On the quantitative isoperimetric inequality in the plane with the barycentric distance - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

On the quantitative isoperimetric inequality in the plane with the barycentric distance

Chiara Bianchini
  • Fonction : Auteur
  • PersonId : 884405
Antoine Henrot
  • Fonction : Auteur
  • PersonId : 831020

Résumé

In this paper we study the following quantitative isoperimetric inequality in the plane: $\lambda_0^2(\Omega) \leq C \delta(\Omega)$ where $\delta$ is the isoperimetric deficit and $\lambda_0$ is the barycentric asymmetry. Our aim is to generalize some results obtained by B. Fuglede in \cite{Fu93Geometriae}. For that purpose, we consider the shape optimization problem: minimize the ratio $\delta(\Omega)/\lambda_0^2(\Omega)$ in the class of compact connected sets and in the class of convex sets.
Fichier principal
Vignette du fichier
28mars.pdf (360.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02090603 , version 1 (04-04-2019)
hal-02090603 , version 2 (26-07-2021)

Identifiants

  • HAL Id : hal-02090603 , version 1

Citer

Chiara Bianchini, Gisella Croce, Antoine Henrot. On the quantitative isoperimetric inequality in the plane with the barycentric distance. 2019. ⟨hal-02090603v1⟩
129 Consultations
148 Téléchargements

Partager

More