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UNFOLDING HOMOGENIZATION METHOD APPLIED TO
PHYSIOLOGICAL AND PHENOMENOLOGICAL BIDOMAIN MODELS
IN ELECTROCARDIOLOGY

MOSTAFA BENDAHMANE, FATIMA MROUE, MAZEN SAAD, AND RAAFAT TALHOUK

ABSTRACT. In this paper, we apply a rigorous homogenization method based on unfold-
ing operators to a microscopic bidomain model representing the electrical activity of the
heart at a cellular level. The heart is represented by an arbitrary open bounded connected
domain with smooth boundary and the cardiac cells’ (myocytes) domain is viewed as a pe-
riodic region. We start by proving the well posedness of the microscopic problem by using
Faedo-Galerkin method and L2-compactness argument on the membrane surface without
any restrictive assumptions on the conductivity matrices. Using the unfolding method in ho-
mogenization, we show that the sequence of solutions constructed in the microscopic model
converges to the solution of the macroscopic bidomain model. Because of the nonlinear ionic
function, the proof is based on the surface unfolding method and Kolmogorov compactness
argument.

1. INTRODUCTION

The heart is the muscular organ that contracts to pump blood throughout the body. Its
contraction is initiated by an electrical signal called action potential. At a microscopic level,
the cardiac tissue is a complex structure composed of elongated connected cells (cardiomy-
ocytes) that have a cylindrical shape and that are aligned in preferential directions forming
fibers. Cardiomyocytes are encapsulated in a dynamic cell membrane (the sarcolemma) that
separates the interior of the cell from the surrounding medium and maintains a potential
difference (the transmembrane potential) between the two media due to the different concen-
trations of various ionic species on both sides. The elongated cardiomyocytes are endowed
with special end-to-end connections (the gap junctions) that form the long fiber structure of
the muscle, as well as with lateral junctions that permit the connection between the intracel-
lular spaces of the elongated fibers. Since those connections have a low resistance, the cardiac
tissue can be viewed as a single intracellular connected domain, separated from the extracel-
lular domain by the surface of the cell membrane [29]. Moreover, the sarcolemma consists
of a phospholipid bilayer in which are embedded ionic channels that ensure the flow of ionic
currents from the extra- to intracellular space or vice versa. As a consequence of this transfer
of ionic species between the two-spaces (intra- and extracellular spaces) a current flows across
the cell membrane (transmembrane current). The capacitive, diffusive and conductive effects
contribute to this current flux across the membrane [29, 18, 38].

From a physical point of view, the cardiac tissue can be viewed as partitioned into two ohmic
conducting volumes (intra- and extracellular spaces). The intra- and extracellular domains
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act as volume conductors and can be described by a quasi-static approximation of ellip-
tic equations in both spaces. These equations are complemented by a dynamical boundary
equation at the interface of the two regions. It is worth mentioning in the sequel that the
approximation of the ionic current flow is based on Ohm’s law and charge conservation and
that these equations depend (at the microscopic level) on a small parameter (0 < ¢ << 1)
whose order of magnitude is the ratio of the two macro- and microscopic space scales.

In this paper we derive a macroscopic bidomain model of cardiac electrophysiology based on
a microscopic bidomain model, using a rigorous homogenization method. Indeed, the micro-
scopic model is unsuitable for numerical computations due to the complexity of the underly-
ing geometry, which highlights the importance of the rigourous derivation of the macroscopic
model while taking into account the properties of the physiological and microscopic structure.
Classically, homogenization has been done by means of the multiple-scale method which per-
mits to formally obtain the homogenized problem based on a formal asymptotic expansion
[16, 11]. There are now various mathematical methods related to this theory: the oscillating
test functions method due to L. Tartar in [39], the two-scale convergence method introduced
by G. Nguetseng in [34], and further developed by G. Allaire in [1] (see also [3]) and recently
the periodic unfolding method introduced by D. Cioranescu, A. Damlamian and G. Griso
for the study of classical periodic homogenization in the case of fixed domains and adapted
to homogenization in domains with holes in [17]. The idea of the unfolding operator was
used in [13, 7, 43] under the name of periodic modulation or dilation operator. The name
“unfolding operator” was then introduced in [17] and deeply studied in [15, 14]. The interest
of the unfolding method comes, on one hand, from the fact that it only deals with functions
and classical notions of convergence in LP spaces and it does not necessitate the use of a
special class of test functions. On the other hand, the unfolding operator maps functions
defined on oscillating domains into functions defined on fixed domains. Hence, the proof of
homogenization results becomes quite simple.

Regarding the asymptotic behavior of a microscopic-level modeling problem for the bioelec-
tric activity of the heart, there is the work by M. Pennachio, G. Savaré, and P. Franzone that
rigourously studies the derivation of the bidomain model in the framework of I'-convergence
theory presented in [36]. Recently, the two-scale method has been used in [19, 27] to ob-
tain the homogenized macroscopic model using different ionic models and assumptions on
the conductivity matrices. In [19], the authors derive a macroscopic bidomain model using
simplified ionic models whereas in [27], the authors use the FitzHugh-Nagumo ionic model.
In the present work, we treat a generalized class of ionic models including the FitzHugh-
Nagumo model along with physiological models involving ionic concentrations that appear as
arguments of a logarithmic function and that must be shown to be bounded away from 0. We
further note that in [19, 27], the cardiac domain was assumed to be a cube in R3. Regarding
the mathematical analysis of the microscopic model, we point out that in [42], the author
used Schauder’s fixed point theorem and in [22], the authors used a variational approach to
establish the well-posedness of the microscopic problem under different initial and boundary
conditions. In the present work, we prove the existence of solution of the microscopic prob-
lem by a constructive method based on the Faedo-Galerkin approach without the restrictive
assumption, usually found in the literature, on the conductivity matrices to have the same
basis of eigenvectors or to be diagonal matrices (see for instance [12] where the authors prove
the existence of a local in time strong solution of the bidomain equations after introducing
the so-called bidomain operator). It is worth to mention that our approach is innovative and
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cannot be found in the literature in the context of existence of solutions to the microscopic
bidomain model. The convergence of solutions of a sequence of microscopic problems to the
solution of the macroscopic problem is established in properly chosen function spaces. We use
the unfolding method in perforated domains [15, 17], for sequences of functions bounded in
L2, H' or in HY? on a micro-periodic domain. The difficulty of the homogenization problem
for the bidomain equations is due, on one hand, to the degenerate structure of the equations,
in combination with the highly oscillating underlying geometry. As a consequence, standard
parabolic a priori estimates are not immediately available [22]. On the other hand, the (non-
linear) dynamics of the cellular model take place on the cell membrane which is a wildly
oscillating surface. Hence, an ambiguity arises in defining a proper notion of “strong con-
vergence” of functions in this context. However, some kind of strong convergence is required
to pass to the limit in the nonlinear equations. For this reason, we also use the boundary
unfolding operator along with a Kolmogorov-Riesz compactness argument [4, 23]. We stress
that we do not restrict our study to the homogenization method of the bidomain model with
nonlinear ionic function of FitzHugh-Nagumo type but also with physiological ionic function
of Luo-Rudy type. Moreover, the approach presented herein can be extended to electroper-
meabilization models. We cite for instance [6] where a dynamical homogenization scheme is
obtained from a physiological cell model and [5] where a conductivity dependent macroscopic
tissue model is for the first time derived from first principles.

Note that thanks to homogenization, the resulting macroscopic bidomain model describes av-
eraged intra and extracellular potential by a nonlinear anisotropic reaction-diffusion system.
The cardiac tissue is then considered (at the macroscopic level) as the superposition of two
anisotropic continuous media: the intra- and extracellular spaces, coexisting along with the
cell membrane, at each point of the tissue. The most substantial mathematical description of
the bidomain model is found in the review paper by Henriquez [28], which presents a formal
definition of the model from its origins in the core conductor model, and outlines many of the
approximations that can be made under certain assumptions.

The plan of this paper is outlined as follows. The microscopic problem and the main as-
sumptions used for homogenization are presented in Section 2 and the main result is stated.
In Section 3, existence of weak solutions to the microscopic problem is proved based on a
Faedo-Galerkin approach, a priori estimates and a compactness argument. In Section 4, some
estimates on the solutions of the microscopic problem are obtained and the microscopic prob-
lem is formulated using the unfolding operator. The passage to the limit using compactness
and the unfolding method are established in Section 5. Then in Section 6, the macroscopic
bidomain equations are recuperated from the limit equations obtained in Section 5 and the cell
problem is decoupled. Finally, in Section 7, a microscopic bidomain model with physiological
ionic model is homogenized to obtain the corresponding macroscopic model.

2. THE MICROSCOPIC BIDOMAIN MODEL

We first list in the following paragraphs the assumptions used in sections 3, 4, 5 and 6.

Assumptions on the domain. For our model we assume that  (the cardiac tissue) is a
bounded open subset of R? with smooth boundary 9€). The cardiac tissue is composed of
two connected regions, the intracellular €2; . and the extracellular €2 .. These two regions are
separated by an active membrane surface I'c = 9€2; . N 0€2c .. Here € > 0 is the small dimen-
sionless parameter which is proportional to the ratio between the micro scale of the length of
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the cells and the macro scale of the length of the cardiac fibers. Following the standard ap-

FIGURE 1. Left: A 2D section of the simplified periodic network of cells.
Right: A 2D section of the reference cell Y.

proach of the homogenization theory, we are assuming that the cells are distributed according
to an ideal periodic organization similar to a regular lattice of interconnected cylinders.

Let Y := [0,1]® be the representation of the unit cell in R3. We denote by Y;. C Y its
intra- and extracellular parts and by I' the common boundary of the intra- and extracellular
domains Y; and Y, (I' = 9Y;N0Ye). So Y;UY.UT' =Y. The elementary unit cell Y represents
a reference unit volume box containing a single cell Y;.

The main geometrical assumption is that the physical intra- or extracellular regions are the
e-dilation of the reference lattices Y; . extended periodically, defined as: for k € Z3 each cell

Yjpe =ek+eY; ={e€: (€ k+Y},
and the corresponding common periodic boundary
Ipe=ck+el ={e: £ k+ T}

Therefore, the physical region 2 occupied by the heart is decomposed into the intra- and
extracellular domains €2;. for j = ¢,e that can be simply obtained by intersecting  with
Yiie for j =i,e, ie.:

Qj,a =0n U Y',k,s-
kez3

Similarly,

r.=Qn U Te.
keZ3

One can observe that the domain €2; . may be considered as a perforated domain obtained
from 2 by removing the perforations which correspond to the extracellular domain €2 .. The
same observation holds for the extracellular domain. The boundary I' is a smooth manifold
such that I'. is smooth and connected. Furthermore, €2;. are both assumed to be connected
bounded domains in R? so that a Poincaré-Wirtinger inequality is satisfied in both domains.
(We refer the reader to the geometrical hypothesis Hp, in [14] for such domains.)
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Assumptions on the data. The electric properties of the tissue are described by the in-
tracellular u; . and extracellular u.. electric potentials. Herein, u;. : ;. — R for j = i,e,
and ve = (Ui — Uee) |1.: e = R is known as the transmembrane potential and satisfies a
dynamic condition on I'; involving the auxiliary function w, : I'e — R (the so called gating
variable).
The following coupled reaction-diffusion system forms the microscopic bidomain model: for
Jj=1,¢e (see e.g. [38, 44]):
—div (M;:Vu;.) =0in Q.7 := (0,T) x Qj, (
€(atvs + Iion(vsaws) - Iapp,s) =17y, on Fz—:,T = (O,T) x e, (
In= _Mi,svui,s C Mg = Me,evue,s * He ONN Fz—:,Ta (1C
Oywe — H(ve,w:) =0on L. 7. (

We augment (1) with no-flux boundary conditions

(Mj(@)Vuje) - pj =0 on (0,T) x (092 \Ic), j € {e,i}, (2)
and appropriate initial conditions for the transmembrane potential and gating variable
ve(0, ) = vo(+), we(0,-) = woe(-) on I'.. (3)

The conductivity tensors, the ionic functions, the source term and the initial data satisfy the
following assumptions:

(E.1) The conductivity of the tissue is represented by scaled symmetric Lipschitz contin-
uous tensors M; . (z) = Mj(z,x/e) and M (z) = Mc(z, z/e) satisfying (the ellipticity and
periodicity conditions): there exists constants mq,mg > 0 such that for j =i, e

mi [¢]* < M(a, )¢ ¢ <ma ¢l (4a)
for all (x,€) € Q x Y; and for all ¢ € R3. Furthermore, note that j; are the exterior unit
normals to the boundaries of €); ., for j = ¢, e respectively, and p; = —p. on I'..

(E.2) The ionic current oy (u,w) is assumed to be decomposed into I jon(u) and Igjon(w),
where fion(u, w) = I jon(t) + I2,jon (w). Furthermore, the function I; jon : R — R is considered
as a C! function, and the functions I3ion : R — R and H : R2 — R are considered as linear
functions. Also, we assume that there exists r € (2, +00) and constants ay, o, ag, L > 0,1 > 0
such that

ol < Faion(0)] < (o 1),

and I jon(w)v — aoH (v, w)w > a3 \w[2 ,
Ton : 2+ Iijon(2) + Lz +1 s strictly increasing on R with lin%) Lion(2)/2=0  (6a)
z—

- ~ 1
and Vz,s € R (I1ion(2) — I1,ion(9))(2 — 5) > 6(1 + |z +|s])" 2|z — s>.  (6b)

Remark 2.1. One can easily show that: Iy jon(0) = —I, I1,,,(0) = —L and I}

1,ion 1,1011(’2) > —L
for all z € R.
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Remark 2.2. The function H in the ODE of (1)-(2) and the function fie,, may correspond to
one of the simplified models for the membrane and ionic currents. We mention, for instance,
the Mitchell-Schaeffer membrane model [32]

Woo (v/Vp) — w

H(v,w) = Romemtoo(0]05) (7a)
U v U2 —UV/ Uy )W
Tion (v, w) = }:TZ (Upm v U}%nf p) ) (7b)

where the dimensionless time constant and state variable constant are respectively given by

(s) ns for s < ns, (s) 1 for s < s,
S) = w S) =
Moo 14 otherwise, > 0 otherwise.

The quantity R, is the surface resistivity of the membrane, and vy, 1,72, 13, m4, 75 are given
parameters. A simpler choice for the membrane kinetics is given by the widely known
FitzHugh-Nagumo model [21], often used by researchers to avoid computational difficulties.
In this case,

H(v,w) = av — bw, (8a)
Tion(v, w) :(Am — ) (v — 9)) + (—Aw) = I on(v) + o jon(w), (8b)

where a, b, A, 0 are given parameters with a,b > 0, A < 0 and 0 < 6 < 1. According to the
Mitchell-Shaeffer and FitzHugh-Nagumo models, the most appropriate value is r = 4, which
means that the non-linearity i, is of cubic growth at infinity (recall that in the Mitchell-
Shaeffer membrane model, the gating variable w is bounded in L*°). Assumptions (5), (6) are
automatically satisfied by any cubic polynomial I;,, with positive leading coefficient. This is
indeed the case for the FitzHugh-Nagumo model but not for the Mitchell-Shaeffer model.

(E.3) There exists a constant C' independent of ¢ such that the source term I,y . satisfies
the following bound:

1/2
le" Lapp | L2(r. 1) < C- (9)
Furthermore, I,pp, is the weak limit of the corresponding unfolding sequence.

(E.4) The initial data v . and wq satisfy

||51/TU0,5||LT(FE) + ||51/2U0,€HL2(F5) + ||51/2w0,€”L2(F5) <C, (10)

for some constant C' independent of €. Moreover, vg . and wg . are assumed to be traces of
uniformly bounded sequences in C*(Q).

Observe that the equations in (1) are invariant under the change of u; . and u, ¢ into u; . +k;
Uee + k, for any k € R. Hence, we may impose the following normalization condition:

/ Uee(t,z)dz =0 for a.e. t € (0,T). (11)
Qe,e

Finally, We end this section by stating the main results of the paper as given in the following
theorems.
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Theorem 2.1 (Microscopic Bidomain Model). Assume conditions (E.1), ..., (E.4) hold.
Then the microscopic bidomain problem (1), (2), (3) possesses a unique weak solution in the
sense of Definition 3.1.

Theorem 2.2 (Macroscopic Bidomain Model). A sequence of solutions (u; e, Ue ., ws)e of the
microscopic system (1)-(3)(obtained in Theorem 2.1) converges to a weak solution (u;, ue,w)
with v = U;—Ue, Uu;, e € L?(0,T; HY(Q)), v € L?(0,T; HX(Q))NL"(Qr), O € L0, T; (H (D)) +
L0=0(Qg) and w € C(0,T; L*(2)), of the macroscopic problem

IT'|0pv — div (Mi(2) Vi) + |T'| Lion (v, w) = |T'|[Lapp in O, (12a)
IT'|0pv + div (Me(x)Vue) + [T Tion (v, w) = |T'|Lapp in Qr, (12b)
Orw — H(v,w) =0 in Q. (12¢)
supplemented with no-flux boundary conditions, representing an insulated cardiac tissue
(Mj(x)Vyy) -n=0 on Xy :=00Q x (0,T), je {ei}, (13)

and appropriate initial conditions in Q, namely vo and wo € L*(Q), for the transmembrane
potential and gating variable

v(0,z) = vo(x), w(0, ) = wo(x). (14)

Herein, n is the outward unit normal to the boundary of Q) and the tensors M; and M, are

defined by

J
for j =1i,e, where the components fi ; of f; (k=1,2,3) are the corrector functions, solutions
of the cell problems

M= | (M + M9, ;)

—Vy - (MY, fij) = =V - (Mjer) in Yj,
M;Vy frj - 1y = Mjey - on T,
Jrj =0, fr; Y — periodic.
Y;

3. EXISTENCE OF SOLUTIONS TO THE MICROSCOPIC MODEL

This section is devoted to proving existence of solutions to the microscopic bidomain model
for fixed € > 0. The existence proof is based on the Faedo-Galerkin method, a priori estimates,
and the compactness method.

We start with a weak formulation of the microscopic model.

Definition 3.1 (Weak Formulation). A solution of problem (1), (2), (3) is a four tuple
(Ui e, Uee, Ve, we) such that w; . € L2(0,T; HY(Qi2)), tee € L2(0,T; HY(Qe)), ve = (uiec —
Uee) |r.€ L*(0,T; HY2(T.)) N L™ (Teyr), we € L3(Te 1)), Opve, Owe € L*(Te 1), and satisfying
the following weak formulation for a.e. ¢t € (0,T")

/ ey ds(z) + Z / M, . (2)Vuj. - Vjdx
< I 0. e
g=re (15)
—I—/ elion (ve, we)p ds(z) = / elapp.e pds(x),
€ FE

OyweC ds(z) — / H(ve,we )¢ ds(z) =0, (16)
Ie Ie
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for all p; € HY(Q;) with ¢ := (p; — @e) [r.€ HY?(T.) N L7(T,) for j =i,e and ¢ € L*(T.).
We prove now Theorem 2.1.

Proof. In this proof, we will remove the e-dependence in the solution (ve,u;c,uee,w,) for
simplification of notation. To prove existence of weak solutions, we use a Faedo-Galerkin
approach and a priori estimates. For this sake, we first carefully construct an appropriate
basis for our systems.

Step 1: Construction of the basis
We first consider functions ¢ € C°(€;.) and we define the inner product denoted (-, )y, ; by

<®’é>VO,j ::/ ¢¢~5d1‘+/ ¢|Fs§z~5|1—‘ad87 for j =1i,e
Qj e .

where © = < ¢ﬁ“ > and © = ( QNSTS > Then we let Vp ; denote the completion of C°(€2;.)
€ FE

under the norm induced by the inner product (-, )y, ;. Similarly, for functions ¢, peC L),

we define the inner product denoted (-, -)v; ; by:

(0,0, ::/ MLEV(;S-VQEda:Jr/ ¢|p5<;§|p£ds+/ Vr.¢ - Vr.dds,
QJ«E FE Fg

where Vrp_ denotes the tangential gradient operator on I'. and we let V1 ; denote the com-
pletion of C*(€;.) under the norm induced by the inner product (-,-)v; ;. We note that the
following injections hold:

Vo C L*(Qj.), and Vi ; C H' (Qj.).
Moreover, the injection from Vi ; into Vp ; is continuous and compact. We refer the reader to
[25, 37] for similar approaches.

It follows from a well-known result (see e.g. [40] p. 54) that the closed bilinear form a(©, Q) =
(©,0)v, ; defines a strictly positive self-adjoint unbounded operator

Bj : D(B]) = {@ S Vl’j : BJ@ S Vb’j} — ‘/07]‘
such that, for any © € Vi, we have (@@,@)VOJ = a(@,(:)). Thus, for &k € N, we take a

complete system of eigenfunctions {@k,j = ( Z’Z; > }k of the problem B;0; ; = A\;Oy ; in

Vo,; with ©y ; € D(B;), and ¢y, j = ¢ j|r. where ¢ ; and 9y, ; are regular enough.
Moreover, the eigenvectors {O j}x, form an orthogonal basis in V; ; and Vp ;, and they may
be assumed to be normalized in the norm of Vp ;. Since C1(Q;.) C Vi; € HY(Q;.), and
C1(€.) is dense in H'(Q;.), then Vi ; is dense in H(Q;.) for the H' norm. Therefore,
{Okj}k is a basis in H'(£;.) for the H! norm.

On the other hand, we consider a basis {(x}x, k¥ € N that is orthonormal in L?(T'.) and
orthogonal in H!(T'.) and we set the spaces

o0
7}7” = Spaﬂ{@l?]’ T 7@n7j}’ 7;’00 = U 7;7,’7‘7
n=1

K = span{C,--,Ga}s Koo = | Ko
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where T, and K, are dense subspaces of V; ; and H L(T',) respectively.

Step 2: Construction of approximate solutions
For any n € N, we are looking for functions of the form

() =S (). 5= i, = = a0,

Ujn k=1
(17)
solving the approximate regularized problem:
(5 + 5n) atﬂi,n¢z’ ds(x) atue n¢z dS ‘|‘ 5 / 8tuz n¢z dx
I. I. (18)
= / (*Iion(vnawn) + 1. app, E)d}l dS / MIE )vuzn v¢z dz
Oyti mtpe ds(z) + (€ + dp) Oylie ntpe ds(z) + O, / Ortte e d
T e

— [ Uil 100) = Lpp )0 . do / M (&) Viten - Vo da
E (19)
Orwn( ds(ac) = H(Um wn)C dS(Hf), (20)

I Ie

1 A
where §,, = e 0, = < % > € Tjn, for j =i,e and ¢ € K,,. The terms 4y, O¢lijnt; ds(x)
e

and Jy, Oyujnejdx, j =1i,e were added to overcome the degeneracy in (15).

We aim tjd apply the standard existence theorems for ODEs. For this purpose, if n fixed,
we choose ©; = O, O, = O, and ( = (, 1 <k < n and we substitute the expressions
(17) to the unknowns w; y, Uin, Uen, Uen, and wn The ODE system, that we obtain, has
as unknowns the column vectors d; = {d; x}}_;, de = {dex}}_; and ¢ = {cx}}_;. It can be
written as follows:

((571 + E)A“d; — é‘Aied/e + (SnAud; = Fi(t, d;,d., C)
—ehjed! + (Op, + €)Aced., + 0pAced, = TFe(t,d;,de,c) (21)

Gd(t) = H(td;,de,c),

where the (k,l) entry of the matrix A,,j, m,j =i, e is (Vmks Vi) r2(r.ys for 1 < k1 <n, the
(k,1) entry of the matrix Aj;, j = i,e is (djr, dji)r2(,.), the (k1) entry of the matrix G
is (Ck, Q1) r2(r.) and where the right hand side vectors F;, F. and H assemble the right hand
sides of the equations given in (18)-(20).

Note that by the orthonormality of the basis, the matrix

G = ((Ck, <l>L2(FE)) = Lnxn,

1<k, l<n
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is the identity matrix. Furthermore, the first two systems of equations in system (21) can be
written in the following form:

A + Ay 0 Ay —A d; F;
_ 2 _ = . 22
GJ 0 Rethe |TT|-AL K. |)|a |7 [ (22)
Now making use of the orthonormality of the bases in the spaces Vj j, the matrices Ajj +Aj;,
for j =i, e, are equal to the identity n x n matrix I,,»,. So system (22) may be written as

d/ ]Fl I[n n 0 Azz _Aie
M[dé]:[Fe},whereM:%[ OX ann]+€[—Az; A ] (23)

/ A
In order to write [ g} ] =M! { gz ], one needs to prove that the matrix M is invertible.
e e

For this sake, it is enough to prove that the matrix N := { B A“z; :—Q:e } is positive semi-
definite.
Let d = < gz >, where d; = (dj1,- - 7dm)T € R" and de = (de,1, - - ’dem)T c R". Then
d’Nd = df'A;;d; — 2d7A; .d. +dTA,.d.
So we have
d'Nd = /F > [digdigtpirtoin — 2di jdehiktber + de pdetbextber) ds(x)

€ ki

:/[Z&M—Z¢m1%>20

Thus the matrix M is symmetric positive definite, hence invertible. Consequently, the whole
system (21) can be written as a system of ordinary differential equations in the form y/(t) =

f(t,y(0).

Moreover, the problem that we obtained is supplemented with initial conditions

Ui,n(oa l’) uO,z,n Z dz N/ ¢z l

Us n(o I) = qun Zdzl 1/%1 dz,l(o) = << 1fi,0 ) 7@i,l>Vi7oa

U0
ten(0,2) = uge.n( Zdel )oe,i(z (24)
lie,n(0,2) = g ,en(@ Zdel Ve (@ de(0) := << gzg > ' Oe )V o
wn (0, ) = wo u( chl )Gi(x cn1(0) := (wo, Q)2 (r.)-
Proceeding exactly as in Ref. [9 }, we prove that the entries of F;, F, and H are Carathéodory

functions bounded by L! functions and we obtain the local existence on the interval [0,¢') of
the Faedo-Galerkin solutions u; », te n, vn and wy,.
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The global existence of the Faedo-Galerkin solutions is a consequence of the n-independent
estimates that are derived in the next section. For more details, consult Ref. [9].

Step 3: Energy estimates
Note that the Galerkin solutions satisfy the following weak formulations:

/ 5at1}n80n dS(.’E) + Z / 6n56taj,n @]’n dS(l') + Z / 6natuj7n Pjn dx
Pe i,e Pe i,e Qj,e

+ Z/ Mjﬁ(m)Vuj,n : V(Pj,n dz + / 5Iion(vna wn)‘Pn dS(ZL‘) (25)
i,e Qje e
:/ elapp.e pn ds(x),
I
Oywpen ds(z) — H(vy, wy)e, ds(z) =0, (26)
T. e

where the functions ¢, (¢, ) == >, bjni(t)Pj1(x), en(t, ) = D11, 201 ()G (x) and ¢, =
©in — Pen for some given absolutely continuous coefficients b; , ;(t), 2,,(t) for j =i, e. Herein,
@jn is the trace of ¢;, on I'; for j =i, e.

Now, substituting ¢;,, = u;, and e, = casw,, in (25) and (26), respectively, integrating over
(0,s) for s € (0,7] and summing the resulting equations, one obtains upon using (5) and (6),
Young’s inequality, the uniform ellipticity of M. and the L? bound on Lopp.e:

1

B (”51/2%(5)”%2(1“6) + 0<2||51/2wn(5)||%2(r5) + Z ||€1/25711/2ﬂj,n(5)||%2(1“5)

,e

+ Z ||5711/2uj,n(3)||%2(9j75)> +m Z HVUJ',TLH%%Q]-,E,S) + ||5i1,ion(vn)vn”Ll(l“g,s)
i,e

i,e
ey + 2 1280 %00 4l T2y + Y ’\57{0/2“073‘,71”%2(9]-,6))
] i,e

+// 5Iapp7avnds(x)dt—// el jon(wn) vy, ds(z) dt
0Jr oJr.

+a25/ H (vp,, wy) wy, ds(x) dt + / e(L vy + 1) vy, ds(x)dt
0JT. 0JIe

IN

1
B le"?vo.n \%%rg) + [Jwon

< C(/ (Il 2onllF o) + Hel/anliz(rg))dﬂrl),
0

(27)
for some constant C independent of n and €. Note that in the sequel C is a generic constant
whose value can change from one line to another.

One obtains from (27), the following inequality

I€/20a($) e (r.) + M 2w0n(8) 2,y < C< | U 20 + 120 e + 1>.

Hence, by an application of Gronwall’s inequality, one gets for a.e. t € (0,7,

e 2072,y + € WO 72, < C-



UNFOLDING HOMOGENIZATION METHOD APPLIED TO THE BIDOMAIN MODEL 12
Therefore,

e/ 20n | oo o 1:22(r. ) + € *wall oo 0.1:22(r.y) < C.

Exploiting this last inequality along with (27), one obtains

H\@”nHLw(o,T;LQ(Fs)) t Z H\/&\/Eam Lo0(0,T:L2(T'.)) (28)
j=te
+Jz;e [ VB . oriea,y T IVERll e riawy <€
||5I~1,ion(vn)vn||L1(FE,T) + Z ||Vuj,n||L2(Qj’EyT) <, (29)
j=i.e
||51/TUnHLr(FS,T) <C, (30)
IVevnll2r, ) + [Vewnl L2, ) < C, (31)

for some constant C' > 0 not depending on n and . Moreover, one can obtain some uniform
estimates on the time derivatives as follows. Substitute ¢; , = Oru;p and Qe ,, = Optie ,, in (25),
and integrate in time to deduce

// |8tvn| ds(x dt—l—Z// On€ 8tu]n ds(x dt—i—Z// 8tu]n dx dt
ET eT ]ET

J=ue Jj=ue
+ Z // M, . (2)Vujy - V(O ) dx dt+6// I jon (vn,)Opvy, ds(x) dt
j=t,e J e,T Ter
+e // I3 jon (wn, ) Oy, ds(z) dt =€ // Lpp,e Oy ds(z) dt.
FE,T 1—‘&:,T
(32)
Now, set Py, . / M; V- Vujp, de and Zy(s) = / I jon(v)dv. Observe that

0

T
/ / MV, - V(D) da dt = / 0,(Pa,.) di = Pa, . (T) ~ P, . (0),
Qe 0

and

//FE,T 11 jon (V) Opvn ds () dt = /OT o, </1‘5 Il(vn)ds(x)>dt

:/ Il(vn(T,y))ds(x)—/ Zi (vn(0, y)) ds(z).
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Using this and Young’s inequality, one gets from (32)

// lﬁtvn| ds(zx dt—i—Z// OnE Gtu]n ds(x dt+2// On(Orujnm) 2 dx dt
ET i,e sT

Jj=te JsT
+ Z PMJ,E(T) +5/ i (vn(T,y)) ds(x)

Jj=i,e €

. / / Ly son (1) et ds(x) dt + Pag; ,(0) + / T (0a (0, ) ds(2)
Ter <

+ 8// Lpp,cOrvp, ds(z) dt
Fs,T
5// 1Oyvn|? ds(z) dt + Ce // [wn[? ds(x) dt + P, . (0)
2 FE,T FS,T ’

—f—s/ Zi(vn(0,y)) ds(z) + C/ | Lapp.c|? ds(z) dt,
€ 1—‘s,T

IN

IN

(33)
for some constant C' > 0 not depending on ¢ and §,, (recall that 0 < & < 1).Note that by the

monotonicity of I jon (see (6)), one can obtain

L
Z::/ Il(v7l<T:y)) + §|’U71,(T:y>’2 + ZU7L(T~, y) ds(‘r) > 0.

€

Finally, use

S [Pa,. (0)] + / Ty (0 (0. )) ds(2)

Jj=1,e €
<CZ/ |Vujn033]d:£+€/ lon(0,9)]" ds(z),

j=i,e

(for some constant C' > 0) and estimates (28) and (29) to get from (33)

// \8,5%\ ds(x dt—l—Z// n58tu]n ds(zx dt—i—Z// atu]n drdt < C,
€T i,e 5T

j=i.e ]é‘T

(34)
for some constant C' > 0. Hence, one has the estimate
Ve ||8tvn||L2(0,T;L2(F5)) + Z Vonve Hataj,n||L2(o,T;L2(Fs)) <G, (35)
1,€

for some constant C' > 0 not depending on n. Also, exploiting the structure of (26) along
with estimate (31), one obtains

HﬁatwnHB(raT) <0, (36)

for some constant C' > 0 independent of n.
The above estimates are not sufficient since estimates on the L? norms of the intracellular
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and extracellular potentials are needed in €2; . and €2, . respectively. Due to the compatibility
condition (11), an application of Poincaré’s inequality (see for instance [14]) implies that

wenll 220,01 (000)) < C- (37)

Furthermore, making use of the trace inequality as stated in [2], one has

ellten

T2, py < Cllluenllzq, . 1y + llVienlZa, . 1)

and consequently

8”@67””%2(1-\6771) S C (38)
Moreover, having 5anH%Q(F o < €, there holds

ellainlZar, ) < C- (39)

Finally, making use of this last inequality, of (29) and of Lemma C.2 in [5], one gets

il 2,y < CelltinllZa,) + CE¥llVuinliaq, ) < C-

Therefore, the following estimate holds

||ui,nHL2(O,T;H1(Qi7€)) <C. (40)

The next step is to show that the local solution constructed above can be extended to the
whole time interval [0,7") (independent of n) but this can be done using the above estimates
as in Ref. [9], so we omit the details.

Step 4: Passage to the limit and existence of solutions

From (40) and (37), it is easy to see that vy, @;, are bounded in L?(0,T; HY/?(T.)) for
j = i,e. This is a consequence of the fact that the trace of a function in H' is a function
in H'/2 and of the continuity of the trace map. Moreover, we deduce from (31), (38) and
(39) the uniform bound on v, + (—1)7/3, @, in L*(Ter) for j = i,e. Recall that by the
Aubin-Lions compactness criterion, the injection

W = {u e L*0,T; H/*(T.)) and d,u € L*(0,T; H/*(T.))} € L3(T. 7))

is compact. Therefore, we can assume there exist limit functions w; e, ue ¢, ve, w. with v, =
(Wie — Uee) |P.:= Uje — Uee on e g such that as n — oo (for fixed ¢ and up to an unlabeled
subsequence)

(v, + (=1)7\/b8yjn — ve a.e. in Iep, strongly in L2(T: 1),
and weakly in L2(0,T; H'/2(T,)) for j =1, e,
Ujn — uje weakly in L2(0,T; HY(Q;.)) for j =1i,e,
Up, — Ue a.e. in I'o p, strongly in L2(F57T),
wy, — we a.e. in Ie r, strongly in L*(T 1), (41)
I jon(vn) = It jon(ve) a.e. in I'z 7 and weakly in L’"/(T_l)(FE,T),
Opvy, — Opv. weakly in L?(T. ) and 6,0;t;,, — 0 in D'(0,T; L*(T'.)) for j =i, e,
Oywy, — Jyw,. weakly in L2(F57T),
SnOuj, — 0in D'(0,T; L%(Q;.)) for j =1, e.
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Keeping in mind (41), (28) and (35) we infer, by letting n — oo in (18), (19) and (20),

5/ O ds(x) + Z/ M (x)Vuj. - Vjdx
Te - Qe
we " (42)
—1—5/ Tion (v, we)p ds(x) = 5/ Lpp,cp ds(z),
1> FE

Owpds(x) — H(ve,we)pds(z) =0, (43)
I'e I'e

for all w; € HY(Qj.), j = i,e, with ¢ := (p; — @e) |r.€ HY*([.) N L"(T,) and ¢ € L*(T.).
Step 5: Uniqueness.

Let (wige1,Uee,1,We1) and (g2, Uee2, We2) be two weak solutions satisfying (42)-(43),
with ve k= (Ui ek —Uee k) |1, for k= 1,2 and with “data” v. g = v 0,1, We,0 = We 0,1 and vz 9 =
Ve,0,2, We,0 = We 0,2 Tespectively. Note that the following equations hold for all test functions
05 € L2(0,T; H\(9;2)), j = s, with ¢ = (91 — ¢) Ir.€ L2(0,T; HY2(T.)) N L' (To.z) and
¢ € L? (FE,T):

// €0¢(ve1 — ve2)pds(z) ds + Z // M, (2)V(uje1 —uje2) - Vojdrds
FE»t i,e Q(j,&,t)
+ / / (Tion(ve.1, W 1) — Tion (ve.2, w2 2))p ds(x) ds = 0,
Pet

/ [ Oes — weodsa) ds - / /F (H (02, we) — H(vs, w2 2)) b ds(x) ds = 0,

for 0 < ¢ < T. Substituting ¢; = (uje1 — uje2) and ¢ = we 1 — we2 in the two equations
above, then adding the resulting ones, we arrive at

1 1
5 / (21021 = ve2)OF + (e = we2) O ) ds(a) = 5 / (2lve 10 = o0 + w0 = weol) ds(a)
T, e

t
+ / / M eV (wje — Uje2) - V(Ujen — tje2) drds
0 JQj.e

Jj=t,e
t
+/ / €(Lion (Ve,1, We,1) — Jion (Ve 2, e 2)) (Ve,1 — Ve 2) ds(w) ds
0 Jr.

t
— / / (H (ve,we 1) — H(ve 2, 10.2)) (we 1 — we) ds(z) dt.
0 e

Now using (4), one has for j =i, e

"t

/ / M]"EV(UJ"EJ - 71,]"5’2) : V(/Il,j@l - 71/3’,5,2) dx ds > 0.
0 JQ,.

Also, by (6) there holds

t t
/ / 5([1‘1011(’05_’1) — [171(,11(1)572))(1)&1 — ’05’2) ds(x) dt Z —Le / / (’05:1 — /()5,2)2 db(i) dt.
Jo JT. JO JT¢
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Moreover, exploiting the linearity of H(v,w) and I jon(w), and using Young’s inequality
one can deduce

5 [ (10e = ) OF + [(wes = we2) ) dste)

2
t
< C’(// (5 |veq — v€72|2 + |we 1 — w£,2]2> ds(x)ds
o ’Te
1 2
+3 <€|va,1,0 — V20 ) ds(x),
e

for some constant C' > 0. Finally, an application of Gronwall’s inequality yields

2
+ |we 1,0 — we 20

£

for some constant C' > 0. This completes the uniqueness proof. O

4. CONVERGENCE OF SOLUTIONS TO THE MACROSCOPIC PROBLEM

This section consists in preparing the ground for the passage to the limit as ¢ — 0. First,
some a priori estimates are obtained on the solutions of the microscopic problem. Then, the
unfolding operator for perforated domains and the boundary unfolding operator are intro-
duced and some of their properties are recalled. Finally, the microscopic problem is written
in an equivalent formulation, the so called “unfolded” formulation, making use of the unfolding
operators.

4.1. Energy estimates for the microscopic solutions. The following estimates follow
from the estimates on the Faedo-Galerkin solutions obtained in the previous section.

Lemma 4.1. Assume that conditions (E.1),...,(E.1) and (1) and (2) hold. Then there exist
constants c1, ca, c3,cq > 0, not depending on € such that

H\/EUEHLOO(O,T;L2(FE)) + H\/gweHLOO(O,T;L2(FS)) <ec, (44)
2 Iesellzomimio, o < 2 (45)
j=ti.e

Hsl/’"ve‘ < c4. (46)

(r=1)/r. .
. < cg and [ Tiion (V) |l Lrre-1 (1,

If v € Hl/Q(I‘s) NL"(T.), then there exists a constant cs5 > 0 not depending on £ such that

H\/gat%HL?(FE,T) < G5 (47)

[ (10 = 0e) @+ (wen — we) (O ) ds(a) < € [ (efoeno = vezo Homso = weaol?) ds(o).
re
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N R

Ll

FIGURE 2. The set Qg in dark red, the set Qé in dark blue and the region A,
in dark green and light blue.

4.2. Unfolded formulation of the microscopic problem. In this subsection, we view
the domains ., j = i,e as perforated domains and we define the unfolding operator 72,
j = 1i,e following the same notation as in [14]. First, we define the following sets in R? (see
Figure 2):

E.={leZ"e(l+Y)CQ}, 0. = interior{ Uyez, =(¢ +Y)},
O = interior{ UeeEE e(l+ }7])}, j=i,e Q&T =(0,T) x Q..

Qg,T =(0,T) x ¥, [.:={yel.:ye},

Ao =0\ Q. Aer = (0,T) x Q\ Q..

Secondly, we recall the definition of the time dependent unfolding operator in perforated
domains.

Definition 4.1. For any function ¢ Lebesgue-measurable on (0,7") x €;., the unfolding
operator is defined by

qb(t,e[g]y + 6y) a.e. for (t,z,y) € QE’T X Y

. (48)
0 a.e. for (t,xz,y) € (0,7) x Q\ Q. xYj,

T (0)(t2,y) = {

where [] denotes the Gaup-bracket. Observe that the function €[] represents the lattice
translation point of the e-cellular medium containing x. For the sake of completeness, we
recall some properties of the aforementioned operator and we refer the reader to [17, 14] for
details.

Proposition 4.2. Forp € [1,00), the operator T2 is linear and continuous from LP((0,T) x
Q) to LP(Qr xY;). For every ¢ € L*((0,T) x Qj¢) and v,w € LP((0,T) x Q;), there holds
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(1) 79 (vw) = T3 ()T (w),
@p@(wammM@:/ o(t, ) d,

Q.
(3) 172 ()l o xvy) = lwlgg o,y < llwllmo,.)-

Furthermore, since the dynamic equations are defined on the surface I'c, we resort to the
use of the boundary unfolding operator, developed in [17, 14] and defined as follows (recall
that I'. = (0,7) x I';):

T L*(T.7) — L*(Qr x 1)
such that

. u(ug([%] +vy)), a.e. for (t,z,y) € QET x T,
_ ) R 4
Teult, =) {o, ac. for (t.,y) € 0.7) x 0\ x1. 1

We also list herein some properties of the boundary unfolding operator as given in [14].

Proposition 4.3. The boundary unfolding operator has the following properties:

(1) Tb s a linear operator.

(2) Tb(cbw) T2(O) T2 (), Vo, ¢ € LP(Ter), p € (1, +00).

(3) For every ¢ € LY (T.1), we have the following integration formula
1
ot ) ds(x) = - T2(9)(t, ,y) de ds(y).
I'. € Jaxr
(4) For every ¢ € LP(U..r) with p € (1,+00), one has

IT2 Do @rxr) = €18l ooy <)

(5) For every ¢ € D(Qr x T) and w € WH(0,T; LY(T.)), the following integration by
parts formula holds

T
/ / T2 (0nw) T2 () ds(y) da dt = / / T2 (w)T2(dy) ds(y) da dt.
0 QxI QxI

Remark 4.1. Note that the last property (which is not listed in [14]) is a direct consequence
of the integration by parts formula:

T
/ Oywep ds(x / / woyp ds(x
0 I e

and the integration formula in property (3) of Proposition 4.3.

Now, in order to make use of the unfolding method in the homogenization of the microscopic
problem, we rewrite the corresponding equations (42) and (43) in the “unfolded” form. We
have the following identities:

// Mj,avuj,a ) V@j dx dt /// M 7? (VU]',E) Ej(Vgoj) dx dy dt
QjeT QT><Y

0Tyl M; :Vuj. - Vjdxdydt
X

= Ej(ijg)Ej(Vujjg)ﬁj(Vgoj) dx dy dt + rq,
QTXY}



UNFOLDING HOMOGENIZATION METHOD APPLIED TO THE BIDOMAIN MODEL

// elappepds(z)dt = // elappcp ds(x) dt + // elappepds(x) dt
FE,T FeT r 7TmAe,T
= /// TL (Lapp.e) T2 (0) ds(y )dxdt+// elopp i ds(x) dt
QpxT sTﬁAs,T
= /// Tb appg Tb( )ds( )dl‘dt-i-?“g,
QTXF

// edep ds(z)dt // e ds(z) dt + // e ds(z) dt
Ler L. r Lo rNAc T

T2(80) T2 (p) ds(y) da dt + 73,
QTXF

//FETEILion(’Us)(PdS(-T) dt = // el ion(ve)p ds(x) dt + // TﬂAETEII jon (Ve ) ds(x) dt
| ///QTxr —71 Jion Us))’]; (p) ds(y) dxdt + ry,
//FeTEIQ,ion(we)SO ds(z)dt // el ion(we ) ds(x) dt + //ETOAETEIZion(wa)@ ds(z) dt
| ///ﬂF (I on102)) TH(0) dis(y) iz dt + 74

L ion (T2 (w)) T2 () ds(y) da dt + 75
QpxT

Due to the above equalities, one obtains the following equivalent “unfolded” formulation of

/// T2 (0rve) T2 () ds(y dq;dt+2/// T2 (M o) T2 (Vuje) T (Vgj) de dy dt
QTXF QTXY

_A///QTXFTb w )T () ds(y dxdt+///QTXF (Illon UE)) () ds(y) da dt
-/

Tb( appa)T( Yds(y)dxdt +r9 — 15 — T4 — T3 —T1.

QTXF
(50)
Similarly, the “unfolded” formulation of (43) is given by:
/// T2 (0w T2 (¢) ds(y) da: dt — /// H(T2(ve), T2 (w:)) T2 (4) ds(y) da dt
QTXF QTXF
Brwep ds(x )dt+5// H (v, w.)pds(x) di (51)
s,TnAs T 1—‘e:,TmAs,T
=Te+ 7.

5. “UNFOLDING” COMPACTNESS

In this section, we establish the passage to the limit in (50) and (51). First, note that by
estimates (44)-(47) obtained above one has

1, -+ ,r7 —>0ase— 0.
Also, by regularity of the test functions ¢ and ¢, there holds

T2p — ¢ and T2$ — ¢ strongly in L?(Qz x T),
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and
T2 pj — @; strongly in L*(Qr x Y;).
Now, consider ¥; and 6; in D(Qr) and ¢; = ;(§) in H},.(Y;) such that fY ¥; = 0 and test

per

equation (50) with functions ¢ = W; +¢e0;1; . where 1;-(z) = ¥(%) (see for . g. [14]). Since
VQD;; = Vx\l’j + €¢j75vx9j + 9]' (V§¢j75),
and thanks to Proposition 2.8 in [14] (see also [26]), there holds

' ©5) — ¥ strongly in L*(Qr x Yj),

7 (
( i) — 0;(2);(€) strongly in L*(Qr x Yj), (52)
E (Vgoj) — VU, +6;Vey; strongly in L?(Qr x Yj),
and T2(¢°) — U strongly in L?(Qr x T),

where ¢ = (¢f — p2)[r., and ¥ = (V; — W, )|q,xr. Hence, to establish the passage to the
limit in (50) and (51), we need to verify that the remaining terms of the equations are weakly
convergent.

Now, making use of estimate (29), there exist u; € L*(0,T; H'(Q)) and @; € L*(0,T; L*(2, H,,.(Yj)))
such that, up to a subsequence (see for instance theorem 3.12 in [14]), the following hold

T (u £) — uy weakly in L*(0, T; L*(Q, H'(Y}))),
TJ(Vu ) = Vu; + Vei; weakly in L2(Qr x Yj).

Thus, since 7¢ (M ;) = M ae. in ©Q X Y}, one obtains (recall the strong convergence (52))

Z/// T2 (M) T2 (Vu§) T2 (Vi) dy da dt
QTXY
— Z /// Mj(VUj + Vgﬂj)(V\Ifj + @-Vg%(f)) dydx dt as e — 0.
e Qr <Y

Furthermore, since
|’7;b(w5)||L2(QT><F) < |Y|1/2€1/2Hw5||L2(pE’T) <C,

then up to a subsequence
TPw. — w in L*(Qp x T).
Consequently, by linearity of I2 jon,

///QTXF Ty ion (T2 (w)) T () ds(y) dar dt — ///QTXF T son ()W ds(y) dz dt.

Similarly, exploiting assumption (9), one obtains

///QTxr ‘ app€ 7;( )ds(y) dz dt — ///QTXrIapp\II ds(y) dz dt.

In order to establish the convergence of 72 (0;v.), first note that
172 (Do) | 2wy < 1Y V2V2 (1800 | or, , < C.
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So there exists h € L2(Q x I') such that 72(0;v.) — h weakly in L?(Q7 x T'). By a classical
argument, one can identify h to d,v Therefore,

///nﬂr T2 (Owe) T2 (¢7) ds(y) da dt — ///QTXF O ds(y) dz dt.

It remains to obtain the passage to the limit in the term containing the ionic function Iy jon.
Indeed due to the nonlinearity, it is difficult to pass to the limit in Iy jon, on the microscopic
membrane surface and one needs to establish the passage to the limit in:

T
lim/ //Il,ion(’ﬁbvs)7;b(g08)ds(y)d:vdt.
e—0 0 OJr

By regularity of ¢°, we have

T2o° — W strongly in L"((0,T) x Q x T).
It remains to show the weak convergence of I jon (T2ve) t0 1 jon(v) in L™/ "=1(Qp xT). There-
fore, we show the strong convergence of T2 v. to v in L?(Qr x T'). Then, by the properties
of I jon We actually obtain the strong convergence of ILion(’];bva) to I jon(v) in LI(Qp x T')

for all ¢ € [1,r/(r — 1)). For this sake, we make use of Kolmogorov-Riesz-type compactness
criterion for the space LP(2, B) that can be found as Corollary 2.5 in [23].

Proposition 5.1. Let Q@ C R™ be an open and bounded set. Let p € [1,00), B be a Banach
space and F C LP(Q, B). Then F is relatively compact in LP(Q2, B) iff

(i) for every measurable set C C U, the set { [ fdx : f € F} is relatively compact in B,
(ii) for all 6 >0 and z € R™ and z; > 0, i = 1,...,n, there holds

sup |72, f — fHLp(Qg,B) — 0, for z =0,
fer

where QF == {x € Qs : x + z € Qs} and Q5 := {x € Q: dist(z,00) > §},
(iii) for 0 > 0, there holds sup ¢ fﬂ\ﬂa |f(z)[Pdz — 0 for 6 — 0.

Fisrt, we prove an estimate on the space translates of the transmembrane potential v, that
is needed later to obtain an estimate on the space translate of 7?(115). Now, we fix open sets
K and K’ such that

KccK ccqQ,
and we let z € R with

|z] < dist(K', 09).
We have the following lemma
Lemma 5.2. Let | € Z® and £ > 0 such that €|l| < |z|. Then the following estimate holds:
e [lve(t,x +&l) — ve(t, @) | 72r, ) < Cél, (53)
where I'c gk =T N K and C is a positive constant.
For simplicity of notation, we use

Tav(t, x) == v(t, x + €l).
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Proof. In this proof, we consider ¢; € H'(£;.) with suppy; C K, for j = i,e. We use the
translations of ¢;, j = i,ei.e. p;(z —el) as test functions in the variational formulation (15).
In the resulting equation, we make the substitution x — = +¢l, and we exploit the periodicity
of the domain to get

5/ O (Te1ve) (i — @e) ds(x Z/ TaM; VTauje - Vjde (54)
I':-NK j,eNK

j=ie
te / Tion (ratves 7o) (05 — 00) () = / rLappe 0 ds().
T'enNK NK

Noting that the last equality is valid for test functions with support in K’ let n € D(K")
be a cutoff function for K, with 0 < n < 1, 7 = 1 in K and zero outside K’. We test the
variational equation for (7 u;. — uj.),j =i, e with

2 . .
w5 =1 (Teluj,s - uj,&), J=1¢€,

we get
cd D2 (rqve — v2)? ds(2) (55)
—+ Z / Tgle,sv'raluj,e — Mj,EVUj,é:) . V<772(Tgluj75 — uj@))dx
j—i.e Q; NK’

+€/ 772 (Iion(TalUsa Tslwe) - Iion(Usa ws)) (Telvs - Us) ds(w)
r.nK’
- / (TetTapp,e — Lapp,e )1 (Tetve — v:) ds(x).
r-nK’'
First, we break up the second term in (55) as follows:

Z / TEZMJ VTauje — M Vu; 5) . V(nQ(Tduj’6 — ujﬁa))dac
Q; .NK’

j=ie

= Z / i (TglMLEVTalU‘j@ — MLEVU]',E) . V(Talu]‘75 — uj75) dz
: Q; .NK’

2n (TglMJ‘,EVTElULE — MLEVuj,E) . (7:€luj7E — ujf) Vndx

(56)

and we estimate T3 exploiting the ellipticity of M; . given in (4):

T1 — Z / 772ij5 (VTElUj@ — Vu]'@) . V(Tslu]"g — ’LLj’{:-) dx
2 (TEZMLE — Mj,E)V(Tslum) . (VTaluj7g — Vuj7g> dx
j=ie 2, NK ) (57)
0-C Z In? (TarMj e — MLE)HLOO(QJ-,EOK’)||V“j,€||L2(Qj,EmK’)

J=e

Y

Y

2
(Qj,NK")
j=t.e
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In the last inequality, we used the mean value theorem to obtain:

[7aM e = Ml oo, iy < el D IIVMS || (g, nrery < ellIC,

J=e

for some constant C' > 0. Moreover, by regularity of n, Cauchy-Schwarz and boundedness of
M; ., we get the following estimate on T5:

T < Celll Y Nlugellm @, .nins (58)

Jj=t.e
for some constant C' > 0. On the other hand, the third term of (55) may be divided into two
terms by making use of (8b) as follows:

5/ 772 <Iion(7-€lv£7 Tslwa) - Iion(vaa wa)) (Tslva - Ua) ds
T-NK'

= 6/ 772 <Il,ion(7_elvs) - Il,ion(vs)) (TEZUE - Us) ds
T-NK’

(59)
+€/ 772 (IQ,ion(Talwe) - IQ,ion (ws)> (Tslvs - Us) ds
T.NK’
= T3 —+ T4.
By monotonicity (6), we estimate T5:
T3 > —€LH77(7'51UE - UE)H%Q(FEOK’)‘ (60)

In addition, using the definition of n and the linearity of Ision (5), Cauchy-Schwarz and
Young’s inequalities, Ty can be estimated by:

|T4’ < EC(HTalws - we”%,?(l"gm[(/) + ||77(Tslvs - Us)”%ﬁ(rgm[{/))’ (61)
for some constant C' > 0. Furthermore, the source term in (55) satisfies the following inequal-
ity:

’/ (Talfapp,s_Iapp7s)772(7'alvs_v<€) ds(:n)’ < CEHIapp,s”L?(FE)||77(7'alvs_“s)”L2(F5r1K’)~ (62)
NK'

Gathering all these estimates, one obtains

d
E% HU(TSZUE - UE)H%Q(FSQK’) < 015’” + O25(||77(T5[’w5 — wE)H%Z(FEﬂK’) (63)
Hln(rerve = vl

By a similar argument, one can also obtain from (16),

e nCreae )y < s (I —2) B, ey (rette ) e ) - (64
By Gronwall’s inequality applied to the sum of (63) and (64), we obtain

elln(rave — ’Us)H%Q(rEmK/) + elln(raqw: — TUe)H?}(rEmK/)

st (Crellft + elln(ravoe = v0.0) 2 rery + Eln(rewo.e = w0, )2 e )

C(T) (=lt] + el 7w, — vo,e

IA

A

= |%2(Fng/) + EHTEZWO,E - wOﬁH%Z(FsmK/))'

Now using the assumption on vp. and wg ., one obtains

elln(reave — UE)H%Z(FSHK’) + elln(rawe — we)”%%remK’) < Celll
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Furthermore, noting that
Hn(TslUs_UE)H%%FEOK’)"‘Hn(Tslws_ws)Hi%rsqu 2 HTslve_UEH%%FsmK)"‘HTelws_WEH%Z(Fngy

one can conclude that (53) holds. O
Now, we state and prove the strong convergence of 72 (v:) to v.

Lemma 5.3. The following convergence holds:
T2(ve) = v strongly in L*(Qp x T),
as € — 0. Moreover,
I ion(T2v2) = I1jon(v) strongly in LY(Qr x T), for q € [1,7/(r — 1)),
ase— 0

Proof. The proof of the lemma is similar to the proof of Theorem 14 in [24] but herein the
domain is not the union of scaled and translated reference cells.

The proof is based on Proposition 5.1.

Condition (iii) follows from estimate (46), since

2
r—2 P

| P de < jon s 7 ([ 17w ds)” < clo s
Q\Qs Q

r—2
T .

To prove condition (i), consider a measurable set A C 2, and define

v5(ty) = /147;b(v5)(t,x,y) dz, for a.e. t € (0,T),y €T.

The a priori estimates obtained on v, imply that v5 is bounded in L2((0, T), HY/2(T")) N H'((0,T), L*(T)).
Then by Aubin-Lions Lemma, the sequence is relatively compact in L2((0,T), L?(T')). Using

the properties of the unfolding operator (see Proposition 4.3) and estimate (44) one can easily

find a constant C' > 0 such that

T
SE12
[ IlBa <c.
Jo
By a similar argument and making use of the estimate on /29,0, one can also show that
1003l 2y < C,

for some positive constant C'.
On the other hand, to obtain a uniform estimate on the L?(0,T; H'/2(T)), we first observe
that

e 2 — |05 2 + Ve 2 .
10530720y = 052y + 052,

Based on the previous estimates, we only need to bound the Hé/ ? seminorm and this is done
as follows. First, we have by Cauchy-Schwarz and Fubini

te[Z] +eyr) — ve(t, e[Z] + ey)|?
v5 ]2 < A/ // vt el = ds ds(ye)dzx.
| A|H3/2(F) <4 a. JrJr Y1 — o3 (y1) ds(y2)

We note that this is equivalent to writing:
€12 x 2
A XU S B S



UNFOLDING HOMOGENIZATION METHOD APPLIED TO THE BIDOMAIN MODEL 25

Since v = (Ui — Uee)| and using the triangle inequality, we get
r

[v§ |2 /(T <2[A\Z/ |u]€t€[ | +e)? 2 )dac

j=te

Now, by the trace inequality which can be found in [2], we find a constant C' > 0 such that

05120720y < CA Z/ et 221+ 2By + IV (8, [ 2] + ) gy )

Jj=t.e

By the chain rule, we have

Vy(u]a(t e[= ]—i—ay)) = EVujg(t e[= ]—i—&?y)

/ IV (1 (8, [ el )dx—/Q leVuse(t,2[ = —)+ en)llzegy de,

€ €

or equivalently
T T 2
| Vst epagyde =2 [ [ (VugeltelZ)+ en) dyda.
. £ J JY; £
Now, using Proposition 4.2-(2), we get
T 2 _ 2 2. 9 12
o 19staie 20 ) g e = Y1 [ (Tuie) o = WVl

One more time, we make use of Proposition 4.2-(2) to obtain:
[ [ we(eeieen) dyae =1 [ wettayae
Ag )/J € Qj,s

WPy < € D [lillzga, )+ 1 Vsl

Jj=t,e

and

Finally, integrating over (0,7") and using the a priori estimates (29) on w;., we obtain the
required result.

It remains to prove condition (ii) of Proposition 5.1 as follows.

Fix e > 0 and let I C Z3, be an index set such that

Q. = Je(y +14).
el
Obviously, we have z € e(Y +1i) < [£] = i. For every i € I we divide the cell e(Y" + 1) into
subsets e(Y +4)* with k € {0,1}3, defined as follows

e(Y +4)k = {x ce(Y +1): 6[95+8~{§}5] = €(i+k)},

for a given ¢ € R? such that & is O(g). Then we have the following identity:

eV +i)= ] ey +i)

ke{0,1}3
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Now, we compute
I T2 (%) — 1772 (%) —
HI7e T2 (%) —

< El,{,e + E2,§,57

( )HL2 (0,T) x5 xT) ( )”L2( (0,7) x (25n€2) xT)

( )HL2 ((0,T) x (5N xT)

where
Eiee = ’\757?(“5) ( )H ((0,7)x Qe xT)’
and

Eyg e o= || T (v°) — = [|7e 72 (v%)17,

( )HL2(0T)>< Q5\Qe)xI) T)x(Q5\Qe)xT)"

We first estimate E ¢ ., making use of the fact that Q. = Uicre(Y + i), and proceeding in a
similar way to [20, 33| as follows:

=3 [ f 2 )l ) s
20 e - t 5(1 +k+ ED + ay) “(t,ei + &?y)‘ ds(y) dx dt
2 ke{o 1}3 o t 5(@ +k+ ED +e€ ) “(t,ei+ 5y)‘ ds(y) dx dt
’Tb5 tx—i—e(k—l—[ ]),y) bvstfcy)’ ds(y) dx dt
ke{o 1}3 e
t x + E [f} + k’)) - Q)E(t,uc)‘2 ds(zx)dt,
ke{o 1}3 c
where in the last inequality we used the identity ¢ = [E] and the integration formula of

5
Proposition 4.3-(3). Moreover, using estimate (53), we obtain

Eree <O([¢] + o).

Therefore, one can conclude that Ej¢. — 0 as £ — 0 uniformly in €, as in [24]. Indeed, to
prove that
Vp >0, Ju > 0 such that Ve > 0,V¢, [¢| < p= E; < p,
one identifies two cases:
(1) € < 7: take = o, then for £ < p, By < p.
(2) & <e:sincee ! € Nand 1 < % < [29] + 1, there are finitely many values e such

p
that € > 5, and for each such ¢; i = 1,--- ,m, Jpu; such that V¢, |{| < p; = Ey <p
by continuity of translation in L2. Take jo = min{y, p11,- - , ttm }. Then the estimate
follows.

Consider now Fj ¢ ., and note that

Eoee < HT{'EZ)( )”L2 ((0,7) % (Q25\ Q) xT)"

Observe that, for € small enough, say ¢ < ¢, 05 C Qa, so Ey¢. = 0. On the other hand, for
g0 < € < 1, since ¢! € N, there exist finitely many ¢ € (o, 1), say {Ej}gnzl, m e N, m < oc.
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Moreover, by continuity of the translation of L? functions, for each p > 0 there exists for
every j, a 3(ej) such that

Eaee < ps VIE| < B(ej)-

Let = min{f3(e1), -, B(em)}, then for all p > 0, [£| < B = Ey¢. < p. Hence, Fr¢. — 0
as & — 0, uniformly in e. This ends the proof of (ii) in Proposition 5.1.
The following result is therefore obtained:

T2(v.) — v strongly in L*(Qg x I),

as € — 0.

Finally, to prove the convergence of the nonlinear term in the ionic function, first note that
from the structure of I ;on and using the properties of the boundary unfolding operator, there
holds

Eb(ll,ion(vs)) = Il,ion(ﬂb(vs)%
then using the estimate
"5(T71)/Tfl,ion(va)||Lr/(r71)(rE,T) <C,
one obtains
172 (Tjon ()| -1 gy < VIO om0 s vy < C.
Hence, since up to a subsequence
T2(v.) = v a.e. in Qp x T,
one gets, using the continuity of I; jon and a classical result (see Lemma 1.3 in[30]),
Dion(T2(ve)) = I jon(v) weakly in L=0(Qp x I).
Moreover, using Vitali’s theorem, one has the strong convergence of I1 jon (72 (ve)) t0 It jon(v)

in LY(Qp x T') for g € [1,7/(r — 1)).
U

Collecting all the convergence results stated above, one obtains the following limiting prob-

lem:
IT| // OV dx dt + Z /// M, [VUj + Vgﬁj][v\lfj + 9jV£¢j]
QT ie QT><1/J'

+IF|// Iz,ion(w)\lfdxdt+|r|// I jon(v) ¥ dz dt (65)
Q Qr
zyry/f Tapp ¥ dz .

Qr

Similarly, one can easily show that the limit of (51) as € tends to 0, is given by

|r|// atwgbda:dt—\l“]// H (v, w)é da dt = 0. (66)
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6. MACROSCOPIC BIDOMAIN MODEL (PROOF OF THEOREM 2.2)

The next step is to obtain the weak formulation of the bidomain equations and the cell
problem. So one needs to formulate the limit problem in terms of u; and u,. alone and hence
find an expression of 4; and 4. in terms of u;, u. respectively. First, to determine the cell
problem, set in (65) ¥;, ¥, and 6. to 0, to get

/// MZ[VUz + Vyﬁz][ﬁzvywz] dy dx dt = 0,
QT X}fi

which corresponds to the classical cell problem obtained in section 2 and it can be shown
that the function @; can be written in terms of u; as follows (4, is defined up to an additive
function in xz, see for instance [14]):

3
R Z Ou;
Uz(t,l',y) :fl(t7$7y)v$uz+f0,l(t)x) - axkfk,l(t7$7y)+f07’b(t7'r)7 (67)
k=1

where the corrector functions (i.e. the components of the function f;) fx; € L>®(Qr; Hy,,.(Y3)),
k=1,2,3, are for a.e. (t,z) € Qp the solutions of the cell problems

—Vy - (MiVy fri) = =V, - (Miey) inY;,
MV fri - i = Mieg - p; on I, (68)
Jri =0, fri Y — periodic.
Y;

The existence and uniqueness of the correctors follow by classical arguments from Lax-
Milgram theorem (see for instance the remark on p. 13-14 of [11] or [35]). Finally, inserting
formula (67) into (65) and setting 6;,¥. and 6. to 0, one obtains the weak formulation of the
macroscopic bidomain model

‘F‘ / OV, dx dt + / M;Vu; - VV¥; + ’F’ // IQJOH(lU)\IJZ‘ dz dt
Qr Qp Qr

iy / / I3 jon (0)0; da dt = [T / / Loy s da dt,

QT QT

(69)

where M; is elliptic and defined by
Y;

Similarly, one can decouple the cell problem in the extracellular domain and define the ho-
mogenized conductivity matrix M..

Remark 6.1. Since the convergence obtained herein is shown up to a subsequence, it is
required to prove uniqueness of the macroscopic problem to guarantee the convergence of the
whole sequence. Indeed, uniqueness of the macroscopic bidomain model has been obtained for
several ionic models, we refer for instance to [9, 12] for the case of phenomenological models
of FitzHugh-Nagumo type and to [41] for physiological models of Luo-Rudy type.
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7. UNFOLDING HOMOGENIZATION TO PHYSIOLOGICAL MODELS

In this section, we extend the homogenization results obtained in the previous sections to

physiological ionic models. So the ordinary differential equation (1d) is replaced by a system
of ODEs for the gating variables w;, [ = 1,--- |k and the concentration variable z.
The kinetics of a general physiological ionic model may be represented by the functions R,
G and oy that satisfy assumptions (A.1)-(A.3), stated below. It can be verified that those
assumptions are satisfied by several gating and ionic concentration variables in Beeler-Reuter
or Luo-Rudy ionic models [41, 8, 31].

(A.1) Define the function R as R(v,w) := (Ri(v,w), ..., Ri(v,wy)) where B, : R* —» R
are globally Lipschitz continuous functions given by

Ri(v,w) = oq(v)(1 — wy) — Bi(v)wy (70)
where oy and §;, l = 1,--- , k are positive rational functions of exponentials in v such that:
0 < ay(v), Bi(v) < Cap(l+ o). (71)

(A.2) The function oy : R x R* x (0, +00) — R has the general form:
Tion (v, w, 2) Z ion(V,wp) + IZ (v, w, z,1n 2) (72)

where I' € C°(R x R*) N Lip(R x [0, 1]¥) and satisfies the condition:

mon

| 10n(v7wl)‘ < 017[(1 =+ ’wl’ + ”U‘), (73)
and I is such that:
€ C'(R x R¥ x R x R) NLip(R x [0,1]* x RT x R),

IOIl

I (v,w,z,Inz) < Cy (14 |v|+ |w| +|2| +1nz), (74)
k

I (v,w,z,Inz) > Cs Z(]v[—i—wl—i-wllnz), (75)
=1

0< Ow) < -1, (1w, 5,) < B(w), (76)

9 .
‘a Fon(vw.2.0)| < Lw). )
O e < Cur(l+ o+ mzl), Vi=1,--,k (78)
8’(1} 10n 4I - ) Y b
8
0< - 1on < 05 I (79)

0z
where ©, ©, L belong to CY(R,RT) and C} y,...,C5 1 are positive constants.

(A.3) The function G € Lip(R x [0, 1]* x R*) is given by:
Gv,w,z) =ai(ag — 2z) — a3l (v,w, z,1n 2), (80)
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where a1, ao, ag are positive physiological constants that vary from one ion to another. In
our case, we only consider z to correspond to the intracellular calcium concentration.
Under those assumptions, the microscopic system that we consider is given by:

—div (M Vuj.) =0in Q.7 :=(0,T) x Qj, (81a)
£(0pve + Tion(Ve, we, 22) — Lappe) =Ly on I'ep :=(0,T) x I, (81b)
Ly = —M; Vu;e - pti = Me Ve, - pte on I'e 1, (81c)

Ow. — R(ve, w:) =0 on I'. 1, (81d)

Orze — G(vz,we, 2c) =0 on I'g 7. (81e)

We augment (81) with no-flux boundary conditions
(Mjo(x)Vuje) -y =0o0n (0,7) x (09 \Te), Jje€{e i}, (82)

and appropriate initial conditions for the transmembrane potential, the gating variables and
the concentration variable

Us((), ) = UO,E(')? ws(oa ) = wO,E(')a 25(0, ) = ZO,e(') on I, (83)

where vy € H1/2(F5), 20, € L?(T'.) and W, € L?(T.)* with 20, > ¢o > 0 for some co > 0
and 0 <wjpg. <lforl=1,--- k.
Analogously to the miscroscopic model with more general FitzHugh-Nagumo dynamics, one
has the following existence result.

Theorem 7.1. Suppose that assumptions (A.1)-(A.8) hold. Ifvo. € HY?(T.), 20 € L*(T¢)
and wo . € L?(T.)* with 20, > co > 0 for somecy >0 and0 <wjo. <1 forl=1,---,k, then
the microscopic problem (81),(82),(83) possesses a weak solution defined as follows: ;. €
L0, T; HY(Qir)), tee € L2(0,T; HY(Qe)), with Joo.natee = 0, ve = (Uie — Ueg) Ir.€

LA(T.7), we € (L2(Tex))*, 2. € L2(Tex), Ove, Oize € L2(Ter), and yw. € (L*(Tep)*
such that

// e0vep ds(x) dt + Z // M; . (z)Vuje - V; dzdt
FE,T Qj,E,T

Jie (84)
+ // elion (Ve, We, ze)p ds(z) dt = // elappe pds(x)dt,
I FE,T

£,

T
/ / Dron. b ds(x) dt — / / Ri(v., w.)p ds(x) di = 0, (85)
FE,T FS,T
forl=1,---,k and

//F Orze¢ ds(a) dt — //F G(ve, we, z:)pds(x) dt = 0, (86)

for all p; € L2(0,T; H () with ¢ := (i — ) |r.€ L*(0,T; HY2(T.)) for j = i,e and
¢ € L*(T.r).

The proof of the theorem follows closely the steps done in the case above of more gen-
eral FitzHugh-Nagumo ionic function type. Using approximation systems and applying a
Faedo-Galerkin method in space, one can obtain the existence of a weak solution for the ap-
proximation systems (similarly to section 4) then by a passage to the limit, the existence for
the microscopic problem is obtained based on some technical results and a series of a priori



UNFOLDING HOMOGENIZATION METHOD APPLIED TO THE BIDOMAIN MODEL 31

estimates that are listed in the sequel but their detailed proofs are available in [10]. We also
refer to [42] where a fixed point approach was used. First, the recovery variables are shown
to satisfy the physiological bounds.

Lemma 7.2. Let w;. € C([0,T], L*(T'.)) and v. € HY(0,T, L*(T'.)) such that for all w €
L2(T.):

a15’11)l,5 w= Ry (Usa wl,s)w7 (87)
Te I

where R(v, w) is defined by (70). Assume that 0 < wo. <1 a.e. inT., then
0<w,.<1, a.e. inLerp. (88)
Secondly, one has to make sure that the concentration variable stays positive.
Lemma 7.3. Let z. € C([0,T],L*(T.)), v € HY(0,T,L*(T.)) and w. € C([0,T], L*(T:))
such that for all w € L*(T;):

Osze w = G(ve, We, 2e)w, (89)
I I

where G(v,w, z) satifies assumption (A.6) above. Let zy : Q — (0,+00) such that:
zo € LQ(FE), 20 >0, a.e. inT..
Then for a.e. (t,z) € [0,T] x ', z > 0.

Thirdly, the concentration variable and its logarithm In z. are proved to be controlled by
the norm of v, in the following sense.

Lemma 7.4. Under the same assumptions as Lemma 7.3, the concentration variable z. sat-
isfies the following estimates for a.e. x € T'e, t € (0,T):

|2 (t, )| < C(1 + |z0.(2)| + [lve(®) [ L2(0,p)),  VE€[0,T], (90)
[z (t, )| < C(1+ [z06(@)] + [v=(t, )] + [[v=(2)]| L2(0,1)) (91)

t
[ 100zl < 01+ znenzoel + laoel + el ) (92)

t
| el < O(Lt ot zod + ol + ooy ). (93)
0

Using the above estimates on z. and w,, one can control the L? norm of Ii,, by the L?
norm of v, and this result will be later used to reach a uniform in € estimate on v..

Lemma 7.5. Under the same conditions of Lemma 7.4, there exists a constant C > 0 (de-
pendent on T') such that

1 Zion (ves we, 2e)[72(p, ) < C(LA+ 0ell72r - (94)

Based on the previous Lemmata, and proceeding in a similar way as in Section 5, one can
easily obtain the following estimates on the solutions to the microscopic problem that are
required for the passage to the limit as ¢ — 0 (the detailed derivation can be found in [10]).
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Lemma 7.6. There exist constants C1, Co and Cs independent of € such that

tg&%(”ﬁ%”%%re) + IVewe| 2.y + H\@ZsH%%rS)>S C1, (95)
UjellL2(0,T;HY (Q5,6)) = ©25
> el ) <C (96)
j=i.e
IVedwe L2, vy + IVEOwell Lo (r, pyr + [1VEDze | L2(r. 1) < Ca, (97)

In order to exploit the unfolding method, the weak formulation is written in its “unfolded”
form as in section 4.2 above. Equation (84) becomes:

/// T2(00) T2 () ds(y dxdt+2/// T2 (ME)TZ (V)T (V) dy da dt
QTXF QTXY
[ T (onlves0e,20) T2 dsty) o
QTXF

///QTerb( app.e) T2 () ds(y) da dt + 1o,
(98)

where r1g is considered as a remainder term which involves integrals over the region A, whose
measure tends to zero as ¢ — 0. Similarly, the “unfolded” formulations of (85) and (86) are
given by:

//ATXsz(ath,s)Eb(¢ ) ds(y d:cdt—///QTXF (Ruves w20 ds(o) dodt o0

=T11,

fori=1,---,k and

///Qr (012272 (6) ds(y) der di ///QF G vz, we, 2)) T2 (¢) ds(y) da di

= T12,
(100)
where 711 and rio are remainder terms that tend to zero as ¢ — 0.
Now, making use of Lemma 7.6, one can repeat the arguments in section 5 to show that there
exist u; € L*(0,T; H'(Q)) and 45 € L*(0,T; L*(Q, H},.(Y;))) such that, up to a subsequence,
the following hold

J (u5) — u; weakly in L2(0,T; L*(Q, H'(Y;))),
T (Vu§) = Vu; + Vyi; weakly in L*(Qr x Yj).

Thus, one obtains
S mes T e
i,e QrxYj
— Z /// Mj(Vuj + Vyﬂj)(v\l/j + ijy¢j(y)) as e — 0.
e QrxY;

Furthermore, one can also show that

H7}b(%)HL2(QTxF) + ”7gb<'w6)”L2(QT><I‘)k + H7Zb(ze)HL2(QTxr) <,
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then up to a subsequence

Thv. — v in L2(Q7 x T),

TPw. — w in L?(Qr x ¥,

Tlze — zin L2(Qr x T).
Also, note that due to the a priori estimates on the time derivatives (Lemma 7.6), there exists
a constant C' > 0 such that

172 (0we) lz2(p <1y + I T2 (Oiwe)ll 2 (pxrys + I T2 (Orze) | 120 xT) < C
consequently one can show as in section 5, that

Eb(atvs) - at’l), in LZ(QT X F)7
7;1)(875'[1)5) — atw in LQ(QT X F)k,
T2(04ze) — Oyz in L2(Qp x T).

Similarly, exploiting assumption (9) on the source term I,y -, one obtains

/// 5 appsT( )dS d$dt—>/// Iapp\I/dS )d.%'dt
QTXF QTXF

It remains to establish the passage to the limit in the nonlinear terms involving the ionic
function Ij,, and the functions R and G appearing in the ODE system. Indeed, making use
of assumptions (A.1)-(A.3), of Lemma 7.5 and of Lemma 7.6, there exists a constant C' > 0
such that

1/2 1/2 1/2 <
H Tion (e, we, 22) (T ) + HE R(v.,w,) — + HE G(ve,we, 2:) T C.
Consequently,
b(r.
‘7; (IIOII(UE)"UE’ZE))‘ L2(QpxT) € (R(Ueawa))‘ L2(QpxT)k € (G(Usawsaze)) ‘ L2(QpxT) —

Moreover, based on definition 49 of the boundary unfolding operator, one can do the following
identifications for a.e. (t,z,y) € Q. x I':

T2 Iion(vevwavzs)> = Lon< T2 (ve), T2 (w )Eb(zs)>,
7? R(”saws)) = R( ab(va)a ab<'we)
and 7;b<G(v€,w€,zs)> = ( 2 (ve), T2 (we), Tb(zs))

Hence, there exist functions [i,n, R and G such that up to a subsequence, the following
convergences hold

Tion (T (vg), b('ws), T2(22)) = fion, i 17(Qr x T),
R, in L*(Qp x ),
and G(7;( ),T;(wg) T2 (2 )) G, in L2(Qp x ).
Therefore, to end the passage to the limit, it remains to relate the functions Tion, R, and G

to Lion(v,w, 2), R(v,w) and G(v,w,z) where v, w and z are the respective limits of 72 (v.),
T>(w.) and T2(z.). This is done in the following proposition.

<C
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Remark 7.1. One possibility is to proceed analogously to Section 6 and prove the strong
convergence of T2(v.), T?(w.) and T?(z.). This can be done exactly as in Section 6 for
T2(v.). However, it seems out of reach to prove the strong convergence of 72(w.) and 72(z:)
by a similar argument.

Proposition 7.7. Suppose that assumptions (A.1)-(A.3) are satisfied and let v, uje, j =
iye, w. and z: be weak solutions of the microscopic system (84)-(86) as given in Theorem
7.1. Then there holds

I:lon - Iion(’l),w,Z),
R = R(v,w)
G = G(an7z)7

where v, w, z, fion, R and G are the limits of 7?(115), ﬁb(ws), 7;”(25), ’7;1’ (Iion(vs,we,z5)>,
7?’(R(v€,w€)> and T2 (G(ve,wg,zs)) respectively.

Proof. Due to assumptions (A.1)- (A.3), in particular the Lipschitz conditions, one can prove
that there exists K; > 0 such that

(Lion(v1, w1, 21) — Lion(v2, w2, 22))(v1 — v2) — (R(v1, w1) — R(v2, ws)) - (w1 — wy)
—((G(v1, w1, 21) — G(v2, w2, 22)) (21 — 22) = —K(Jvr — vaf* + w1 — wal? + |21 — 22%).
(101)
To obtain the result, we proceed as in [1, 19] for 2-scale convergence in nonlinear terms. Using
the formulation of the unfolded equations (98)-(100) with test functions e **u; ., e~ *w,. and
e~z respectively, then integrating by parts in time and adding the resulting equations one
has

k
1 1 1 1
S NIT @R + 5 ST o)l + e MITH e Bs — 5o I (we0) s
=1
k
e SR w0 s — e M TR ) 2
9 e l,e,0)11 L2 2 e \*e,0)1l 2

=1
t

> e JL, LT (Vuie) T (Vo) dy s

b ] BT T ) T T 0 dst) d + 31T ) s

b [ R ) T dsta)de + lgjj T2 ) 32] ds
b ] G0 T ) T T ) e+ 1T ) ds

" t
- / e // ﬁb(Iapp,e)’Eb(Us) ds(y) dx ds + / e_AS(Tlo + 711+ r12) ds.
0 QxT 0
(102)
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By (101), observe that one can take A large enough so that the following inequality holds

1

_ L
e T (ve) — T2 (%)IILzJr 5€ ATZHTZ’ wie) = T2 (We) 72 + 5e T (ze) = T2(0:)72

2
+ Z / A / /Q T (Vuje — Vpie) T2 (Vuje — Vo) dy d dt
xY

+ /0 e //er 10n 'Us vﬁ(wa) T( ))—Iion(ﬁb(we),72”(%),7?(95))

(TH(we) — T2(p0)) ds(y) de + | T2(ve) — T2 2] dt

T _

L[] BT ). T ) = R, T - (T w) = Towa)) ds(y) da
+ AT TR () — T2 (o) |32 | dt

T _
b [N ] G0 T w0) T ) - G T, THO:))

0 - QxT

(TH(22) — T(62)) ds(y) de + 3T (z2) — T(62)|2%] dt > 0

(103)
We want to use (102) to simplify the previous inequality. We introduce the following notation:

T 1 1 k
AT = / ekt/ Eb(lapp,a)zb(va) ds(y) dx dt + 7H7;b(v870)||%2 +5 Z ||7;b(wl,a,0)||2L2
0 QxT 2 2=
1 T
+§H7;b(zs,o)|!%2 + /0 10+ + ),
D = e / / () + T (we) - T2ape) + T o) T2(6)) ds(y) de
QxTI

+Z [ e / M?z (M) T2 (V (032 - T (Vi) dy dadt,

k
1 _
B = e (|7 e) I + 217 wzauiﬁuz”(e@rriz)

+Z/ . //Qxy T (Vi) - T2 (Vgjz) dy da dt

o / > //Q (T ) T ), T e T )
Tion(T2(02), T2 (4.), T2(6 >><7;b<va>—7;b<eoe>>—A”@b(vemb«oe))ds(y)dw+%|mb<eoa>ui2 dt,

e 7” T2(w.)) - T2 b b (T (w.) — T2

—m;b(wa) - 7;%)) ds(y) do + 5 SRl
=1
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and

T
= [ N[ G T T T + GT ), T ), TH60)
0 QxT

(T2 (ze) = T2(0e)) — T2 () T2 (6e) ds(y) d + %Ilﬁb(95)||2m dt.
Substituting (102) into (103), we obtain
A* —2D +E*+ I+ RF+ G > 0. (104)
Now, we set for any positive scalar 7, the following test functions

wl,s(ta 'CC) — %Z,O(taxv %) —li_ T’(/}l(t“’ﬂ, %)7 eé(ta {,U) — 00(t7$7 %) + Te(t,.%'7 %)7
(p?(t,l’) =¥ (t7$) + E(pj(t,x, %) + T(pj(t, :E), ¥* = (szs - (pi)‘Fe‘

Note that the following convergence results hold strongly in L?(Qp x I'):
T2 (o) = o, T2(b) =, T2(00) = 0o, TEO) =0, T2(¢°) = ¢° + 7.
Moreover
T205 = @) + 15 Te5) = ¢itz,y),  TZVE5) = V(] +70;) + Vyej,

strongly in L?(Qr x Yj), j = i,e. We pass to the limit in (104), showing the limit of each
term separately.

AO = lim5_>0 AE

T k
—A ’F’ 2 2 2
= |F|/0 e t/QIapp,eUdf’?dt+2(||UOHL2(Q) +;|wl,0”L2(Q)+ ||ZOHL2(Q))~

DY = lim. D¢

_ \l;\e_xt/ (v((poJrTgo)er.(¢0+7¢)+z(90+79)) dx

+) /0 e M / - M;(Vuj + Vi) (V(0) + V) + Vyeh) dy da,
i,e J

EY = lim E°

e—0

T k
= ‘Q‘e—”’(nwo + 7o) D2y + D (W0 + 70) (1) 22y + 16° + 70)(D)32(qy )
=1

T
w5 [ [ M o)+ Vied) - (VS + i) + V) dy o
ie XX
I = lim._oI°
T
= / e M [// —I(° +190) — (Iion(goo + 70,1y + T, 0 + 70) (v — ©° — T) ds(y) dx
0 QxT
AT
N [ o + ) da+ 21+ Tl
Similarly, the limits of R® and G® can be obtained to get from inequality (104)

A —2D% + EO + 14+ R+ GY > 0. (105)

This last inequality, being true for any test functions go?, cp}, 10, 6°, can be shown to be true
by a density argument for u;, u;, j = i,e, v, w and z. Consequently, one can simplify (105)
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using (102), to obtain
/ L (antot s iz 4 70) = D+ (R mpw -+ 70) = R) -
QxI

+HGw+To,wH TV, 2+ T0) — G)Q) dzdydt + O(1%) > 0

Dividing by 7 and then letting 7 tends to 0, we find that for all test functions ¢, ¢ and 6,
there holds

T
/ e N // (Iion(v,w, z) =Dy + (R(v,w) — R) -9
0 JOxI ~
H(G (v, w,2) — G)e) dwdydt > 0,
Using —, —1 and —@ for ¢, 1 and 6 one also gets
T .
/ e M // ([ion(v, w,z)— e+ (R(v,w) — R) -9
0 QxT -
+(G(v,w, z) — G)H) dxdydt <0,
which gives the result of the proposition. U

Collecting all the convergence results stated above, one obtains the following limiting prob-

lem:
’F’ // OV dx dt + Z /// M; [Vu]' + Vyﬁj][V\Ifj + vayzbj]
o e 0 7 OTXY (106)
+|F|// Tion (v, w, 2)¥ dx dt = |F|// Lpp ¥ dz dt,
QT QT
]F]/ Orwodx dt — |T| / R(v,w)pdxdt =0, (107)
QT QT
and
|| // Orz¢pdx dt — || // Gv,w,z)pdrdt =0. (108)
QT QT

Finally, repeating the argument of section 6 one can easily decouple the limit equations to
get the equations of the macroscopic bidomain model (as (69)):

1IN // OV, da;dt—i—/ M;Vu; - VU; + || // Tion (v, w, 2)V; dz dt
& o o (109)

= ‘F|// LV dx dt,
Qp

where M; is elliptic and defined by

M; :Z/Y <M¢+MNyfi>,

i

in addition to the corresponding cell problem given by (68).
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