotes the tangential gradient operator on Γε and we let V1,j denote the com-
pletion of C1(Ω̄j,ε) under the norm induced by the inner product 〈·, ·〉V1,j . We note that the
following injections hold:

V0,j ⊂ L2(Ωj,ε), and V1,j ⊂ H1(Ωj,ε).

Moreover, the injection from V1,j into V0,j is continuous and compact. We refer the reader to
[25, 37] for similar approaches.

It follows from a well-known result (see e.g. [40] p. 54) that the closed bilinear form a(Θ, Θ̃) :=

〈Θ, Θ̃〉V1,j defines a strictly positive self-adjoint unbounded operator

Bj : D(Bj) = {Θ ∈ V1,j : BjΘ ∈ V0,j} → V0,j

such that, for any Θ̃ ∈ V1,j , we have 〈BjΘ, Θ̃〉V0,j = a(Θ, Θ̃). Thus, for k ∈ N, we take a

complete system of eigenfunctions
{

Θk,j =

(
φk,j
ψk,j

)}
k

of the problem BjΘk,j = λkΘk,j in

V0,j with Θk,j ∈ D(Bj), and ψk,j = φk,j |Γε where φk,j and ψk,j are regular enough.
Moreover, the eigenvectors {Θk,j}k, form an orthogonal basis in V1,j and V0,j , and they may
be assumed to be normalized in the norm of V0,j . Since C1(Ω̄j,ε) ⊂ V1,j ⊂ H1(Ωj,ε), and
C1(Ω̄j,ε) is dense in H1(Ωj,ε), then V1,j is dense in H1(Ωj,ε) for the H1 norm. Therefore,
{Θk,j}k is a basis in H1(Ωj,ε) for the H1 norm.
On the other hand, we consider a basis {ζk}k, k ∈ N that is orthonormal in L2(Γε) and
orthogonal in H1(Γε) and we set the spaces

Tj,n = span{Θ1,j , · · · ,Θn,j}, Tj,∞ =

∞⋃
n=1

Tj,n,

Kn = span{ζ1, · · · , ζn}, K∞ =
∞⋃
n=1

Kn,
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where T∞ and K∞ are dense subspaces of V1,j and H1(Γε) respectively.

Step 2: Construction of approximate solutions
For any n ∈ N, we are looking for functions of the form(

uj,n
ūj,n

)
=

n∑
k=1

dj,k(t)

(
φj,k
ψj,k

)
, j = i, e, with φj,k|Γε = ψj,k and wn =

n∑
k=1

ck(t)ζk(x),

(17)
solving the approximate regularized problem:

(ε+ δn)

∫
Γε

∂tūi,nψi ds(x)− ε
∫

Γε

∂tūe,nψi ds(x) + δn

∫
Ωi,ε

∂tui,nφi dx

=

∫
Γε

(−Iion(vn, wn) + Iapp,ε)ψi ds(x)−
∫

Ωi,ε

Mi,ε(x)∇ui,n · ∇φi dx
(18)

− ε
∫

Γε

∂tūi,nψe ds(x) + (ε+ δn)

∫
Γε

∂tūe,nψe ds(x) + δn

∫
Ωe,ε

∂tue,nφe dx

=

∫
Γε

(Iion(vn, wn)− Iapp,ε)ψe |Γε ds(x)−
∫

Ωe,ε

Me,ε(x)∇ue,n · ∇φe dx

(19)∫
Γε

∂twnζ ds(x) =

∫
Γε

H(vn, wn)ζ ds(x), (20)

where δn =
1

n
, Θj =

(
φj
ψj

)
∈ Tj,n, for j = i, e and ζ ∈ Kn. The terms δn

∫
Γε

∂tūj,nψj ds(x)

and δn

∫
Ωj,ε

∂tuj,nφj dx, j = i, e were added to overcome the degeneracy in (15).

We aim to apply the standard existence theorems for ODEs. For this purpose, if n fixed,
we choose Θi = Θk,i, Θe = Θk,e and ζ = ζk, 1 ≤ k ≤ n and we substitute the expressions
(17) to the unknowns ui,n, ūi,n, ue,n, ūe,n, and wn. The ODE system, that we obtain, has
as unknowns the column vectors di = {di,k}nk=1, de = {de,k}nk=1 and c = {ck}nk=1. It can be
written as follows:

(δn + ε)Āiid′i − εĀied′e + δnAiid′i = Fi(t,di,de, c)

−εĀied′i + (δn + ε)Āeed′e + δnAeed′e = Fe(t,di,de, c)

G c′(t) = H(t,di,de, c),

(21)

where the (k, l) entry of the matrix Āmj , m, j = i, e is 〈ψm,k, ψj,l〉L2(Γε), for 1 ≤ k, l ≤ n, the

(k, l) entry of the matrix Ājj , j = i, e is 〈φj,k, φj,l〉L2(Ωj,ε), the (k, l) entry of the matrix G
is 〈ζk, ζl〉L2(Γε) and where the right hand side vectors Fi, Fe and H assemble the right hand
sides of the equations given in (18)-(20).
Note that by the orthonormality of the basis, the matrix

G =
(
〈ζk, ζl〉L2(Γε)

)
1≤k,l≤n

= In×n,
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is the identity matrix. Furthermore, the first two systems of equations in system (21) can be
written in the following form:(

δn

[
Āii + Aii 0

0 Āee + Aee

]
+ ε

[
Āii −Āie
−ĀTie Āee

])[
d′i
d′e

]
=

[
Fi
Fe

]
. (22)

Now making use of the orthonormality of the bases in the spaces V0,j , the matrices Ājj +Ajj ,
for j = i, e, are equal to the identity n× n matrix In×n. So system (22) may be written as

M
[

d′i
d′e

]
=

[
Fi
Fe

]
, where M = δn

[
In×n 0

0 In×n

]
+ ε

[
Āii −Āie
−ĀTie Āee

]
. (23)

In order to write

[
d′i
d′e

]
= M−1

[
Fi
Fe

]
, one needs to prove that the matrix M is invertible.

For this sake, it is enough to prove that the matrix N :=

[
Āii −Āie
−ĀTie Āee

]
is positive semi-

definite.

Let d =

(
di
de

)
, where di = (di,1, · · · , di,n)T ∈ Rn and de = (de,1, · · · , de,n)T ∈ Rn. Then

dTNd = dTi Āiidi − 2dTi Āi,ede + dTe Āeede
So we have

dTNd =

∫
Γε

∑
k,l

[di,kdi,lψikψil − 2di,kde,lψikψel + de,kde,lψekψel] ds(x)

=

∫
Γε

[∑
l

di,lψil −
∑
l

de,lψel

]2

ds(x) ≥ 0.

Thus the matrix M is symmetric positive definite, hence invertible. Consequently, the whole
system (21) can be written as a system of ordinary differential equations in the form y′(t) =
f(t, y(t)).
Moreover, the problem that we obtained is supplemented with initial conditions

ui,n(0, x) = u0,i,n(x) :=
n∑
l=1

di,l(0)φi,l(x),

ūi,n(0, x) = ū0,i,n(x) :=
n∑
l=1

di,l(0)ψi,l(x), di,l(0) := 〈
(
ui,0
ūi,0

)
,Θi,l〉Vi,0 ,

ue,n(0, x) = u0,e,n(x) :=
n∑
l=1

de,l(0)φe,l(x),

ūe,n(0, x) = ū0,e,n(x) :=
n∑
l=1

de,l(0)ψe,l(x), de,l(0) := 〈
(
ue,0
ūe,0

)
,Θe,l〉Ve,0 ,

wn(0, x) = w0,n(x) :=
n∑
l=1

cn,l(0)ζl(x), cn,l(0) := (w0, ζl)L2(Γε).

(24)

Proceeding exactly as in Ref. [9], we prove that the entries of Fi, Fe and H are Carathéodory
functions bounded by L1 functions and we obtain the local existence on the interval [0, t′) of
the Faedo-Galerkin solutions ui,n, ue,n, vn and wn.
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The global existence of the Faedo-Galerkin solutions is a consequence of the n-independent
estimates that are derived in the next section. For more details, consult Ref. [9].

Step 3: Energy estimates
Note that the Galerkin solutions satisfy the following weak formulations:∫

Γε

ε∂tvnϕn ds(x) +
∑
i,e

∫
Γε

δnε∂tūj,n ϕ̄j,n ds(x) +
∑
i,e

∫
Ωj,ε

δn∂tuj,n ϕj,n dx

+
∑
i,e

∫
Ωj,ε

Mj,ε(x)∇uj,n · ∇ϕj,n dx+

∫
Γε

εIion(vn, wn)ϕn ds(x)

=

∫
Γε

εIapp,ε ϕn ds(x),

(25)

∫
Γε

∂twnen ds(x)−
∫

Γε

H(vn, wn)en ds(x) = 0, (26)

where the functions ϕj,n(t, x) :=
∑n

l=1 bj,n,l(t)φj,l(x), en(t, x) :=
∑n

l=1 zn,l(t)ζl(x) and ϕn :=
ϕ̄i,n−ϕ̄e,n for some given absolutely continuous coefficients bj,n,l(t), zn,l(t) for j = i, e. Herein,
ϕ̄j,n is the trace of ϕj,n on Γε for j = i, e.
Now, substituting ϕj,n = uj,n and en = εα2wn in (25) and (26), respectively, integrating over
(0, s) for s ∈ (0, T ] and summing the resulting equations, one obtains upon using (5) and (6),
Young’s inequality, the uniform ellipticity of Mj,ε and the L2 bound on Iapp,ε:

1

2

(
‖ε1/2vn(s)‖2L2(Γε)

+ α2‖ε1/2wn(s)‖2L2(Γε)
+
∑
i,e

‖ε1/2δ1/2
n ūj,n(s)‖2L2(Γε)

+
∑
i,e

‖δ1/2
n uj,n(s)‖2L2(Ωj,ε)

)
+m1

∑
i,e

‖∇uj,n‖2L2(Ωj,ε,s)
+ ‖εĨ1,ion(vn)vn‖L1(Γε,s)

≤ 1

2

(
‖ε1/2v0,n‖2L2(Γε)

+ ‖w0,n‖2L2(Γε)
+
∑
i,e

‖ε1/2δ1/2
n ū0,j,n‖2L2(Γε)

+
∑
i,e

‖δ1/2
n u0,j,n‖2L2(Ωj,ε)

)
+

∫ s

0

∫
Γε

εIapp,ε vn ds(x) dt−
∫ s

0

∫
Γε

εI2,ion(wn) vn ds(x) dt

+α2ε

∫ s

0

∫
Γε

H(vn, wn)wn ds(x) dt+

∫ s

0

∫
Γε

ε(Lvn + l) vn ds(x) dt

≤ C

(∫ s

0
(‖ε1/2vn‖2L2(Γε)

+ ‖ε1/2wn‖2L2(Γε)
) dt+ 1

)
,

(27)
for some constant C independent of n and ε. Note that in the sequel C is a generic constant
whose value can change from one line to another.
One obtains from (27), the following inequality

‖ε1/2vn(s)‖2L2(Γε)
+ ‖ε1/2wn(s)‖2L2(Γε)

≤ C

(∫ s

0
(‖ε1/2vn‖2L2(Γε)

+ ‖ε1/2wn‖2L2(Γε)
) dt+ 1

)
.

Hence, by an application of Gronwall’s inequality, one gets for a.e. t ∈ (0, T ),

‖ε1/2vn(t)‖2L2(Γε)
+ ‖ε1/2wn(t)‖2L2(Γε)

≤ C.
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Therefore,

‖ε1/2vn‖L∞(0,T ;L2(Γε)) + ‖ε1/2wn‖L∞(0,T ;L2(Γε)) ≤ C.

Exploiting this last inequality along with (27), one obtains

∥∥√εvn∥∥L∞(0,T ;L2(Γε))
+
∑
j=i,e

∥∥∥√δn√εūj,n∥∥∥
L∞(0,T ;L2(Γε))

(28)

+
∑
j=i,e

∥∥∥√δnuj,n∥∥∥
L∞(0,T ;L2(Ωj,ε))

+
∥∥√εwn∥∥L∞(0,T ;L2(Γε))

≤ C,

‖εĨ1,ion(vn)vn‖L1(Γε,T ) +
∑
j=i,e

‖∇uj,n‖L2(Ωj,ε,T ) ≤ C, (29)

‖ε1/rvn‖Lr(Γε,T ) ≤ C, (30)

‖
√
εvn‖L2(Γε,T ) + ‖

√
εwn‖L2(Γε,T ) ≤ C, (31)

for some constant C > 0 not depending on n and ε. Moreover, one can obtain some uniform
estimates on the time derivatives as follows. Substitute ϕi,n = ∂tui,n and ϕe,n = ∂tue,n in (25),
and integrate in time to deduce

ε

∫∫
Γε,T

|∂tvn|2 ds(x) dt+
∑
j=i,e

∫∫
Γε,T

δnε(∂tūj,n)2 ds(x) dt+
∑
j=i,e

∫∫
Ωj,ε,T

δn(∂tuj,n)2 dx dt

+
∑
j=i,e

∫∫
Ωj,ε,T

Mj,ε(x)∇uj,n · ∇(∂tuj,n) dx dt+ ε

∫∫
Γε,T

I1,ion(vn)∂tvn ds(x) dt

+ ε

∫∫
Γε,T

I2,ion(wn)∂tvn ds(x) dt = ε

∫∫
Γε,T

Iapp,ε∂tvn ds(x) dt.

(32)

Now, set PMj,ε
(s) =

1

2

∫
Ωj,ε

Mj,ε∇uj,n · ∇uj,n dx and I1(s) =

∫ s

0
I1,ion(v)dv. Observe that

∫∫
Ωj,ε,T

Mj∇uj,n · ∇(∂tuj,n) dx dt =

∫ T

0
∂t

(
PMj,ε

)
dt = PMj,ε

(T )− PMj,ε
(0),

and

∫∫
Γε,T

I1,ion(vn)∂tvn ds(x) dt =

∫ T

0
∂t

(∫
Γε

I1(vn)ds(x)
)
dt

=

∫
Γε

I1(vn(T, y)) ds(x)−
∫

Γε

I1(vn(0, y)) ds(x).
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Using this and Young’s inequality, one gets from (32)

ε

∫∫
Γε,T

|∂tvn|2 ds(x) dt+
∑
j=i,e

∫∫
Γε,T

δnε(∂tūj,n)2 ds(x) dt+
∑
j=i,e

∫∫
Ωj,ε,T

δn(∂tuj,n)2 dx dt

+
∑
j=i,e

PMj,ε
(T ) + ε

∫
Γε

I1(vn(T, y)) ds(x)

≤ −ε
∫∫

Γε,T

I2,ion(wn)∂tvn ds(x) dt+ PMj,ε
(0) +

∫
Γε

I1(vn(0, y)) ds(x)

+ ε

∫∫
Γε,T

Iapp,ε∂tvn ds(x) dt

≤ ε

2

∫∫
Γε,T

|∂tvn|2 ds(x) dt+ Cε

∫∫
Γε,T

|wn|2 ds(x) dt+ PMj,ε
(0)

+ ε

∫
Γε

I1(vn(0, y)) ds(x) + C

∫
Γε,T

|Iapp,ε|2 ds(x) dt,

(33)

for some constant C > 0 not depending on ε and δn (recall that 0 < ε ≤ 1).Note that by the

monotonicity of Ĩ1,ion (see (6)), one can obtain

ε

∫
Γε

I1(vn(T, y)) +
L

2
|vn(T, y)|2 + lvn(T, y) ds(x) ≥ 0.

Finally, use∑
j=i,e

|PMj,ε
(0)|+ ε

∫
Γε

I1(vn(0, y)) ds(x)

≤ C
∑
j=i,e

∫
Ωj,ε

|∇uj,n(0, x)|2 dx+ ε

∫
Γε

|vn(0, y)|r ds(x),

(for some constant C > 0) and estimates (28) and (29) to get from (33)

ε

∫∫
Γε,T

|∂tvn|2 ds(x) dt+
∑
j=i,e

∫∫
Γε,T

δnε(∂tūj,n)2 ds(x) dt+
∑
j=i,e

∫∫
Ωj,ε,T

δn(∂tuj,n)2 dx dt ≤ C,

(34)

for some constant C > 0. Hence, one has the estimate
√
ε ‖∂tvn‖L2(0,T ;L2(Γε))

+
∑
i,e

√
δn
√
ε ‖∂tūj,n‖L2(0,T ;L2(Γε))

≤ C, (35)

for some constant C > 0 not depending on n. Also, exploiting the structure of (26) along
with estimate (31), one obtains ∥∥√ε∂twn∥∥L2(Γε,T )

≤ C, (36)

for some constant C > 0 independent of n.
The above estimates are not sufficient since estimates on the L2 norms of the intracellular
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and extracellular potentials are needed in Ωi,ε and Ωe,ε respectively. Due to the compatibility
condition (11), an application of Poincaré’s inequality (see for instance [14]) implies that

‖ue,n‖L2(0,T ;H1(Ωe,ε)) ≤ C. (37)

Furthermore, making use of the trace inequality as stated in [2], one has

ε‖ūe,n‖2L2(Γε,T ) ≤ C(‖ue,n‖2L2(Ωe,ε,T ) + ε‖∇ue,n‖2L2(Ωe,ε,T )),

and consequently

ε‖ūe,n‖2L2(Γε,T ) ≤ C. (38)

Moreover, having ε‖vn‖2L2(Γε,T ) ≤ C, there holds

ε‖ūi,n‖2L2(Γε,T ) ≤ C. (39)

Finally, making use of this last inequality, of (29) and of Lemma C.2 in [5], one gets

‖ui,n‖2L2(Ωi,ε)
≤ Cε‖ūi,n‖2L2(Γε)

+ Cε2‖∇ui,n‖2L2(Ωi,ε)
≤ C.

Therefore, the following estimate holds

‖ui,n‖L2(0,T ;H1(Ωi,ε)) ≤ C. (40)

The next step is to show that the local solution constructed above can be extended to the
whole time interval [0, T ) (independent of n) but this can be done using the above estimates
as in Ref. [9], so we omit the details.

Step 4: Passage to the limit and existence of solutions
From (40) and (37), it is easy to see that vn, ūj,n are bounded in L2(0, T ;H1/2(Γε)) for
j = i, e. This is a consequence of the fact that the trace of a function in H1 is a function
in H1/2 and of the continuity of the trace map. Moreover, we deduce from (31), (38) and
(39) the uniform bound on vn + (−1)j

√
δnūj,n in L2(Γε,T ) for j = i, e. Recall that by the

Aubin-Lions compactness criterion, the injection

W = {u ∈ L2(0, T ;H1/2(Γε)) and ∂tu ∈ L2(0, T ;H−1/2(Γε))} ⊂ L2(Γε,T ))

is compact. Therefore, we can assume there exist limit functions ui,ε, ue,ε, vε, wε with vε =
(ui,ε − ue,ε) |Γε := ūi,ε − ūe,ε on Γε,T such that as n→∞ (for fixed ε and up to an unlabeled
subsequence)

vn + (−1)j
√
δnūj,n → vε a.e. in Γε,T , strongly in L2(Γε,T ),

and weakly in L2(0, T ;H1/2(Γε)) for j = i, e,

uj,n ⇀ uj,ε weakly in L2(0, T ;H1(Ωj,ε)) for j = i, e,

vn → vε a.e. in Γε,T , strongly in L2(Γε,T ),

wn → wε a.e. in Γε,T , strongly in L2(Γε,T ),

I1,ion(vn)→ I1,ion(vε) a.e. in Γε,T and weakly in Lr/(r−1)(Γε,T ),

∂tvn ⇀ ∂tvε weakly in L2(Γε,T ) and δn∂tūj,n ⇀ 0 in D′(0, T ;L2(Γε)) for j = i, e,

∂twn ⇀ ∂twε weakly in L2(Γε,T ),

δn∂tuj,n ⇀ 0 in D′(0, T ;L2(Ωj,ε)) for j = i, e.

(41)
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Keeping in mind (41), (28) and (35) we infer, by letting n→∞ in (18), (19) and (20),

ε

∫
Γε

∂tvεϕds(x) +
∑
i,e

∫
Ωj,ε

M ε
j (x)∇uj,ε · ∇ϕj dx

+ ε

∫
Γε

Iion(vε, wε)ϕds(x) = ε

∫
Γε

Iapp,εϕds(x),

(42)

∫
Γε

∂twεφds(x)−
∫

Γε

H(vε, wε)φds(x) = 0, (43)

for all ϕj ∈ H1(Ωj,ε), j = i, e, with ϕ := (ϕi − ϕe) |Γε∈ H1/2(Γε) ∩ Lr(Γε) and φ ∈ L2(Γε).

Step 5: Uniqueness.
Let (ui,ε,1, ue,ε,1, wε,1) and (ui,ε,2, ue,ε,2, wε,2) be two weak solutions satisfying (42)-(43),

with vε,k = (ui,ε,k−ue,ε,k) |Γε for k = 1, 2 and with “data” vε,0 = vε,0,1, wε,0 = wε,0,1 and vε,0 =
vε,0,2, wε,0 = wε,0,2 respectively. Note that the following equations hold for all test functions

ϕj ∈ L2(0, T ;H1(Ωj,ε)), j = i, e, with ϕ := (ϕi − ϕe) |Γε∈ L2(0, T ;H1/2(Γε)) ∩ Lr(Γε,T ) and
φ ∈ L2(Γε,T ):∫∫

Γε,t

ε∂t(vε,1 − vε,2)ϕds(x) ds+
∑
i,e

∫∫
Ω(j,ε,t)

Mj,ε(x)∇(uj,ε,1 − uj,ε,2) · ∇ϕj dx ds

+

∫∫
Γε,t

ε(Iion(vε,1, wε,1)− Iion(vε,2, wε,2))ϕds(x) ds = 0,∫∫
Γε,t

∂t(wε,1 − wε,2)φds(x) ds−
∫∫

Γε,t

(H(vε,1, wε,1)−H(vε,2, wε,2))φds(x) ds = 0,

for 0 < t ≤ T . Substituting ϕj = (uj,ε,1 − uj,ε,2) and φ = wε,1 − wε,2 in the two equations
above, then adding the resulting ones, we arrive at

1

2

∫
Γε

(
ε |(vε,1 − vε,2)(t)|2 + |(wε,1 − wε,2)(t)|2

)
ds(x)− 1

2

∫
Γε

(
ε|vε,1,0 − vε,2,0|2 + |wε,1,0 − wε,2,0|2

)
ds(x)

+
∑
j=i,e

∫ t

0

∫
Ωj,ε

Mj,ε∇(uj,ε,1 − uj,ε,2) · ∇(uj,ε,1 − uj,ε,2) dx ds

+

∫ t

0

∫
Γε

ε(Iion(vε,1, wε,1)− Iion(vε,2, wε,2))(vε,1 − vε,2) ds(x) ds

=

∫ t

0

∫
Γε

(H(vε,1, wε,1)−H(vε,2, wε,2))(wε,1 − wε,2) ds(x) dt.

Now using (4), one has for j = i, e∫ t

0

∫
Ωj,ε

Mj,ε∇(uj,ε,1 − uj,ε,2) · ∇(uj,ε,1 − uj,ε,2) dx ds ≥ 0.

Also, by (6) there holds∫ t

0

∫
Γε

ε(I1,ion(vε,1)− I1,ion(vε,2))(vε,1 − vε,2) ds(x) dt ≥ −Lε
∫ t

0

∫
Γε

(vε,1 − vε,2)2 ds(x) dt.
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Moreover, exploiting the linearity of H(v, w) and I2,ion(w), and using Young’s inequality
one can deduce

1

2

∫
Γε

(
ε |(vε,1 − vε,2)(t)|2 + |(wε,1 − wε,2)(t)|2

)
ds(x)

≤ C

( t∫
0

∫
Γε

(
ε |vε,1 − vε,2|2 + |wε,1 − wε,2|2

)
ds(x) ds

+
1

2

∫
Γε

(
ε|vε,1,0 − vε,2,0|2 + |wε,1,0 − wε,2,0|2

))
ds(x),

for some constant C > 0. Finally, an application of Gronwall’s inequality yields∫
Γε

(
ε |(vε,1 − vε,2)(t)|2+|(wε,1 − wε,2)(t)|2

)
ds(x) ≤ C

∫
Γε

(
ε|vε,1,0 − vε,2,0|2+|wε,1,0 − wε,2,0|2

)
ds(x).

for some constant C > 0. This completes the uniqueness proof. �

4. Convergence of solutions to the macroscopic problem

This section consists in preparing the ground for the passage to the limit as ε→ 0. First,
some a priori estimates are obtained on the solutions of the microscopic problem. Then, the
unfolding operator for perforated domains and the boundary unfolding operator are intro-
duced and some of their properties are recalled. Finally, the microscopic problem is written
in an equivalent formulation, the so called “unfolded” formulation, making use of the unfolding
operators.

4.1. Energy estimates for the microscopic solutions. The following estimates follow
from the estimates on the Faedo-Galerkin solutions obtained in the previous section.

Lemma 4.1. Assume that conditions (E.1),...,(E.1) and (1) and (2) hold. Then there exist
constants c1, c2, c3, c4 > 0, not depending on ε such that∥∥√εvε∥∥L∞(0,T ;L2(Γε))

+
∥∥√εwε∥∥L∞(0,T ;L2(Γε))

≤ c1, (44)

∑
j=i,e

‖uj,ε‖L2(0,T ;H1(Ωj,ε))
≤ c2 (45)

∥∥∥ε1/rvε

∥∥∥
Lr(Γε,T )

≤ c3 and ‖ε(r−1)/rI1,ion(vε)‖Lr/(r−1)(Γε,T ) ≤ c4. (46)

If vε,0 ∈ H1/2(Γε) ∩ Lr(Γε), then there exists a constant c5 > 0 not depending on ε such that∥∥√ε∂tvε∥∥L2(Γε,T )
≤ c5. (47)
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Figure 2. The set Ω̂e
ε in dark red, the set Ω̂i

ε in dark blue and the region Λε
in dark green and light blue.

4.2. Unfolded formulation of the microscopic problem. In this subsection, we view

the domains Ωj,ε, j = i, e as perforated domains and we define the unfolding operator T jε ,
j = i, e following the same notation as in [14]. First, we define the following sets in R3 (see
Figure 2):

Ξε = {` ∈ Zn, ε(`+ Y ) ⊂ Ω}, Ω̂ε = interior
{⋃

`∈Ξε
ε(`+ Ȳ )

}
,

Ω̂j
ε = interior

{⋃
`∈Ξε

ε(`+ Ȳj)
}
, j = i, e Ω̂ε,T = (0, T )× Ω̂ε,

Ω̂j
ε,T = (0, T )× Ω̂j

ε, Γ̂ε := {y ∈ Γε : y ∈ Ω̂ε},
Λε = Ω \ Ω̂ε, Λε,T = (0, T )× Ω \ Ω̂ε.

Secondly, we recall the definition of the time dependent unfolding operator in perforated
domains.

Definition 4.1. For any function φ Lebesgue-measurable on (0, T ) × Ωj,ε, the unfolding
operator is defined by

T jε (φ)(t, x, y) =

{
φ
(
t, ε
[x
ε

]
Y

+ εy
)

a.e. for (t, x, y) ∈ Ω̂ε,T × Yj
0 a.e. for (t, x, y) ∈ (0, T )× Ω \ Ω̂ε × Yj ,

(48)

where [·] denotes the Gauβ-bracket. Observe that the function ε[xε ] represents the lattice
translation point of the ε-cellular medium containing x. For the sake of completeness, we
recall some properties of the aforementioned operator and we refer the reader to [17, 14] for
details.

Proposition 4.2. For p ∈ [1,∞), the operator T jε is linear and continuous from Lp((0, T )×
Ωj,ε) to Lp(ΩT ×Yj). For every φ ∈ L1((0, T )×Ωj,ε) and v, w ∈ Lp((0, T )×Ωj,ε), there holds
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(1) T jε (vw) = T jε (v)T jε (w),

(2)

∫
Ω×Yj

T jε (φ)(t, x, y) dx dy =

∫
Ω̂j,ε

φ(t, x) dx,

(3) ‖T jε (w)‖Lp(Ω×Yj) = ‖w1
Ω̂jε
‖Lp(Ωj,ε) ≤ ‖w‖Lp(Ωj,ε).

Furthermore, since the dynamic equations are defined on the surface Γε, we resort to the
use of the boundary unfolding operator, developed in [17, 14] and defined as follows (recall
that Γε,T = (0, T )× Γε):

T bε : L2(Γε,T )→ L2(ΩT × Γ)

such that

T bε u(t, x, y) =

{
u(t, ε([xε ] + y)), a.e. for (t, x, y) ∈ Ω̂ε,T × Γ,

0, a.e. for (t, x, y) ∈ (0, T )× Ω \ Ω̂ε × Γ.
(49)

We also list herein some properties of the boundary unfolding operator as given in [14].

Proposition 4.3. The boundary unfolding operator has the following properties:

(1) T bε is a linear operator.
(2) T bε (φψ) = T bε (φ)T bε (ψ), ∀φ, ψ ∈ Lp(Γε,T ), p ∈ (1,+∞).
(3) For every φ ∈ L1(Γε,T ), we have the following integration formula∫

Γ̂ε

φ(t, x) ds(x) =
1

ε

∫
Ω×Γ
T bε (φ)(t, x, y) dx ds(y).

(4) For every φ ∈ Lp(Γ̂ε,T ) with p ∈ (1,+∞), one has

‖T bε (φ)‖Lp(ΩT×Γ) = ε1/p‖φ‖Lp((0,T )×Γ̂ε)
.

(5) For every ϕ ∈ D(ΩT × Γ) and w ∈ W 1,1(0, T ;L1(Γε)), the following integration by
parts formula holds∫ T

0

∫∫
Ω×Γ
T bε (∂tw)T bε (ϕ) ds(y) dx dt = −

∫ T

0

∫∫
Ω×Γ
T bε (w)T bε (∂tϕ) ds(y) dx dt.

Remark 4.1. Note that the last property (which is not listed in [14]) is a direct consequence
of the integration by parts formula:∫ T

0

∫
Γε

∂twϕds(x) dt = −
∫ T

0

∫
Γε

w∂tϕds(x) dt,

and the integration formula in property (3) of Proposition 4.3.

Now, in order to make use of the unfolding method in the homogenization of the microscopic
problem, we rewrite the corresponding equations (42) and (43) in the “unfolded” form. We
have the following identities:∫∫

Ωj,ε,T

Mj,ε∇uj,ε · ∇ϕj dx dt =

∫∫∫
ΩT×Yj

T jε (Mj,ε)T jε (∇uj,ε)T jε (∇ϕj) dx dy dt

+

∫∫
(0,T )×Λjε

Mj,ε∇uj,ε · ∇ϕj dx dy dt

:=

∫∫∫
ΩT×Yj

T jε (Mj,ε)T jε (∇uj,ε)T jε (∇ϕj) dx dy dt+ r1,
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Γε,T

εIapp,εϕds(x) dt =

∫∫
Γ̂ε,T

εIapp,εϕds(x) dt+

∫∫
Γε,T∩Λε,T

εIapp,εϕds(x) dt

=

∫∫∫
ΩT×Γ

T bε (Iapp,ε)T bε (ϕ) ds(y) dx dt+

∫∫
Γε,T∩Λε,T

εIapp,εϕds(x) dt

:=

∫∫∫
ΩT×Γ

T bε (Iapp,ε)T bε (ϕ) ds(y) dx dt+ r2,∫∫
Γε,T

ε∂tvεϕds(x) dt =

∫∫
Γ̂ε,T

ε∂tvεϕds(x) dt+

∫∫
Γε,T∩Λε,T

ε∂tvεϕds(x) dt

:=

∫∫∫
ΩT×Γ

T bε (∂tvε)T bε (ϕ) ds(y) dx dt+ r3,∫∫
Γε,T

εI1,ion(vε)ϕds(x) dt =

∫∫
Γ̂ε,T

εI1,ion(vε)ϕds(x) dt+

∫∫
Γε,T∩Λε,T

εI1,ion(vε)ϕds(x) dt

:=

∫∫∫
ΩT×Γ

T bε
(
I1,ion(vε)

)
T bε (ϕ) ds(y) dx dt+ r4,∫∫

Γε,T

εI2,ion(wε)ϕds(x) dt =

∫∫
Γ̂ε,T

εI2,ion(wε)ϕds(x) dt+

∫∫
Γε,T∩Λε,T

εI2,ion(wε)ϕds(x) dt

:=

∫∫∫
ΩT×Γ

T bε (I2,ion(wε))T bε (ϕ) ds(y) dx dt+ r5

=

∫∫∫
ΩT×Γ

I2,ion(T bε (wε))T bε (ϕ) ds(y) dx dt+ r5

Due to the above equalities, one obtains the following equivalent “unfolded” formulation of
(42):∫∫∫

ΩT×Γ
T bε (∂tvε)T bε (ϕ) ds(y) dx dt+

∑
i,e

∫∫∫
ΩT×Yj

T jε (Mj,ε)T jε (∇uj,ε)T jε (∇ϕj) dx dy dt

−λ
∫∫∫

ΩT×Γ
T bε (wε)T bε (ϕ) ds(y) dx dt+

∫∫∫
ΩT×Γ

T bε
(
I1,ion(vε)

)
T bε (ϕ) ds(y) dx dt

=

∫∫∫
ΩT×Γ

T bε (Iapp,ε)T bε (ϕ) ds(y) dx dt+ r2 − r5 − r4 − r3 − r1.

(50)
Similarly, the “unfolded” formulation of (43) is given by:∫∫∫

ΩT×Γ
T bε (∂twε)T bε (φ) ds(y) dx dt−

∫∫∫
ΩT×Γ

H(T bε (vε), T bε (wε))T bε (φ) ds(y) dx dt

= −ε
∫∫

Γε,T∩Λε,T

∂twεφds(x) dt+ ε

∫∫
Γε,T∩Λε,T

H(vε, wε)φds(x) dt

:= r6 + r7.

(51)

5. “Unfolding” compactness

In this section, we establish the passage to the limit in (50) and (51). First, note that by
estimates (44)-(47) obtained above one has

r1, · · · , r7 → 0 as ε→ 0.

Also, by regularity of the test functions ϕ and φ, there holds

T bε ϕ→ ϕ and T bε φ→ φ strongly in L2(ΩT × Γ),
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and

T jε ϕj → ϕj strongly in L2(ΩT × Yj).

Now, consider Ψj and θj in D(ΩT ) and ψj = ψj(ξ) in H1
per(Yj) such that

∫
Yj
ψj = 0 and test

equation (50) with functions ϕεj = Ψj + εθjψj,ε where ψj,ε(x) = ψ(xε ) (see for e.g. [14]). Since

∇ϕεj = ∇xΨj + εψj,ε∇xθj + θj(∇ξψj,ε),

and thanks to Proposition 2.8 in [14] (see also [26]), there holds

T jε (ϕεj)→ Ψj strongly in L2(ΩT × Yj),
T jε (θjψj,ε)→ θj(x)ψj(ξ) strongly in L2(ΩT × Yj),
T jε (∇ϕεj)→ ∇Ψj + θj∇ξψj strongly in L2(ΩT × Yj),
and T bε (ϕε)→ Ψ strongly in L2(ΩT × Γ),

(52)

where ϕε = (ϕεi − ϕεe)|Γε,T and Ψ = (Ψi − Ψe)|ΩT×Γ. Hence, to establish the passage to the
limit in (50) and (51), we need to verify that the remaining terms of the equations are weakly
convergent.
Now, making use of estimate (29), there exist uj ∈ L2(0, T ;H1(Ω)) and ûj ∈ L2(0, T ;L2(Ω, H1

per(Yj)))
such that, up to a subsequence (see for instance theorem 3.12 in [14]), the following hold{

T jε (uεj) ⇀ uj weakly in L2(0, T ;L2(Ω, H1(Yj))),

T jε (∇uεj) ⇀ ∇uj +∇ξûj weakly in L2(ΩT × Yj).

Thus, since T jε (Mj,ε)→Mj a.e. in Ω× Yj , one obtains (recall the strong convergence (52))∑
i,e

∫∫∫
ΩT×Yj

T jε (Mj,ε)T jε (∇uεj)T jε (∇ϕj) dy dx dt

→
∑
i,e

∫∫∫
ΩT×Yj

Mj(∇uj +∇ξûj)(∇Ψj + θj∇ξψj(ξ)) dy dx dt as ε→ 0.

Furthermore, since

‖T bε (wε)‖L2(ΩT×Γ) ≤ |Y |1/2ε1/2‖wε‖L2(Γε,T ) ≤ C,

then up to a subsequence

T bε wε ⇀ w in L2(ΩT × Γ).

Consequently, by linearity of I2,ion,∫∫∫
ΩT×Γ

I2,ion(T bε (wε))T bε (ϕ) ds(y) dx dt→
∫∫∫

ΩT×Γ
I2,ion(w)Ψ ds(y) dx dt.

Similarly, exploiting assumption (9), one obtains∫∫∫
ΩT×Γ

T bε (Iapp,ε)T bε (ϕ) ds(y) dx dt→
∫∫∫

ΩT×Γ
IappΨ ds(y) dx dt.

In order to establish the convergence of T bε (∂tvε), first note that

‖T bε (∂tvε)‖L2(ΩT×Γ) ≤ |Y |1/2ε1/2‖∂tvε‖L2Γε,T ≤ C.
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So there exists h ∈ L2(ΩT × Γ) such that T bε (∂tvε) ⇀ h weakly in L2(ΩT × Γ). By a classical
argument, one can identify h to ∂tv Therefore,∫∫∫

ΩT×Γ
T bε (∂tvε)T bε (ϕε) ds(y) dx dt→

∫∫∫
ΩT×Γ

∂tvΨ ds(y) dx dt.

It remains to obtain the passage to the limit in the term containing the ionic function I1,ion.
Indeed due to the nonlinearity, it is difficult to pass to the limit in I1,ion on the microscopic
membrane surface and one needs to establish the passage to the limit in:

lim
ε→0

∫ T

0

∫
Ω

∫
Γ
I1,ion(T bε vε)T bε (ϕε)ds(y)dxdt.

By regularity of ϕε, we have

T bε ϕε → Ψ strongly in Lr((0, T )× Ω× Γ).

It remains to show the weak convergence of I1,ion(T bε vε) to I1,ion(v) in Lr/(r−1)(ΩT×Γ). There-

fore, we show the strong convergence of T bε vε to v in L2(ΩT × Γ). Then, by the properties
of I1,ion we actually obtain the strong convergence of I1,ion(T bε vε) to I1,ion(v) in Lq(ΩT × Γ)
for all q ∈ [1, r/(r − 1)). For this sake, we make use of Kolmogorov-Riesz-type compactness
criterion for the space Lp(Ω, B) that can be found as Corollary 2.5 in [23].

Proposition 5.1. Let Ω ⊂ Rn be an open and bounded set. Let p ∈ [1,∞), B be a Banach
space and F ⊂ Lp(Ω, B). Then F is relatively compact in Lp(Ω, B) iff

(i) for every measurable set C ⊂ Ω, the set {
∫
C f dx : f ∈ F} is relatively compact in B,

(ii) for all δ > 0 and z ∈ Rn and zi ≥ 0, i = 1, . . . , n, there holds

sup
f∈F
‖τzσf − f‖Lp(Ωzδ ,B) → 0, for z → 0,

where Ωz
δ := {x ∈ Ωδ : x+ z ∈ Ωδ} and Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ},

(iii) for δ > 0, there holds supf∈F
∫

Ω\Ωδ |f(x)|p dx→ 0 for δ → 0.

Fisrt, we prove an estimate on the space translates of the transmembrane potential vε that
is needed later to obtain an estimate on the space translate of T bε (vε). Now, we fix open sets
K and K ′ such that

K ⊂⊂ K ′ ⊂⊂ Ω,

and we let z ∈ R with

|z| < dist(K ′, ∂Ω).

We have the following lemma

Lemma 5.2. Let l ∈ Z3 and ε > 0 such that ε|l| ≤ |z|. Then the following estimate holds:

ε ‖vε(t, x+ εl)− vε(t, x)‖2L2(Γε,K) ≤ Cεl, (53)

where Γε,K = Γε ∩K and C is a positive constant.

For simplicity of notation, we use

τεlv(t, x) := v(t, x+ εl).
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Proof. In this proof, we consider ϕj ∈ H1(Ωj,ε) with suppϕj ⊂ K, for j = i, e. We use the
translations of ϕj , j = i, e i.e. ϕj(x− εl) as test functions in the variational formulation (15).
In the resulting equation, we make the substitution x 7→ x+εl, and we exploit the periodicity
of the domain to get

ε

∫
Γε∩K

∂t(τεlvε)(ϕi − ϕe) ds(x) +
∑
j=i,e

∫
Ωj,ε∩K

τεlMj,ε∇τεluj,ε · ∇ϕjdx (54)

+ε

∫
Γε∩K

Iion(τεlvε, τεlwε)(ϕi − ϕe) ds(x) =

∫
Γε∩K

τεlIapp,ε ϕds(x).

Noting that the last equality is valid for test functions with support in K ′, let η ∈ D(K ′)
be a cutoff function for K, with 0 ≤ η ≤ 1, η = 1 in K and zero outside K ′. We test the
variational equation for (τεluj,ε − uj,ε), j = i, e with

ϕj = η2(τεluj,ε − uj,ε), j = i, e,

we get

ε

2

d

dt

∫
Γε∩K′

η2(τεlvε − vε)2 ds(x) (55)

+
∑
j=i,e

∫
Ωj,ε∩K′

(
τεlMj,ε∇τεluj,ε −Mj,ε∇uj,ε

)
· ∇
(
η2(τεluj,ε − uj,ε)

)
dx

+ε

∫
Γε∩K′

η2
(
Iion(τεlvε, τεlwε)− Iion(vε, wε)

)
(τεlvε − vε) ds(x)

=

∫
Γε∩K′

(τεlIapp,ε − Iapp,ε)η
2(τεlvε − vε) ds(x).

First, we break up the second term in (55) as follows:∑
j=i,e

∫
Ωj,ε∩K′

(
τεlMj,ε∇τεluj,ε −Mj,ε∇uj,ε

)
· ∇
(
η2(τεluj,ε − uj,ε)

)
dx

=
∑
j=i,e

∫
Ωj,ε∩K′

η2
(
τεlMj,ε∇τεluj,ε −Mj,ε∇uj,ε

)
· ∇
(
τεluj,ε − uj,ε

)
dx

+
∑
j=i,e

∫
Ωj,ε∩K′

2η
(
τεlMj,ε∇τεluj,ε −Mj,ε∇uj,ε

)
·
(
τεluj,ε − uj,ε

)
∇ηdx

:= T1 + T2,

(56)

and we estimate T1 exploiting the ellipticity of Mj,ε given in (4):

T1 =
∑
j=i,e

∫
Ωj,ε∩K′

η2Mj,ε

(
∇τεluj,ε −∇uj,ε

)
· ∇
(
τεluj,ε − uj,ε

)
dx

+
∑
j=i,e

∫
Ωj,ε∩K′

η2
(
τεlMj,ε −Mj,ε

)
∇(τεluj,ε) ·

(
∇τεluj,ε −∇uj,ε

)
dx

≥ 0− C
∑
j=i,e

‖η2(τεlMj,ε −Mj,ε)‖L∞(Ωj,ε∩K′)‖∇uj,ε‖
2
L2(Ωj,ε∩K′)

≥ −ε|l|C
∑
j=i,e

‖∇uj,ε‖2L2(Ωj,ε∩K′).

(57)
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In the last inequality, we used the mean value theorem to obtain:

‖τεlMj,ε −Mj,ε‖L∞(Ωj,ε∩K′) ≤ ε|l|
∑
j=i,e

‖∇Mε
j‖L∞(Ωj,ε∩K′) ≤ ε|l|C,

for some constant C > 0. Moreover, by regularity of η, Cauchy-Schwarz and boundedness of
Mj,ε, we get the following estimate on T2:

|T2| ≤ Cε|l|
∑
j=i,e

‖uj,ε‖H1(Ωj,ε∩K′), (58)

for some constant C > 0. On the other hand, the third term of (55) may be divided into two
terms by making use of (8b) as follows:

ε

∫
Γε∩K′

η2
(
Iion(τεlvε, τεlwε)− Iion(vε, wε)

)
(τεlvε − vε) ds

= ε

∫
Γε∩K′

η2
(
I1,ion(τεlvε)− I1,ion(vε)

)
(τεlvε − vε) ds

+ε

∫
Γε∩K′

η2
(
I2,ion(τεlwε)− I2,ion(wε)

)
(τεlvε − vε) ds

:= T3 + T4.

(59)

By monotonicity (6), we estimate T3:

T3 ≥ −εL‖η(τεlvε − vε)‖2L2(Γε∩K′). (60)

In addition, using the definition of η and the linearity of I2,ion (5), Cauchy-Schwarz and
Young’s inequalities, T4 can be estimated by:

|T4| ≤ εC(‖τεlwε − wε‖2L2(Γε∩K′) + ‖η(τεlvε − vε)‖2L2(Γε∩K′)), (61)

for some constant C > 0. Furthermore, the source term in (55) satisfies the following inequal-
ity:∣∣∣ ∫

Γε∩K′
(τεlIapp,ε−Iapp,ε)η

2(τεlvε−vε) ds(x)
∣∣∣ ≤ Cε‖Iapp,ε‖L2(Γε)‖η(τεlvε−vε)‖L2(Γε∩K′). (62)

Gathering all these estimates, one obtains

ε
d

dt
‖η(τεlvε − vε)‖2L2(Γε∩K′) ≤ C1ε|l|+ C2ε

(
‖η(τεlwε − wε)‖2L2(Γε∩K′)

+‖η(τεlvε − vε)‖2L2(Γε∩K′)

)
.

(63)

By a similar argument, one can also obtain from (16),

ε
d

dt
‖η(τεlwε−wε)‖2L2(Γε∩K′) ≤ C3ε

(
‖η(τεlwε−wε)‖2L2(Γε∩K′)+‖η(τεlvε−vε)‖2L2(Γε∩K′)

)
. (64)

By Grönwall’s inequality applied to the sum of (63) and (64), we obtain

ε‖η(τεlvε − vε)‖2L2(Γε∩K′) + ε‖η(τεlwε − wε)‖2L2(Γε∩K′)

≤ eC4t
(
C1ε|l|t+ ε‖η(τεlv0,ε − v0,ε)‖2L2(Γε∩K′) + ε‖η(τεlw0,ε − w0,ε)‖2L2(Γε∩K′)

)
≤ C(T )

(
ε|l|+ ε‖τεlv0,ε − v0,ε‖2L2(Γε∩K′) + ε‖τεlw0,ε − w0,ε‖2L2(Γε∩K′)

)
.

Now using the assumption on v0,ε and w0,ε, one obtains

ε‖η(τεlvε − vε)‖2L2(Γε∩K′) + ε‖η(τεlwε − wε)‖2L2(Γε∩K′) ≤ Cε|l|
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Furthermore, noting that

‖η(τεlvε−vε)‖2L2(Γε∩K′)+‖η(τεlwε−wε)‖2L2(Γε∩K′) ≥ ‖τεlvε−vε‖
2
L2(Γε∩K)+‖τεlwε−wε‖

2
L2(Γε∩K),

one can conclude that (53) holds. �

Now, we state and prove the strong convergence of T bε (vε) to v.

Lemma 5.3. The following convergence holds:

T bε (vε)→ v strongly in L2(ΩT × Γ),

as ε→ 0. Moreover,

I1,ion(T bε vε)→ I1,ion(v) strongly in Lq(ΩT × Γ), for q ∈ [1, r/(r − 1)),

as ε→ 0

Proof. The proof of the lemma is similar to the proof of Theorem 14 in [24] but herein the
domain is not the union of scaled and translated reference cells.
The proof is based on Proposition 5.1.
Condition (iii) follows from estimate (46), since∫

Ω\Ωδ
|T bε (vε)|2 dx ≤ |Ω \ Ωδ|

r−2
r

(∫
Ω
|T bε (vε)|r dx

) 2
r ≤ C|Ω \ Ωδ|

r−2
r .

To prove condition (i), consider a measurable set A ⊂ Ω, and define

vεA(t, y) =

∫
A
T bε (vε)(t, x, y) dx, for a.e. t ∈ (0, T ), y ∈ Γ.

The a priori estimates obtained on vε imply that vεA is bounded in L2((0, T ), H1/2(Γ)) ∩H1((0, T ), L2(Γ)).
Then by Aubin-Lions Lemma, the sequence is relatively compact in L2((0, T ), L2(Γ)). Using
the properties of the unfolding operator (see Proposition 4.3) and estimate (44) one can easily
find a constant C > 0 such that ∫ T

0
‖vεA‖2L2(Γ) ≤ C.

By a similar argument and making use of the estimate on ε1/2∂tvε, one can also show that

‖∂tvεA‖L2(ΓT ) ≤ C,
for some positive constant C.
On the other hand, to obtain a uniform estimate on the L2(0, T ;H1/2(Γ)), we first observe
that

‖vεA‖2H1/2(Γ)
= ‖vεA‖2L2(Γ) + |vεA|2H1/2

0 (Γ)
.

Based on the previous estimates, we only need to bound the H
1/2
0 seminorm and this is done

as follows. First, we have by Cauchy-Schwarz and Fubini

|vεA|2H1/2
0 (Γ)

≤ |A|
∫

Ω̂ε

∫
Γ

∫
Γ

|vε(t, ε[xε ] + εy1)− vε(t, ε[xε ] + εy2)|2

|y1 − y2|3
ds(y1) ds(y2)dx.

We note that this is equivalent to writing:

|vεA|2H1/2
0 (Γ)

≤ |A|
∫

Ω̂ε

|vε(t, ε[
x

ε
] + ε·)|2

H
1/2
0 (Γ)

dx.
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Since vε = (ui,ε − ue,ε)
∣∣∣
Γ

and using the triangle inequality, we get

|vεA|2H1/2
0 (Γ)

≤ 2|A|
∑
j=i,e

∫
Ω̂ε

|uj,ε(t, ε[
x

ε
] + ε·)|2

H
1/2
0 (Γ)

dx.

Now, by the trace inequality which can be found in [2], we find a constant C > 0 such that

|vεA|2H1/2
0 (Γ)

≤ C|A|
∑
j=i,e

∫
Ω̂ε

(
‖uj,ε(t, ε[

x

ε
] + ε·)‖2L2(Yj)

+ ‖∇y(uj,ε(t, ε[
x

ε
] + ε·))‖2L2(Yj)

)
dx.

By the chain rule, we have

∇y
(
uj,ε(t, ε[

x

ε
] + εy)

)
= ε∇uj,ε

(
t, ε[

x

ε
] + εy

)
.

So ∫
Ω̂ε

‖∇y(uj,ε(t, ε[
x

ε
] + εy))‖2L2(Yj)

dx =

∫
Ω̂ε

‖ε∇uj,ε(t, ε[
x

ε
] + εy)‖2L2(Yj)

dx,

or equivalently∫
Ω̂ε

‖∇y(uj,ε(t, ε[
x

ε
] + εy))‖2L2(Yj)

dx = ε2

∫
Ω̂ε

∫
Yj

(
∇uj,ε(t, ε[

x

ε
] + εy)

)2
dydx.

Now, using Proposition 4.2-(2), we get∫
Ω̂ε

‖∇y(uj,ε(t, ε[
x

ε
] + εy))‖2L2(Yj)

dx = ε2|Y |
∫

Ω̂j,ε

(
∇uj,ε

)2
dx = ε2|Y |‖∇uj,ε‖2L2(Ω̂j,ε)

.

One more time, we make use of Proposition 4.2-(2) to obtain:∫
Ω̂ε

∫
Yj

uj,ε

(
t, ε[

x

ε
] + εy

)
dy dx = |Y |

∫
Ω̂j,ε

uj,ε(t, x) dx,

and

|vεA|2H1/2
0 (Γ)

≤ C
∑
j=i,e

[
‖uj‖L2(Ω̂j,ε)

+ ε2‖∇uj,ε‖2L2(Ω̂j,ε)

]
.

Finally, integrating over (0, T ) and using the a priori estimates (29) on uj,ε, we obtain the
required result.
It remains to prove condition (ii) of Proposition 5.1 as follows.
Fix ε > 0 and let I ⊂ Z3, be an index set such that

Ω̂ε =
⋃
i∈I

ε(Y + i).

Obviously, we have x ∈ ε(Y + i) ⇔ [xε ] = i. For every i ∈ I we divide the cell ε(Y + i) into

subsets ε(Y + i)k with k ∈ {0, 1}3, defined as follows

ε(Y + i)k :=
{
x ∈ ε(Y + i) : ε

[x+ { ξε}ε
ε

]
= ε(i+ k)

}
,

for a given ξ ∈ R3 such that ξ is O(ε). Then we have the following identity:

ε(Y + i) =
⋃

k∈{0,1}3
ε(Y + i)k.
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Now, we compute

‖τξT bε (vε)− T bε (vε)‖2
L2((0,T )×Ωξδ×Γ)

= ‖τξT bε (vε)− T bε (vε)‖2
L2((0,T )×(Ωξδ∩Ω̂ε)×Γ)

+‖τξT bε (vε)− T bε (vε)‖2
L2((0,T )×(Ωξδ∩Ω̂cε)×Γ)

≤ E1,ξ,ε + E2,ξ,ε,

where

E1,ξ,ε := ‖τξT bε (vε)− T bε (vε)‖2
L2((0,T )×Ω̂ε×Γ)

,

and

E2,ξ,ε := ‖τξT bε (vε)− T bε (vε)‖2
L2((0,T )×(Ωξδ\Ω̂ε)×Γ)

= ‖τξT bε (vε)‖2
L2((0,T )×(Ωξδ\Ω̂ε)×Γ)

.

We first estimate E1,ξ,ε, making use of the fact that Ω̂ε =
⋃
i∈I ε(Y + i), and proceeding in a

similar way to [20, 33] as follows:

E1,ξ,ε =
∑
i∈I

∫ T

0

∫
ε(Y+i)

∫
Γ

∣∣∣vε(t, ε[x+ ξ

ε

]
+ εy

)
− vε

(
t, ε
[x
ε

]
+ εy

)∣∣∣2 ds(y) dx dt

=
∑
i∈I

∑
k∈{0,1}3

∫ T

0

∫
ε(Y+i)k

∫
Γ

∣∣∣vε(t, ε(i+ k +
[ξ
ε

])
+ εy

)
− vε(t, εi+ εy)

∣∣∣2 ds(y) dx dt

≤
∑
i∈I

∑
k∈{0,1}3

∫ T

0

∫
ε(Y+i)

∫
Γ

∣∣∣vε(t, ε(i+ k +
[ξ
ε

])
+ εy

)
− vε(t, εi+ εy)

∣∣∣2 ds(y) dx dt

≤
∑

k∈{0,1}3

∫ T

0

∫
Ω̂ε

∫
Γ

∣∣∣T bε vε(t, x+ ε
(
k +

[ξ
ε

])
, y
)
− T bε vε(t, x, y)

∣∣∣2 ds(y) dx dt

≤
∑

k∈{0,1}3
ε

∫ T

0

∫
Γε

∣∣∣vε(t, x+ ε
([ξ
ε

]
+ k
))
− vε(t, x)

∣∣∣2 ds(x) dt,

where in the last inequality we used the identity i =
[x
ε

]
and the integration formula of

Proposition 4.3-(3). Moreover, using estimate (53), we obtain

E1,ξ,ε ≤ C(|ξ|+ ε).

Therefore, one can conclude that E1,ξ,ε → 0 as ξ → 0 uniformly in ε, as in [24]. Indeed, to
prove that

∀ρ > 0, ∃µ > 0 such that ∀ε > 0,∀ξ, |ξ| ≤ µ⇒ E1 < ρ,

one identifies two cases:

(1) ε < ρ
2C : take µ = ρ

2C , then for ξ < µ, E1 < ρ.

(2) ρ
2C < ε: since ε−1 ∈ N and 1

ε <
2C
ρ ≤ [2C

ρ ] + 1, there are finitely many values ε such

that ε > ρ
2C , and for each such εi i = 1, · · · ,m, ∃µi such that ∀ξ, |ξ| < µi ⇒ E1 < ρ

by continuity of translation in L2. Take µ0 = min{µ, µ1, · · · , µm}. Then the estimate
follows.

Consider now E2,ξ,ε, and note that

E2,ξ,ε ≤ ‖τξT bε (vε)‖2
L2((0,T )×(Ωδ\Ω̂ε)×Γ)

.

Observe that, for ε small enough, say ε < ε0, Ωδ ⊂ Ω̂ε, so E2,ξ,ε = 0. On the other hand, for
ε0 < ε < 1, since ε−1 ∈ N, there exist finitely many ε ∈ (ε0, 1), say {εj}mj=1, m ∈ N, m <∞.
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Moreover, by continuity of the translation of L2 functions, for each ρ > 0 there exists for
every j, a β(εj) such that

E2,ξ,ε < ρ, ∀|ξ| < β(εj).

Let β = min{β(ε1), · · · , β(εm)}, then for all ρ > 0, |ξ| < β ⇒ E2,ξ,ε < ρ. Hence, E2,ξ,ε → 0
as ξ → 0, uniformly in ε. This ends the proof of (ii) in Proposition 5.1.
The following result is therefore obtained:

T bε (vε)→ v strongly in L2(ΩT × Γ),

as ε→ 0.
Finally, to prove the convergence of the nonlinear term in the ionic function, first note that
from the structure of I1,ion and using the properties of the boundary unfolding operator, there
holds

T bε (I1,ion(vε)) = I1,ion(T bε (vε)),

then using the estimate

‖ε(r−1)/rI1,ion(vε)‖Lr/(r−1)(Γε,T ) ≤ C,

one obtains

‖T bε (I1,ion(vε))‖Lr/(r−1)(ΩT×Γ) ≤ |Y |
(r−1)/r‖ε(r−1)/rI1,ion(vε)‖Lr/(r−1)(Γε,T ) ≤ C.

Hence, since up to a subsequence

T bε (vε)→ v a.e. in ΩT × Γ,

one gets, using the continuity of I1,ion and a classical result (see Lemma 1.3 in[30]),

I1,ion(T bε (vε)) ⇀ I1,ion(v) weakly in Lr/(r−1)(ΩT × Γ).

Moreover, using Vitali’s theorem, one has the strong convergence of I1,ion(T bε (vε)) to I1,ion(v)
in Lq(ΩT × Γ) for q ∈ [1, r/(r − 1)).

�

Collecting all the convergence results stated above, one obtains the following limiting prob-
lem:

|Γ|
∫∫

ΩT

∂tvΨ dx dt+
∑
i,e

∫∫∫
ΩT×Yj

Mj [∇uj +∇ξûj ][∇Ψj + θj∇ξψj ]

+|Γ|
∫∫

ΩT

I2,ion(w)Ψ dx dt+ |Γ|
∫∫

ΩT

I1,ion(v)Ψ dx dt

= |Γ|
∫∫

ΩT

IappΨ dx dt.

(65)

Similarly, one can easily show that the limit of (51) as ε tends to 0, is given by

|Γ|
∫∫

ΩT

∂twφdx dt− |Γ|
∫∫

ΩT

H(v, w)φdx dt = 0. (66)
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6. Macroscopic bidomain model (proof of Theorem 2.2)

The next step is to obtain the weak formulation of the bidomain equations and the cell
problem. So one needs to formulate the limit problem in terms of ui and ue alone and hence
find an expression of ûi and ûe in terms of ui, ue respectively. First, to determine the cell
problem, set in (65) Ψi,Ψe and θe to 0, to get∫∫∫

ΩT×Yi
Mi[∇ui +∇yûi][θi∇yψi] dy dx dt = 0,

which corresponds to the classical cell problem obtained in section 2 and it can be shown
that the function ûi can be written in terms of ui as follows (ûi is defined up to an additive
function in x, see for instance [14]):

ûi(t, x, y) = fi(t, x, y) · ∇xui + f0,i(t, x) =

3∑
k=1

∂ui
∂xk

fk,i(t, x, y) + f0,i(t, x), (67)

where the corrector functions (i.e. the components of the function fi) fk,i ∈ L∞(ΩT ;H1
per(Yi)),

k = 1, 2, 3, are for a.e. (t, x) ∈ ΩT the solutions of the cell problems
−∇y · (Mi∇yfk,i) = −∇y · (Miek) in Yi,
Mi∇yfk,i · µi = Miek · µi on Γ,∫
Yi

fk,i = 0, fk,i Y − periodic.
(68)

The existence and uniqueness of the correctors follow by classical arguments from Lax-
Milgram theorem (see for instance the remark on p. 13-14 of [11] or [35]). Finally, inserting
formula (67) into (65) and setting θi,Ψe and θe to 0, one obtains the weak formulation of the
macroscopic bidomain model

|Γ|
∫∫

ΩT

∂tvΨi dx dt+

∫∫
ΩT

Mi∇ui · ∇Ψi + |Γ|
∫∫

ΩT

I2,ion(w)Ψi dx dt

+|Γ|
∫∫

ΩT

I1,ion(v)Ψi dx dt = |Γ|
∫∫

ΩT

IappΨi dx dt,
(69)

where Mi is elliptic and defined by

Mi :=

∫
Yi

(
Mi + Mi∇yfi

)
.

Similarly, one can decouple the cell problem in the extracellular domain and define the ho-
mogenized conductivity matrix Me.

Remark 6.1. Since the convergence obtained herein is shown up to a subsequence, it is
required to prove uniqueness of the macroscopic problem to guarantee the convergence of the
whole sequence. Indeed, uniqueness of the macroscopic bidomain model has been obtained for
several ionic models, we refer for instance to [9, 12] for the case of phenomenological models
of FitzHugh-Nagumo type and to [41] for physiological models of Luo-Rudy type.
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7. Unfolding homogenization to physiological models

In this section, we extend the homogenization results obtained in the previous sections to
physiological ionic models. So the ordinary differential equation (1d) is replaced by a system
of ODEs for the gating variables wl, l = 1, · · · , k and the concentration variable z.
The kinetics of a general physiological ionic model may be represented by the functions R,
G and Iion that satisfy assumptions (A.1)-(A.3), stated below. It can be verified that those
assumptions are satisfied by several gating and ionic concentration variables in Beeler-Reuter
or Luo-Rudy ionic models [41, 8, 31].

(A.1) Define the function R as R(v,w) :=
(
R1(v, w1), ..., Rk(v, wk)

)
where Rl : R2 → R

are globally Lipschitz continuous functions given by

Rl(v,w) = αl(v)(1− wl)− βl(v)wl (70)

where αl and βl, l = 1, · · · , k are positive rational functions of exponentials in v such that:

0 < αl(v), βl(v) ≤ Cα,β(1 + |v|). (71)

(A.2) The function Iion : R× Rk × (0,+∞)→ R has the general form:

Iion(v,w, z) =
k∑
l=1

I lion(v, wl) + Izion(v,w, z, ln z) (72)

where I lion ∈ C0(R× Rk) ∩ Lip(R× [0, 1]k) and satisfies the condition:

|I lion(v, wl)| ≤ C1,I(1 + |wl|+ |v|), (73)

and Izion is such that:

Izion ∈ C1(R× Rk × R+ × R) ∩ Lip(R× [0, 1]k × R+ × R),

Izion(v,w, z, ln z) ≤ C2,I(1 + |v|+ |w|+ |z|+ ln z), (74)

Izion(v,w, z, ln z) ≥ C3,I

k∑
l=1

(|v|+ wl + wl ln z), (75)

0 < Θ(w) ≤ ∂

∂ζ
Izion(v,w, z, ζ) ≤ Θ̄(w), (76)∣∣∣∣∣ ∂∂v Izion(v,w, z, ζ)

∣∣∣∣∣ ≤ L(w), (77)

∂

∂wl
Izion ≤ C4,I(1 + |v|+ | ln z|), ∀l = 1, · · · , k, (78)

0 ≤ ∂

∂z
Izion ≤ C5,I , (79)

where Θ, Θ̄, L belong to C0(R,R+) and C1,I , . . . , C5,I are positive constants.

(A.3) The function G ∈ Lip(R× [0, 1]k × R+) is given by:

G(v,w, z) = a1(a2 − z)− a3I
z
ion(v,w, z, ln z), (80)
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where a1, a2, a3 are positive physiological constants that vary from one ion to another. In
our case, we only consider z to correspond to the intracellular calcium concentration.
Under those assumptions, the microscopic system that we consider is given by:

−div (Mj,ε∇uj,ε) = 0 in Ωj,ε,T := (0, T )× Ωj,ε, (81a)

ε(∂tvε + Iion(vε,wε, zε)− Iapp,ε) = Im on Γε,T := (0, T )× Γε, (81b)

Im = −Mi,ε∇ui,ε · µi = Me,ε∇ue,ε · µe on Γε,T , (81c)

∂twε −R(vε,wε) = 0 on Γε,T , (81d)

∂tzε −G(vε,wε, zε) = 0 on Γε,T . (81e)

We augment (81) with no-flux boundary conditions

(Mj,ε(x)∇uj,ε) · µj = 0 on (0, T )× (∂Ωj,ε \ Γε), j ∈ {e, i}, (82)

and appropriate initial conditions for the transmembrane potential, the gating variables and
the concentration variable

vε(0, ·) = v0,ε(·), wε(0, ·) = w0,ε(·), zε(0, ·) = z0,ε(·) on Γε, (83)

where v0,ε ∈ H1/2(Γε), z0,ε ∈ L2(Γε) and w0,ε ∈ L2(Γε)
k with z0,ε > c0 > 0 for some c0 > 0

and 0 ≤ wl,0,ε ≤ 1 for l = 1, · · · , k.
Analogously to the miscroscopic model with more general FitzHugh-Nagumo dynamics, one
has the following existence result.

Theorem 7.1. Suppose that assumptions (A.1)-(A.3) hold. If v0,ε ∈ H1/2(Γε), z0,ε ∈ L2(Γε)

and w0,ε ∈ L2(Γε)
k with z0,ε > c0 > 0 for some c0 > 0 and 0 ≤ wl,0,ε ≤ 1 for l = 1, · · · , k, then

the microscopic problem (81),(82),(83) possesses a weak solution defined as follows: ui,ε ∈
L2(0, T ;H1(Ωi,ε)), ue,ε ∈ L2(0, T ;H1(Ωe,ε)), with

∫
Ωe,ε∩Ω ue,ε = 0, vε = (ui,ε − ue,ε) |Γε∈

L2(Γε,T ), wε ∈ (L2(Γε,T ))k, zε ∈ L2(Γε,T ), ∂tvε, ∂tzε ∈ L2(Γε,T ), and ∂twε ∈ (L2(Γε,T )k

such that∫∫
Γε,T

ε∂tvεϕds(x) dt+
∑
j=i,e

∫∫
Ωj,ε,T

Mj,ε(x)∇uj,ε · ∇ϕj dx dt

+

∫∫
Γε,T

εIion(vε,wε, zε)ϕds(x) dt =

∫∫
Γε,T

εIapp,ε ϕds(x) dt,

(84)

∫∫
Γε,T

∂twl,εφds(x) dt−
∫∫

Γε,T

Rl(vε,wε)φds(x) dt = 0, (85)

for l = 1, · · · , k and∫∫
Γε,T

∂tzεφds(x) dt−
∫∫

Γε,T

G(vε,wε, zε)φds(x) dt = 0, (86)

for all ϕj ∈ L2(0, T ;H1(Ωj,ε)) with ϕ := (ϕi − ϕe) |Γε∈ L2(0, T ;H1/2(Γε)) for j = i, e and
φ ∈ L2(Γε,T ).

The proof of the theorem follows closely the steps done in the case above of more gen-
eral FitzHugh-Nagumo ionic function type. Using approximation systems and applying a
Faedo-Galerkin method in space, one can obtain the existence of a weak solution for the ap-
proximation systems (similarly to section 4) then by a passage to the limit, the existence for
the microscopic problem is obtained based on some technical results and a series of a priori
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estimates that are listed in the sequel but their detailed proofs are available in [10]. We also
refer to [42] where a fixed point approach was used. First, the recovery variables are shown
to satisfy the physiological bounds.

Lemma 7.2. Let wl,ε ∈ C([0, T ], L2(Γε)) and vε ∈ H1(0, T, L2(Γε)) such that for all ω ∈
L2(Γε): ∫

Γε

∂twl,ε ω =

∫
Γε

Rl(vε, wl,ε)ω, (87)

where R(v,w) is defined by (70). Assume that 0 ≤ wl,0,ε ≤ 1 a.e. in Γε, then

0 ≤ wl,ε ≤ 1, a.e. in Γε,T . (88)

Secondly, one has to make sure that the concentration variable stays positive.

Lemma 7.3. Let zε ∈ C([0, T ], L2(Γε)), vε ∈ H1(0, T, L2(Γε)) and wε ∈ C([0, T ], L2(Γε)
k)

such that for all ω ∈ L2(Γε): ∫
Γε

∂tzε ω =

∫
Γε

G(vε,wε, zε)ω, (89)

where G(v,w, z) satifies assumption (A.6) above. Let z0 : Ω→ (0,+∞) such that:

z0 ∈ L2(Γε), z0 > 0, a.e. in Γε.

Then for a.e. (t,x) ∈ [0, T ]× Γε, z > 0.

Thirdly, the concentration variable and its logarithm ln zε are proved to be controlled by
the norm of vε in the following sense.

Lemma 7.4. Under the same assumptions as Lemma 7.3, the concentration variable zε sat-
isfies the following estimates for a.e. x ∈ Γε, t ∈ (0, T ):

|zε(t,x)| ≤ C(1 + |z0,ε(x)|+ ‖vε(x)‖L2(0,t)), ∀t ∈ [0, T ], (90)

| ln zε(t,x)| ≤ C(1 + |z0,ε(x)|+ |vε(t,x)|+ ‖vε(x)‖L2(0,t)) (91)∫ t

0
|∂szε|2 ≤ C

(
1 + |z0,ε ln z0,ε|+ |z0,ε|2 + ‖vε‖2L2(0,t)

)
, (92)∫ t

0
|ln zε|2 ≤ C

(
1 + |z0,ε ln z0,ε|+ |z0,ε|2 + ‖vε‖2L2(0,t)

)
, (93)

Using the above estimates on zε and wε, one can control the L2 norm of Iion by the L2

norm of vε and this result will be later used to reach a uniform in ε estimate on vε.

Lemma 7.5. Under the same conditions of Lemma 7.4, there exists a constant C > 0 (de-
pendent on T ) such that

‖Iion(vε,wε, zε)‖2L2(Γε,T ) ≤ C(1 + ‖vε‖2L2(Γε,T )). (94)

Based on the previous Lemmata, and proceeding in a similar way as in Section 5, one can
easily obtain the following estimates on the solutions to the microscopic problem that are
required for the passage to the limit as ε→ 0 (the detailed derivation can be found in [10]).
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Lemma 7.6. There exist constants C1, C2 and C3 independent of ε such that

max
t∈[0,T ]

(
‖
√
εvε‖2L2(Γε)

+ ‖
√
εwε‖2L2(Γε)

+ ‖
√
εzε‖2L2(Γε)

)
≤ C1, (95)∑

j=i,e

‖uj,ε‖L2(0,T ;H1(Ωj,ε)) ≤ C2, (96)

‖
√
ε∂tvε‖L2(Γε,T ) + ‖

√
ε∂twε‖L2(Γε,T )k + ‖

√
ε∂tzε‖L2(Γε,T ) ≤ C3, (97)

In order to exploit the unfolding method, the weak formulation is written in its “unfolded”
form as in section 4.2 above. Equation (84) becomes:∫∫∫

ΩT×Γ
T bε (∂tvε)T bε (ϕ) ds(y) dx dt+

∑
i,e

∫∫∫
ΩT×Yj

T jε (Mε
j)T jε (∇uj,ε)T jε (∇ϕj) dy dx dt

+

∫∫∫
ΩT×Γ

T bε
(
Iion(vε,wε, zε)

)
T bε (ϕ) ds(y) dx dt

=

∫∫∫
ΩT×Γ

T bε (Iapp,ε)T bε (ϕ) ds(y) dx dt+ r10,

(98)
where r10 is considered as a remainder term which involves integrals over the region Λε whose
measure tends to zero as ε → 0. Similarly, the “unfolded” formulations of (85) and (86) are
given by:∫∫∫

ΩT×Γ
T bε (∂twl,ε)T bε (φ) ds(y) dx dt−

∫∫∫
ΩT×Γ

T bε (Rl(vε,wε))T bε (φ) ds(y) dx dt

= r11,
(99)

for l = 1, · · · , k and∫∫∫
ΩT×Γ

T bε (∂tzε)T bε (φ) ds(y) dx dt−
∫∫∫

ΩT×Γ
T bε (G(vε,wε, zε))T bε (φ) ds(y) dx dt

= r12,
(100)

where r11 and r12 are remainder terms that tend to zero as ε→ 0.
Now, making use of Lemma 7.6, one can repeat the arguments in section 5 to show that there
exist uj ∈ L2(0, T ;H1(Ω)) and ûj ∈ L2(0, T ;L2(Ω, H1

per(Yj))) such that, up to a subsequence,
the following hold {

T jε (uεj) ⇀ uj weakly in L2(0, T ;L2(Ω, H1(Yj))),

T jε (∇uεj) ⇀ ∇uj +∇yûj weakly in L2(ΩT × Yj).

Thus, one obtains∑
i,e

∫∫∫
ΩT×Yj

T jε (Mε
j)T jε (∇uεj)T jε (∇ϕj)

→
∑
i,e

∫∫∫
ΩT×Yj

Mj(∇uj +∇yûj)(∇Ψj + θj∇yψj(y)) as ε→ 0.

Furthermore, one can also show that

‖T bε (vε)‖L2(ΩT×Γ) + ‖T bε (wε)‖L2(ΩT×Γ)k + ‖T bε (zε)‖L2(ΩT×Γ) ≤ C,
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then up to a subsequence

T bε vε ⇀ v in L2(ΩT × Γ),
T bε wε ⇀ w in L2(ΩT × Γ)k,
T bε zε ⇀ z in L2(ΩT × Γ).

Also, note that due to the a priori estimates on the time derivatives (Lemma 7.6), there exists
a constant C > 0 such that

‖T bε (∂tvε)‖L2(ΩT×Γ) + ‖T bε (∂twε)‖L2(ΩT×Γ)k + ‖T bε (∂tzε)‖L2(ΩT×Γ) ≤ C,

consequently one can show as in section 5, that

T bε (∂tvε) ⇀ ∂tv, in L2(ΩT × Γ),
T bε (∂twε) ⇀ ∂tw in L2(ΩT × Γ)k,
T bε (∂tzε) ⇀ ∂tz in L2(ΩT × Γ).

Similarly, exploiting assumption (9) on the source term Iapp,ε, one obtains∫∫∫
ΩT×Γ

T bε (Iapp,ε)T bε (ϕ) ds(y) dx dt→
∫∫∫

ΩT×Γ
IappΨ ds(y) dx dt.

It remains to establish the passage to the limit in the nonlinear terms involving the ionic
function Iion and the functions R and G appearing in the ODE system. Indeed, making use
of assumptions (A.1)-(A.3), of Lemma 7.5 and of Lemma 7.6, there exists a constant C > 0
such that∥∥∥ε1/2Iion(vε,wε, zε)

∥∥∥
L2(Γε,T )

+
∥∥∥ε1/2R(vε,wε)

∥∥∥
L2(Γε,T )k

+
∥∥∥ε1/2G(vε,wε, zε)

∥∥∥
L2(Γε,T )

≤ C.

Consequently,∥∥∥T bε (Iion(vε,wε, zε)
)∥∥∥

L2(ΩT×Γ)
+
∥∥∥T bε (R(vε,wε)

)∥∥∥
L2(ΩT×Γ)k

+
∥∥∥T bε (G(vε,wε, zε)

)∥∥∥
L2(ΩT×Γ)

≤ C.

Moreover, based on definition 49 of the boundary unfolding operator, one can do the following
identifications for a.e. (t, x, y) ∈ Ω̂ε,T × Γ:

T bε
(
Iion(vε,wε, zε)

)
= Iion

(
T bε (vε), T bε (wε), T bε (zε)

)
,

T bε
(
R(vε,wε)

)
= R(T bε (vε), T bε (wε)

)
,

and T bε
(
G(vε,wε, zε)

)
= G

(
T bε (vε), T bε (wε), T bε (zε)

)
.

Hence, there exist functions Ĩion, R̃ and G̃ such that up to a subsequence, the following
convergences hold

Iion

(
T bε (vε), T bε (wε), T bε (zε)

)
⇀ Ĩion, in L2(ΩT × Γ),

R
(
T bε (vε), T bε (wε)

)
⇀ R̃, in L2(ΩT × Γ)k,

and G
(
T bε (vε), T bε (wε), T bε (zε)

)
⇀ G̃, in L2(ΩT × Γ).

Therefore, to end the passage to the limit, it remains to relate the functions Ĩion, R̃, and G̃
to Iion(v,w, z), R(v,w) and G(v,w, z) where v, w and z are the respective limits of T bε (vε),
T bε (wε) and T bε (zε). This is done in the following proposition.
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Remark 7.1. One possibility is to proceed analogously to Section 6 and prove the strong
convergence of T bε (vε), T bε (wε) and T bε (zε). This can be done exactly as in Section 6 for
T bε (vε). However, it seems out of reach to prove the strong convergence of T bε (wε) and T bε (zε)
by a similar argument.

Proposition 7.7. Suppose that assumptions (A.1)-(A.3) are satisfied and let vε, uj,ε, j =
i, e, wε and zε be weak solutions of the microscopic system (84)-(86) as given in Theorem
7.1. Then there holds 

Ĩion = Iion(v,w, z),

R̃ = R(v,w)

G̃ = G(v,w, z),

where v, w, z, Ĩion, R̃ and G̃ are the limits of T bε (vε), T bε (wε), T bε (zε), T bε
(
Iion(vε,wε, zε)

)
,

T bε
(
R(vε,wε)

)
and T bε

(
G(vε,wε, zε)

)
respectively.

Proof. Due to assumptions (A.1)- (A.3), in particular the Lipschitz conditions, one can prove
that there exists KI > 0 such that

(Iion(v1,w1, z1)− Iion(v2,w2, z2))(v1 − v2)− (R(v1,w1)−R(v2,w2)) · (w1 −w2)
−((G(v1,w1, z1)−G(v2,w2, z2))(z1 − z2) ≥ −KI(|v1 − v2|2 + |w1 −w2|2 + |z1 − z2|2).

(101)
To obtain the result, we proceed as in [1, 19] for 2-scale convergence in nonlinear terms. Using
the formulation of the unfolded equations (98)-(100) with test functions e−λsuj,ε, e

−λswε and

e−λszε respectively, then integrating by parts in time and adding the resulting equations one
has

1

2
e−λt‖T bε (vε)‖2L2 +

1

2
e−λt

k∑
l=1

‖T bε (wl,ε)‖2L2 +
1

2
e−λt‖T bε (zε)‖2L2 −

1

2
e−λt‖T bε (vε,0)‖2L2

− 1

2
e−λt

k∑
l=1

‖T bε (wl,ε,0)‖2L2 −
1

2
e−λt‖T bε (zε,0)‖2L2

+
∑
i,e

∫ t

0
e−λs

∫∫
Ω×Yj

T jε (Mj,ε)T jε (∇uj,ε) · T jε (∇uj,ε) dy dx ds

+

∫ t

0
e−λs[

∫∫
Ω×Γ

Iion(T bε (vε), T bε (wε), T bε (zε))T bε (vε) ds(y) dx+
λ

2
‖T bε (vε)‖2L2 ]ds

+

∫ t

0
e−λs[

∫∫
Ω×Γ
−R(T bε (vε), T bε (wε)) · T bε (wε) ds(y) dx+

λ

2

k∑
l=1

‖T bε (wl,ε)‖2L2 ] ds

+

∫ t

0
e−λs[

∫∫
Ω×Γ
−G(T bε (vε), T bε (wε), T bε (zε))T bε (zε) ds(y) dx+

λ

2
‖T bε (zε)‖2L2 ] ds

=

∫ t

0
e−λs

∫∫
Ω×Γ
T bε (Iapp,ε)T bε (vε) ds(y) dx ds+

∫ t

0
e−λs(r10 + r11 + r12) ds.

(102)
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By (101), observe that one can take λ large enough so that the following inequality holds

1

2
e−λT ‖T bε (vε)− T bε (ϕε)‖2L2 +

1

2
e−λT

k∑
l=1

‖T bε (wl,ε)− T bε (ψl,ε)‖2L2 +
1

2
e−λT ‖T bε (zε)− T bε (θε)‖2L2

+
∑
i,e

∫ T

0
e−λt

∫∫
Ω×Yj

T jε (Mj,ε)T jε (∇uj,ε −∇ϕj,ε) · T jε (∇uj,ε −∇ϕj,ε) dy dx dt

+

∫ T

0
e−λt

[ ∫∫
Ω×Γ

(Iion(T bε (vε), T bε (wε), T bε (zε))− Iion(T bε (ϕε), T bε (ψε), T bε (θε))

(T bε (vε)− T bε (ϕε)) ds(y) dx+ λ
2‖T

b
ε (vε)− T bε (ϕε)‖2L2

]
dt

+

∫ T

0
e−λt

[ ∫∫
Ω×Γ
−(R(T bε (vε), T bε (wε))−R(T bε (ϕε), T bε (ψε))) · (T bε (wε)− T bε (ψε)) ds(y) dx

+ λ
2

∑k
l=1 ‖T bε (wl,ε)− T bε (ψl,ε)‖2L2

]
dt

+

∫ T

0
e−λt

[ ∫∫
Ω×Γ
−(G(T bε (vε), T bε (wε), T bε (zε))−G(T bε (ϕε), T bε (ψε), T bε (θε)))

(T bε (zε)− T bε (θε)) ds(y) dx+ λ
2‖T

b
ε (zε)− T bε (θε)‖2L2

]
dt ≥ 0

(103)
We want to use (102) to simplify the previous inequality. We introduce the following notation:

Aε :=

∫ T

0
e−λt

∫∫
Ω×Γ
T bε (Iapp,ε)T bε (vε) ds(y) dx dt+

1

2
‖T bε (vε,0)‖2L2 +

1

2

k∑
l=1

‖T bε (wl,ε,0)‖2L2

+
1

2
‖T bε (zε,0)‖2L2 +

∫ T

0
e−λt(r10 + r11 + r12)dt,

Dε :=
1

2
e−λT

∫∫
Ω×Γ

(
T bε (vε)T bε (ϕε) + T bε (wε) · T bε (ψε) + T bε (zε)T bε (θε)

)
ds(y) dx

+
∑
i,e

∫ T

0
e−λt

∫∫
Ω×Yj

T jε (Mj,ε)T jε (∇(uj,ε)) · T jε (∇ϕj,ε) dy dx dt,

Eε :=
1

2
e−λT

(
‖T bε (ϕε)‖2L2 +

k∑
l=1

‖T bε (ψl,ε)‖2L2 + ‖T bε (θε)‖2L2

)
+
∑
i,e

∫ t

0
e−λt

∫∫
Ω×Yj

T jε (Mj,ε)T jε (∇ϕj,ε) · T jε (∇ϕj,ε) dy dx dt

Iε :=

∫ T

0
e−λt

[ ∫∫
Ω×Γ

(
− Iion(T bε (vε), T bε (wε), T bε (zε))T bε (ϕε)

−Iion(T bε (ϕε), T bε (ψε), T bε (θε))(T bε (vε)− T bε (ϕε))− λT bε (vε)T bε (ϕε)
)
ds(y) dx+ λ

2‖T
b
ε (ϕε)‖2L2

]
dt,

Rε :=

∫ T

0
e−λt

[ ∫∫
Ω×Γ

(
R(T bε (vε), T bε (wε)) · T bε (ψε) +R(T bε (ϕε), T bε (ψε)) · (T bε (wε)− T bε (ψε)

−λT bε (wε) · T bε (ψε)
)
ds(y) dx+

λ

2

k∑
l=1

‖T bε (ψl,ε)‖2L2

]
dt,
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and

Gε :=

∫ T

0
e−λt

[ ∫∫
Ω×Γ

G(T bε (vε), T bε (wε), T bε (zε))T bε (θε) +G(T bε (ϕε), T bε (ψε), T bε (θε))

(T bε (zε)− T bε (θε))− T bε (zε)T bε (θε) ds(y) dx+
λ

2
‖T bε (θε)‖2L2

]
dt.

Substituting (102) into (103), we obtain

Aε − 2Dε + Eε + Iε +Rε +Gε ≥ 0. (104)

Now, we set for any positive scalar τ , the following test functions

ψl,ε(t, x) = ψl,0(t, x, xε ) + τψl(t, x,
x
ε ), θε(t, x) = θ0(t, x, xε ) + τθ(t, x, xε ),

ϕεj(t, x) = ϕ0
j (t, x) + εϕ1

j (t, x,
x
ε ) + τϕj(t, x), ϕε = (ϕεi − ϕεe)|Γε .

Note that the following convergence results hold strongly in L2(ΩT × Γ):

T bε (ψl,0)→ ψl,0, T bε (ψl)→ ψl, T bε (θ0)→ θ0, T bε (θ)→ θ, T bε (ϕε)→ ϕ0 + τϕ.

Moreover

T jε ϕεj → ϕ0
j + τϕj , T jε (ϕ1

j )→ ϕ1
j (t, x, y), T jε (∇ϕεj)→ ∇(ϕ0

j + τϕj) +∇yϕ1
j ,

strongly in L2(ΩT × Yj), j = i, e. We pass to the limit in (104), showing the limit of each
term separately.

A0 := limε→0A
ε

= |Γ|
∫ T

0
e−λt

∫
Ω
Iapp,εvdxdt+

|Γ|
2

(
‖v0‖2L2(Ω) +

k∑
l=1

‖wl,0‖2L2(Ω) + ‖z0‖2L2(Ω)

)
.

D0 := limε→0D
ε

=
|Γ|
2
e−λt

∫
Ω

(
v(ϕ0 + τϕ) +w · (ψ0 + τψ) + z(θ0 + τθ)

)
dx

+
∑
i,e

∫ T

0
e−λt

∫∫
Ω×Yj

Mj(∇uj +∇yûj)(∇(ϕ0
j + τ∇ϕ) +∇yϕ1

j ) dy dx,

E0 := lim
ε→0

Eε

=
|Γ|
2
e−λT

(
‖(ϕ0 + τϕ)(T )‖2L2(Ω) +

k∑
l=1

‖(ψl,0 + τψl)(T )‖2L2(Ω) + ‖(θ0 + τθ)(T )‖2L2(Ω)

)
+
∑
i,e

∫ T

0
e−λt

∫∫
Ω×Yj

Mj(∇(ϕ0
j + τϕj) +∇yϕ1

j ) · (∇(ϕ0
j + τϕj) +∇yϕ1

j ) dy dx,

I0 := limε→0 I
ε

=

∫ T

0
e−λt

[ ∫∫
Ω×Γ
−Ĩ(ϕ0 + τϕ)−

(
Iion(ϕ0 + τϕ,ψ0 + τψ, θ0 + τθ)(v − ϕ0 − τϕ) ds(y) dx

−λ|Γ|
∫

Ω
v(ϕ0 + τϕ) dx+

λ|Γ|
2
‖ϕ0 + τϕ‖2L2(Ω)

Similarly, the limits of Rε and Gε can be obtained to get from inequality (104)

A0 − 2D0 + E0 + I0 +R0 +G0 ≥ 0. (105)

This last inequality, being true for any test functions ϕ0
j , ϕ

1
j , ψ

0, θ0, can be shown to be true

by a density argument for uj , ûj , j = i, e, v, w and z. Consequently, one can simplify (105)
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using (102), to obtain

τ

∫ T

0
e−λt

∫∫
Ω×Γ

(
Iion(v + τϕ,w + τψ, z + τθ)− Ĩ)ϕ+ (R(v + τϕ,w + τψ)− R̃) ·ψ

+(G(v + τϕ,w + τψ, z + τθ)− G̃)θ
)
dxdydt+O(τ2) ≥ 0

Dividing by τ and then letting τ tends to 0, we find that for all test functions ϕ, ψ and θ,
there holds ∫ T

0
e−λt

∫∫
Ω×Γ

(
Iion(v,w, z)− Ĩ)ϕ+ (R(v,w)− R̃) ·ψ

+(G(v,w, z)− G̃)θ
)
dxdydt ≥ 0,

Using −ϕ, −ψ and −θ for ϕ, ψ and θ one also gets∫ T

0
e−λt

∫∫
Ω×Γ

(
Iion(v,w, z)− Ĩ)ϕ+ (R(v,w)− R̃) ·ψ

+(G(v,w, z)− G̃)θ
)
dxdydt ≤ 0,

which gives the result of the proposition. �

Collecting all the convergence results stated above, one obtains the following limiting prob-
lem:

|Γ|
∫∫

ΩT

∂tvΨ dx dt+
∑
i,e

∫∫∫
ΩT×Yj

Mj [∇uj +∇yûj ][∇Ψj + θj∇yψj ]

+|Γ|
∫∫

ΩT

Iion(v,w, z)Ψ dx dt = |Γ|
∫∫

ΩT

IappΨ dx dt,

(106)

|Γ|
∫∫

ΩT

∂twφdx dt− |Γ|
∫∫

ΩT

R(v,w)φdx dt = 0, (107)

and

|Γ|
∫∫

ΩT

∂tzφ dx dt− |Γ|
∫∫

ΩT

G(v,w, z)φdx dt = 0. (108)

Finally, repeating the argument of section 6 one can easily decouple the limit equations to
get the equations of the macroscopic bidomain model (as (69)):

|Γ|
∫∫

ΩT

∂tvΨi dx dt+

∫∫
ΩT

Mi∇ui · ∇Ψi + |Γ|
∫∫

ΩT

Iion(v,w, z)Ψi dx dt

= |Γ|
∫∫

ΩT

IappΨi dx dt,
(109)

where Mi is elliptic and defined by

Mi :=

∫
Yi

(
Mi + Mi∇yfi

)
,

in addition to the corresponding cell problem given by (68).
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[3] Grégoire Allaire and François Murat. Homogenization of the neumann problem with nonisolated holes.
Asymptotic Analysis, 7(2):81–95, 1993.

[4] Herbert Amann. Compact embeddings of vector valued sobolev and besov spaces. Glasnik matemativcki,
35(1):161–177, 2000.

[5] Habib Ammari, Josselin Garnier, Laure Giovangigli, Wenjia Jing, and Jin-Keun Seo. Spectroscopic imag-
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[20] Sören Dobberschütz. Homogenization of a diffusion-reaction system with surface exchange and evolving
hypersurface. Mathematical Methods in the Applied Sciences, 38(3):559–579, 2015.

[21] Richard FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophysical
journal, 1(6):445–466, 1961.
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