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ON THE QUANTITATIVE ISOPERIMETRIC INEQUALITY IN THE PLANE WITH

THE BARYCENTRIC DISTANCE

CHIARA BIANCHINI, GISELLA CROCE, AND ANTOINE HENROT

Abstract. In this paper we study the following quantitative isoperimetric inequality in the plane: λ2
0(Ω) ≤

Cδ(Ω) where δ is the isoperimetric deficit and λ0 is the barycentric asymmetry. Our aim is to generalize
some results obtained by B. Fuglede in [10]. For that purpose, we consider the shape optimization problem:
minimize the ratio δ(Ω)/λ2

0(Ω) in the class of compact connected sets and in the class of convex sets.

1. Introduction

In the last thirty years quantitative isoperimetric inequalities have received much attention in the lit-
terature. Several distances between a set and the ball of same measure have been proposed to establish
quantitative isoperimetric inequalities, where the isoperimetric deficit

δ(Ω) =
P (Ω)− P (B)

P (B)
, |B| = |Ω|

majorizes a power of such a distance. In 1989, Fuglede [9] used the Hausdorff distance of a set Ω from
the ball of same volume centered at the barycentre of Ω. He called it the uniform spherical deviation. He
proved a series of inequalities for convex sets and nearly spherical sets, that is, star-shaped sets with respect
to their barycentre (which may be taken to be 0) written as {y ∈ Rn : y = tx(1+u(x)), x ∈ Sn−1, t ∈ [0, 1]},
where u : Sn−1 → R positive Lipschitz, with ‖u‖

L∞ ≤ 3
20n and ‖∇u‖

L∞ ≤ 1
2 . The same inequalities hold

for a more general family of sets, as showed in [12], where the minimum of the Hausdorff distance of a set
Ω from the ball of same volume as Ω, among all balls of Rn, is used.

L. E. Fraenkel proposed the now called Fraenkel asymmetry to enlarge the family of sets for which a
quantitative isoperimetric inequality can hold:

λ(Ω) = inf
y∈Rn

|Ω∆By|
|Ω|

, |By| = |Ω| .

This distance can be seen as an L1 distance between Ω and any ball By, centered at y ∈ Rn, with same
measure as Ω. On the contrary, the Hausdorff distance is in some sense an L∞ distance between sets. Many
mathematicians studied quantitative isoperimetric inequalities with the Fraenkel asymmetry, establishing
sharp inequalities (see for example [14], [15], [1], [7], [13], [4], [11], [6]) and even existence of an optimal set
for the optimization problem of the ratio between the isoperimetric deficit and the square of the Fraenkel
asymmetry (see [5] and [2]).

In the spirit of the Fraenkel asymmetry, Fuglede proposed in [10] the barycentric asymmetry, which is
obviously much easier to compute than the Fraenkel asymmetry:

λ0(Ω) =
|Ω∆Bx|
|Ω|

where Bx is a ball centered at the barycentre x of Ω and such that |Ω| = |Bx|. We recall that the barycenter
of a set Ω is defined as

1

|Ω|

∫
Ω
x dx .

Fuglede proved that there exists a positive constant (depending only on the dimension n) such that

(1) δ(Ω) ≥ C(n)[λ0(Ω)]2 , ∀Ω ⊂ Rn convex .
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In this paper we propose two kinds of generalizations of Fuglede’s results [10], in dimension n = 2.

(1) We will be able to prove that there exists a strictly positive constant C such that inequality (1) holds
for compact connected sets (see Section 3). As already observed by Fuglede, the connectedness
assumption is necessary (cf. Remark 3.4).

(2) In the class of convex sets, we will prove the existence of a minimizer of the ratio δ(Ω)
λ2

0(Ω)
(see Section

4). We will also study the regularity of the optimal set in Section 5 and write different kinds of
optimality conditions.

We would like to make some observations about the existence and the shape of an optimal set for the

minimization of δ(Ω)
λ2

0(Ω)
in the plane.

- For the moment we are not able to prove the existence of an optimal set for the minimization

of δ(Ω)
λ2

0(Ω)
among compact connected sets, as explained in Remark 3.3. However we formulate a

conjecture about its shape.
- Among convex sets, our conjecture is that the optimal set is a stadium, the same found in [1] for

the minimization of δ(Ω)
λ2(Ω)

. In Section 5 we will prove that if the optimal set is a stadium, then it

is the minimizer of δ(Ω)
λ2(Ω)

.

- In [2] our aim was to compute the infimum of δ(Ω)
λ2(Ω)

. If one can compute the infimum of the

ratio δ(Ω)
λ2

0(Ω)
then an estimate from below of the infimum of δ(Ω)

λ2(Ω)
follows (since λ(Ω) ≤ λ0(Ω)).

As observed by Fuglede [10], an estimate from below of the infimum of δ(Ω)
λ2(Ω)

is given in Lemma

2.1 of [14]: one has δ(Ω)
λ2(Ω)

≥ 0.02 for every Ω ⊂ R2; see also [7] for an estimate in any dimension.

However, we think that one should get a better estimate than the preceding ones (see our conjecture
in Remark 3.3).

2. Preliminaries

We denote by Ec the complementary set of E. We denote by Eε the ε−enlargement of E, that is,
{x ∈ R2 : d(x,E) ≤ ε} where d is the euclidean distance. We collect here several results which will be
useful in the sequel.

For the isoperimetric deficit we will consider the perimeter in the Minkowski sense:

P (Ω) = lim
ε→0

(|Ωε| − |Ω|)/ε .

We will explain later in Remark 3.4 why this notion of perimeter is adapted to our problem and why the
classical perimeter in the sense of De Giorgi is not suitable here.

Let Ω ⊂ R2 be open and bounded. Let K(Ω) be the set of all compact connected subsets of Ω. We
recall that the Hausdorff distance between two sets K1 and K2 in K(Ω) is defined by

dH(K1,K2) := max

®
sup
x∈K1

dist(x,K2), sup
x∈K2

dist(x,K1)

´
,

with the conventions dist(x, ∅) = diam(Ω) and sup ∅ = 0. K = ∅ and dH(∅,K) = diam(Ω) if K 6= ∅.
We recall the classical Blaschke’s Theorem (cfr. Theorem 2.2.3 in [18]):

Theorem 2.1. Let {Kn} be a sequence in K(Ω). Then there exists a subsequence which converges in the
Hausdorff metric to a set K ∈ K(Ω).

Theorem 2.2. Let {Kn} be a sequence of compact convex sets converging in the Hausdorff metric to a
set K. Then K is compact and convex.

We will also use the following semicontinuity result, analogous to the Golab Theorem for the Minkowski
perimeter in the plane, proved by Henrot and Zucco in [19]:

Theorem 2.3. Let {Kn} ⊂ R2 be a sequence contained in K(Ω) converging to a set K ∈ K(Ω) in the
Hausdorff metric. Then

P (K) ≤ lim inf
n→∞

P (Kn).
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We will also use the following consequences of the Hausdorff convergence of sets (see Proposition 2.2.21
of [18]). Here χK denotes the characteristic function of a set K.

Proposition 2.4. Let Kn,K in K(Ω). If Kn → K in the Hausdorff metric, then

(1) |Kn \K| → 0
(2) χK ≥ lim supn→∞ χKn a.e.
(3) If χKn → χ in L1(Ω) (or even weak-star in (L1, L∞)), then χ ≤ χK .

We also recall a compactness result about the L1 convergence of sets, that is, the L1 convergence of
characteristic functions of sets. PDG denotes the De Giorgi perimeter.

Proposition 2.5. Let Kn be a sequence of sets contained in an open set with finite measure, such that
PDG(Kn) + |Kn| is uniformly bounded. Then there exists a set K such that Kn → K in L1, up to a
subsequence.

For the proof, see [18].

Remark 2.6. We also recall that PDG(K) ≤ P (K) if K ⊂ R2 is a compact connected set, as remarked
in [19].

We recall the following result proved in [2]. There the notion of De Giorgi perimeter was used to define
the isoperimetric deficit, but the same results hold with the notion of Minkowski perimeter:

Theorem 2.7. Let {Ωε}ε>0 be a sequence of planar sets converging to a ball B in the sense that |B∆Ωε| →
0 as ε→ 0. Then

inf

®
lim inf
ε→0

δ(Ωε)

λ2(Ωε)

´
=

π

8(4− π)
.

We will use the following results in the minimization of δ(Ω)
λ0(Ω)2 among convex sets.

Theorem 2.8. There exists an optimal set for the minimization problem

inf
K⊂R2convex

δ(K)

λ2(K)
.

The infimum is realized by an explicitely described stadium S and min
K⊂R2convex

δ(K)
λ2(K)

= δ(S)
λ2(S)

≈ 0.406.

For the proof see [1]. See also Remark 5.5.

Remark 2.9. In the sequel we will use the set D given by two balls of area π
2 , connected by a segment

whose length is equal 2. We will call it dumbbell. We observe that its Minkowski perimeter counts twice
the length of the segment and therefore

δ(D)

λ0(D)2
=

√
2− 1

4
+

1

2π
≈ 0.26 <

δ(S)

λ2
0(S)

≈ 0.406 ,

where S is the stadium of the above theorem.

We will use nearly spherical sets, studied by Fuglede in [9]. Let us consider the star-shaped sets
E = {y ∈ R2 : y = tx(1 + u(x)), x ∈ S1, t ∈ [0, 1]}, with u : S1 → (0,+∞) Lipschitz. Assume that the
barycenter of E is 0 and |E| = π. Let B be the unit ball centered at 0. Then, it is straightforward to
check:

|E∆B| = 1

2

∫ 2π

0
|(1 + u)2 − 1| ,

H1(∂E) =

∫ 2π

0

»
(1 + u)2 + |u′|2 ,∫ 2π

0
cos θ(1 + u)3 = 0 =

∫ 2π

0
sin θ(1 + u)3 ,

∫ 2π

0
(1 + u)2 = 2π .

We will also use the the following result by Fuglede (Lemma 2.2 in [9]):
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Theorem 2.10. Let Kn be a sequence of convex compact sets of area π, converging in the Hausdorff metric
to the unit ball B, written in the form Kn = {y ∈ R2 : y = tx(1 + un(x)), x ∈ S1, t ∈ [0, 1]} where un is a
Lipschitz function. The following estimate holds:

‖u′n‖L∞ ≤ 2
1 + ‖un‖L∞

1− ‖un‖L∞
‖un‖

1
2
L∞ .

The following result has been proved in [17]:

Lemma 2.11. Let R be a real function such that

∫ 2π

0
R(t) sin(t) =

∫ 2π

0
R(t) cos(t) = 0. Then a solution

of 

h′′ + h = R

h 2π-periodic∫ 2π

0
h(t) sin(t) =

∫ 2π

0
h(t) cos(t) = 0

is

(2) h(θ) =

∫ π

−π
G(t)R(θ + t)dt , G(t) =

1

2

Ç
1− |t|

π

å
sin |t| .

In the next result we recall the Riesz inequality, about the symmetric decreasing rearrangement for
functions. We will consider functions defined on symmetric intervals A ⊂ R with respect to the origin.
For a bounded function u we define

u∗(0) = ess sup(u);

u∗(s) = inf{t : |{y : u(y) > t}| < s} , s > 0 .

The following properties of the symmetric decreasing rearrangement are a direct consequence of the defi-
nition.

Proposition 2.12. Let u, v be two bounded functions on a symmetric interval A ⊂ R with respect to the
origin. Let c ∈ R. Then

(3)

∫
A
u =

∫
A
u∗

(4) (u+ c)∗ = u∗ + c

(5) u ≤ v a.e.⇒ u∗ ≤ v∗ a.e.

The following Riesz inequality is classical, but generally stated for positive functions. For sake of
completeness we prove the following version.

Theorem 2.13. Let f, g, h : [−T, T ]→ R be three bounded functions and let g be 2T -periodic. Then∫∫
[−T,T ]2

f(t)g(t− θ)h(θ)dtdθ ≤
∫∫

[−T,T ]2
f∗(t)g∗(t− θ)h∗(θ)dtdθ .

Proof. In [16] the inequality∫∫
R2
f1(t)f2(t− θ)f3(θ)dtdθ ≤

∫∫
R2
f∗1 (t)f∗2 (t− θ)f∗3 (θ)dtdθ

was established for positive f1, f2, f3 functions, vanishing at infinity. This inequality can be applied to the
integral

I =

∫∫
R2

[f(t) + cf ][g(t− θ) + cg][h(θ) + ch]dtdθ ,

where cf , cg, ch are three constants such that f(t) + cf , g(t) + cg, h(t) + ch are positive and extended by 0
for |t| ≥ T . Therefore I ≤ I∗, where

I∗ =

∫∫
R2

[f(t) + cf ]∗[g(t− θ) + cg]
∗[h(θ) + ch]∗dtdθ =

∫∫
[−T,T ]2

[f(t)∗ + cf ][g∗(t− θ) + cg][h
∗(θ) + ch]dtdθ ,
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by (4). We observe that

I =

∫∫
[−T,T ]2

f(t)g(t−θ)h(θ)dtdθ+

∫∫
[−T,T ]2

f(t)g(t−θ)chdtdθ+
∫∫

[−T,T ]2
f(t)h(θ)cgdtdθ+

∫∫
[−T,T ]2

f(t)cgchdtdθ

+

∫∫
[−T,T ]2

cfg(t− θ)h(θ)dtdθ+

∫∫
[−T,T ]2

cfg(t− θ)chdtdθ+

∫∫
[−T,T ]2

cfcgh(θ)dtdθ+

∫∫
[−T,T ]2

cfcgchdtdθ ,

and

I∗ =

∫∫
[−T,T ]2

f∗(t)g∗(t− θ)h∗(θ)dtdθ +

∫∫
[−T,T ]2

f∗(t)g∗(t− θ)chdtdθ +

∫∫
[−T,T ]2

f∗(t)h∗(θ)cgdtdθ

+

∫∫
[−T,T ]2

f∗(t)cgchdtdθ +

∫∫
[−T,T ]2

cfg
∗(t− θ)h∗(θ)dtdθ +

∫∫
[−T,T ]2

cfg
∗(t− θ)chdtdθ

+

∫∫
[−T,T ]2

cfcgh
∗(θ)dtdθ +

∫∫
[−T,T ]2

cfcgchdtdθ .

By the periodicity of g and property (3), the i-th term of I is equal to the i-th term of I∗, for i ≥ 2. We
deduce that ∫∫

[−T,T ]2
f(t)g(t− θ)h(θ)dtdθ ≤

∫∫
[−T,T ]2

f∗(t)g∗(t− θ)h∗(θ)dtdθ .

�

Theorem 2.14. Let K ⊂ R2 be a compact connected set. Then D(K) ≤ 1
2P (K), where D(K) is its

diameter and P (K) is its Minkowski perimeter.

Proof. We recall that D(K) = D(coK), where coK is the convex hull of K. Since coK is compact and
convex, then D(coK) ≤ 1

2P
DG(coK) (see for exemple [23]), where PDG denotes the general notion of

perimeter in the sense of De Giorgi. Now, by [8], PDG(coK) ≤ PDG(K). Finally, by section 2 of [19], one
has PDG(K) ≤ P (K). �

3. Minimization of δ(Ω)
λ2

0(Ω)
within compact connected sets

In this section, we consider compact connected sets of positive measure (in order the shape functionals
δ and λ0 be well-defined). We are going to prove the following result.

Theorem 3.1. There exists C > 0 such that the inequality λ2
0(K) ≤ Cδ(K) holds for any connected

compact set K ⊂ R2.

In the proof we will use the following simple lemma:

Lemma 3.2. Let B1 and B2 be two balls such that their area equals π and the distance between their
centers equals a ≤ 2. Then

dL1(B1, B2) = 4a arcsin

Å
a

2

ã
+ 2a

 
1− a2

4
= 4a+ o(a).

Proof. Up to a rotation we can assume that B1 = B(0,0) and B2 = B(a,0), where B(a,0) denote the ball of
area π centered at (a, 0), 0 ≤ a ≤ 2. Let τ = arcsin(a/2). The quantity dL1(B(0,0), B(a,0)) is equal to 4
times the area of the domain whose boundary is composed by the following three arcs:

(1) (a+ cos t, sin t), t ∈ (0, α), α = π
2 + τ ;

(2) (cos t, sin t), t ∈ (0, β), β = π
2 − τ ;

(3) (t, 0), t ∈ (1, 1 + a).

By Green’s theorem, the area of this domain is given by

1

2

∫ π
2

+τ

0
(a+ cos τ) cos τ + sin2 t− 1

2

∫ π
2
−τ

0
1 + 0 = τ +

a

2
cos τ .

As a→ 0, dL1(B(0,0), B(0,a)) ≈ 4a. �

We are now going to prove Theorem 3.1.
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Proof. Let Kn be a minimizing sequence, that is,
δ(Kn)

λ2
0(Kn)

→ inf
E

δ(E)

λ2
0(E)

. Without loss of generality, we can

assume that all the sets Kn have area π. By Theorem 2.8 one has

δ(Kn)

λ2
0(Kn)

≤ δ(S)

λ2
0(S)

=
δ(S)

λ2(S)
≈ 0.406 ,

where S denotes the stadium of Theorem 2.8. Since λ0(E) ≤ 2 for any set E, we get

(6) P (Kn) ≤ 16.6 .

Therefore the sets Kn are all contained in a fixed ball, since they are connected and their perimeter is
uniformly bounded. Theorem 2.1 gives us the existence of a connected compact set towards which Kn

converges in the Hausdorff metric. Now, there can be two possibilities:

(1) Kn converges to a ball B in the Hausdorff metric;
(2) Kn converges to a set K different from a ball in the Hausdorff metric.

In both cases we are going to prove that lim inf
n→∞

δ(Kn)

λ2
0(Kn)

> 0. This will imply our result.

(1) In this first case we can assume that δ(Kn) → 0 and λ(Kn) = 2εn → 0, as n → ∞. By Theorem
2.7 one has

δ(Kn) ≥ 0.45 · 4ε2
n .

We are now going to prove that

(7) |λ(Kn)− λ0(Kn)| ≤ 4A

π
εn

for some explicit constant A > 0. Therefore

δ(Kn)

λ2
0(Kn)

≥ δ(Kn)Ä
λ(Kn) + 4A

π εn
ä2 ≥ 1.8Ä

2 + 4A
π

ä2 ,
which gives the desired estimate in the case of a minimizing sequence Kn converging to a ball in
the Hausdorff metric.

To prove (7) it is sufficient to find a positive constant A such that

(8) |Gn − Fn| ≤ Aεn
where Gn is the barycentre of Kn and Fn is the centre of an optimal ball for λ(Kn). Indeed, by
the triangle inequality,

dL1(Kn, BGn) ≤ dL1(Kn, BFn) + dL1(BGn , BFn) ,

where BFn is an optimal ball for the Fraenkel asymmetry. This inequality together with (8) and
Lemma 3.2 imply (7).

We are now going to prove (8), which will end the proof of this case. We can always assume
that an optimal ball for the Fraenkel asymmetry is centered in 0. We are now going to estimate

xGn1 =
1

π

∫
Kn

x1dx1dx2. Writing the last integral on (Kn \ B) ∪ B \ (B \ Kn) and recalling that

1

π

∫
B
x1dx1dx2 = 0, we get

|xGn1 | =
1

π

∣∣∣∣∣
∫
Kn\B

x1dx1dx2 −
∫
B\Kn

x1dx1dx2

∣∣∣∣∣ ≤ 1

π

∫
Kn\B

|x1| dx1dx2 +
1

π

∫
B\Kn

|x1| dx1dx2 .

By using Theorem 2.14 to estimate the first of the last two terms, we get

|xGn1 | ≤
8.3εn
π

+
εn
π

=
9.3εn
π

since P (Kn) ≤ 16.6 as observed above. The same estimate can be obtained for |xGn2 |. Therefore

|Gn| ≤
√

29.3εn
π and (8) is proved.
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(2) We are going to analyse the case where Kn converges to a connected compact set K (in the
Hausdorff metric) different from a ball.

Since the sets Kn are connected and their perimeter is uniformly bounded, they are all included
in a ball. Therefore there exists a set K̂ such that χKn → χK̂ in L1 and |K̂| = π, by Proposition 2.5

and Remark 2.6. We are going to prove that K̂ = K (we note that the only Hausdorff convergence
does not allow us to say that |K| = π).

By Proposition 2.4 (3) applied to Kc
n et Kc, we have

(9) χK̂ ≤ χK ,

since χKn → χK̂ in L1. Therefore

(10) |K| ≥ π = |K̂| .

Since Kn → K in the Hausdorff metric, K ⊂ Kn ⊂ Kε
n. By the definition of the Minkowski

perimeter, we have, for every ε > 0,

(11) |K| ≤ |Kε
n| ≤ |Kn|+ εP (Kn) + o(ε) = π + εP (Kn) + o(ε) .

Since P (Kn) are uniformly bounded, inequality (11) yields |K| ≤ π. This inequality and (10) imply

|K| = π. We deduce that K = K̂ a.e. from (9).
By Theorem 2.3 P (K) ≤ lim inf

n→∞
P (Kn) . Since Kn → K in L1, as n → ∞, we have λ0(Kn) →

λ0(K). Indeed, by the triangle inequality,

π|λ0(Kn)− λ0(K)| ≤ dL1(Kn,K) + dL1(B,Bn) .

The first term in the right hand side tends to 0, as n→∞ by the L1 convergence. The second one
tends to 0 by Lemma 3.2, since∣∣∣xGn1 − xG1

∣∣∣ ≤ 1

π

∫
Kn\K

|x1|dx1dx2 ,

where the last term tends to 0, since the diameter of Kn is uniformly bounded and |Kn \K| → 0,
as n→∞. The same holds for the second coordinate. Therefore

lim inf
n→∞

δ(Kn)

λ2
0(Kn)

≥ δ(K)

λ2
0(K)

> 0 .

�

Remark 3.3. We conjecture that the infimum of δ
λ2

0
within the connected sets is realized by the dumbbell

described in Remark 2.9.
In the case where the minimizing sequence Kn converges to the ball (in the Hausdorff metric), we get

an estimate from below of lim inf
n→∞

δ(Kn)

λ2
0(Kn)

, but our estimate is lower than the value of
δ

λ2
0

computed on the

dumbbell. This is the reason why we are not able to prove the existence of an optimal set for this problem.
We were not able to find a sort of rearrangement, as in [2], to exclude sequences converging to a ball

with the aim to prove that there exists minimizer for
δ(K)

λ2
0(K)

, among connected compacts sets K ⊂ R2.

Remark 3.4. The assumption that Ω is connected is necessary. Indeed one can construct the following
sequence of non connected sets Ωn, given by the union of the disk centered in (2, 0), of radius Rn = 1− 1

n ,

and the disk centered in
(
−2(n−1)2

2n−1 , 0
)

, of radius rn =
»

2n−1
n2 . It is easy to check that |Ωn| = π, the

barycentre of Ωn is the origin, δ(Ωn) = Rn + rn − 1→ 0 as n→∞ and λ0(Ωn) = 2. Thus

δ(Ωn)

λ2
0(Ωn)

→ 0, n→∞ .

This exemple shows why the classical De Giorgi perimeter is not suitable for the barycentric asymmetry.
Indeed, the set Ω̃n obtained by connecting the above two balls by a long segment would have the same De
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Giorgi perimeter as the perimeter of Ωn, since the De Giorgi perimeter of the long segment would be 0.
Thus

δ(Ω̃n)

λ2
0(Ω̃n)

→ 0, n→∞ .

On the contrary, for the Minkowski perimeter, δ(Ωn)→ +∞, since one has to consider twice the length of
the long segment.

Remark 3.5. The notion of Minkowski perimeter is central in the second part of the above proof, in
inequality (11), to prove that |K| = π.

4. Minimisation of δ(Ω)
λ2

0(Ω)
within compact convex sets

In this section we prove the following theorem :

Theorem 4.1. There exists an optimal set of inf
Ωconvex⊂R2

δ(Ω)

λ2
0(Ω)

.

Proof. Let Kn be a minimizing sequence of convex compact sets. The uniform bound on δ(Kn)
λ2

0(Kn)
and the

definition of λ0 imply that δ(Kn) is uniformly bounded. Therefore the sets Kn are all contained in a fixed
ball, since they are convex and they perimeter is uniformly bounded.

Theorems 2.1 and 2.2 give us the existence of a convex compact set towards which Kn converges in the
Hausdorff metric. Now, as in the previous theorem, there can be two possibilities:

(1) Kn converges to a ball B in the Hausdorff metric;
(2) Kn converges to a set K different from a ball in the Hausdorff metric.

In the next theorem we are going to analyse the first case, proving that lim inf
n→∞

δ(Kn)
λ2

0(Kn)
> 0.406 which is

the value of δ(S)
λ2

0(S)
where S is the stadium of Theorem 2.8. This means that a minimizing sequence cannot

converge to a ball. Therefore the only possibility for a minimizing sequence is a second one. In this case we
can prove that K is a minimizer with the same arguments as in the proof of case (2) of Theorem 3.1. �

Theorem 4.2. Let Kn be a sequence of convex compact sets converging to a ball in the Hausdorff metric.

Then lim inf
n→∞

δ(Kn)
λ2

0(Kn)
> 0.41.

If a set E has barycenter in 0, it can be written in polar coordinates with respect to 0, as

(12) E = {y ∈ R2 : y = tx(1 + u(x)), x ∈ S1, t ∈ [0, 1]} ,

with u Lipschitz function. Then we are interested in minimizing the functional δ(E)
λ2

0(E)
which can be written

as a function of u defining E (see the computations in Section 2):

J(u) =
π

2

∫ 2π

0

[»
(1 + u)2 + u′(θ)2 − 1

]
dθñ

1
2

∫ 2π

0
|(1 + u)2 − 1|dθ

ô2

with the constraints of area and barycentre in 0:

(NL1)
1

2π

∫ 2π

0
(1 + u)2dθ = 1;

(NL2)

∫ 2π

0
cos(θ)[1 + u(θ)]3dθ = 0 =

∫ 2π

0
sin(θ)[1 + u(θ)]3dθ;

(NL3) u(0) = u(2π).

This leads to a complicated problem in the calculus of variations. Thus, our strategy will consist in
replacing this problem by a simpler one which can be seen as a sort of of linearization:

(13) m = inf
u∈H1(0,2π)

∫ 2π

0
[(u′)2 − u2]dθñ∫ 2π

0
|u|dθ

ô2
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with the constraints:

(L1)

∫ 2π

0
u dθ = 0

(L2)

∫ 2π

0
u cos(θ) dθ = 0 =

∫ 2π

0
sin(θ)u dθ

(L3) u(0) = u(2π).

Proposition 4.3. Let 0 < ε < 1/24. Let

(14) mε := inf{J(u), ‖u‖L∞ = ε, u satisfies (NL1),(NL2),(NL3)}.
Then

(15) lim inf
ε→0

mε ≥
π

4
m.

Proof. The idea of the proof is the following:

(1) we replace the optimization problem (14) by a new one (problem (19)) which yields a smaller value;
(2) we prove that problem (19) has a minimizer uε;
(3) we prove that vε = uε

ε (which is on the unit sphere of L∞) is bounded in H1 and converges
uniformly to some function v0;

(4) by passing to the limit as ε→ 0, we prove that v0 is a test function for the optimization problem
(13) whence the desired inequality.

In the sequel of the proof C will denote a constant independent of ε.

Step 1. Since

∫ 2π

0
(2u + u2) = 0 by (NL1), the minimization of J(u) is equivalent to the minimization

(with the same constraints) of

J1(u) =
π

2

∫ 2π

0

[»
(1 + u)2 + u′2 − 1

]
dθ −

∫ 2π

0
(u+ u2/2)dθñ

1
2

∫ 2π

0
|(1 + u)2 − 1|dθ

ô2 .

We are going to estimate the numerator of J1, that is,∫ 2π

0

ï»
1 + 2u+ u2 + u′2 − 1− (u+ u2/2)

ò
dθ

from below. We will assume that ε ≤ 1/24 and

(16) ‖u′‖L∞ ≤ 3
√
ε

(this is possible by the estimate ‖u‖L∞ ≤ ε and Theorem 2.10). We first observe that

(17) for |ρ| ≤ 1

2
,
√

1 + ρ ≥ 1 +
ρ

2
− ρ2

8
+
ρ3

16
− ρ4

8
.

By (16), one has the estimate |2u+u2 +u′2| ≤ 2ε+ ε2 + 9ε ≤ 12ε ≤ 1
2 . We can apply (17) to 2u+u2 +u′2

to infer »
(1 + u)2 + u′2 − 1 ≥ u+

1

2
u′

2 − 1

8
u′

4 − 1

2
uu′

2
+ Cε3 .

Therefore, the numerator of J1 is estimated from below by
1

2

∫ 2π

0

ï
u′

2 − u2 − 1

4
u′

4 − uu′2
ò

+ Cε3.

We are going to estimate the denominator of J1. Since |2u+ u2| ≤ (2 + ε)|u| one has thatñ
1

2

∫ 2π

0
|(1 + u)2 − 1|

ô2

≤
Å

1 +
ε

2

ã2
ñ∫ 2π

0
|u|
ô2

.

Therefore, under the constraints (NL1), (NL2), (NL3) one has J(u) = J1(u) ≥ J2(u), where

(18) J2(u) =
π

2

1

2

∫ 2π

0

ï
u′

2 − u2 − 1

4
u′

4 − uu′2
ò

+ Cε3Å
1 +

ε

2

ã2
ñ∫ 2π

0
|u|
ô2 .
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Defining

(19) m′ε := inf{J2(u), ‖u‖L∞ = ε, u satisfies (NL1),(NL2),(NL3)} ,

we have mε ≥ m′ε.

Step 2. We prove that problem (19) has a minimizer uε (we notice that here ε is fixed).
Let uεn be a minimizing sequence for J2. We know that ‖uεn‖L∞ = ε and ‖(uεn)′‖L∞ ≤ 3

√
ε for every n

(by (16)). Therefore uεn → uε weakly in W 1,∞(0, 2π) and uniformly in (0, 2π), as n→∞.
To pass to the limit, as n → ∞, in J2(uεn), we need to study the integral in the numerator of J2. We

will use a standard argument in the calculus of variations. For small |s| and |ξ| (recall that |s| ≤ ε ≤ 1
24

and |ξ| ≤ 3
√
ε), the function j(s, ξ) = ξ2(1− s)− s2 − 1

4ξ
4, defining the integrand, is convex with respect

to ξ. This gives

j(s, ξ) ≥ j(s, η) +∇ξj(s, η) · (ξ − η) ,

where ∇ξj(s, ξ) = 2ξ(1− s)− ξ3. Therefore

(20)

∫ 2π

0
j(uεn, (u

ε
n)′) ≥

∫ 2π

0
j(uεn, u

′
ε) +

∫ 2π

0
∇ξj(uεn, u′ε) · ((uεn)′ − u′ε).

The uniform convergence of uεn to uε implies that j(uεn, u
′
ε) converges in L1(0, 2π) to j(uε, u′ε), as n→∞.

Moreover (uεn)′ − u′ε converges weakly to 0 in L∞(0, 2π) and ‖∇ξj(uεn, u′ε)‖L∞ is bounded uniformly in n

and ε. Passing to the lim inf in (20), we get

lim inf
n→+∞

∫ 2π

0
j(uεn, (u

ε
n)′) ≥

∫ 2π

0
j(uε, u′ε) .

We deduce the existence of a minimizer uε for J2.
Step 3. We define a new sequence, renormalizing uε (the minimizer of problem (19)):

vε =
uε
ε
.

We are going to prove some estimates on vε which will allow us to compute the limit of vε, as ε→ 0. The
estimates on vε will be established thanks to the test function wε, that we are about to define.

Let aε = π/4− επ/6 and bε = 3π/4− επ/6. Let wε be the function, piecewise affine, π-periodic, defined
by

wε(t) =



ε t
aε

t ∈ [0, aε] ,

−2ε t−aεbε−aε + ε t ∈ [aε, bε] ,

−ε π−tπ−bε t ∈ [bε, π] .

It is easy to see that wε satisfies ‖wε‖L∞ = ε and (NL3). It also satisfies (NL2), since (1 + wε)3 is
π−periodic and therefore orthogonal to sine and cosine. We are going to check (NL1), that is,

2

∫ π

0
wε +

∫ π

0
wε2 = 0.

Elementary calculations provide:∫ π

0
wε =

1

2
aεε−

1

2
(π − bε)ε,

∫ π

0
wε2 = π

ε2

3
.

Therefore (NL1) is satisfied as soon as aε + bε − π = −ε/3 which is true with our choice of aε and bε. We
also remark that∫ 2π

0
wε′

2 ≤ Cε2 ,

∫ 2π

0
wε2 ≤ Cε2 ,

∫ 2π

0
wε′

4 ≤ Cε4 ,

∫ 2π

0
wεwε′

2 ≤ Cε3

and ∫ 2π

0
|wε| = επ ≥ ε

2
.
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These estimates imply that J2(wε) ≤ C for every ε. Therefore J2(uε) ≤ J2(wε) ≤ C which yields∫ 2π

0
(uε)

′2 ≤
∫ 2π

0
u2
ε +

1

4
(uε)

′4 + uε(uε)
′2 + Cε3 + C

ñ∫ 2π

0
|uε|
ô2

.

We deduce that

∫ 2π

0
(uε)

′2 ≤ Cε2 .

From the definition of vε we have ‖vε‖L∞ = 1. By the above estimate we get

(21)

∫ 2π

0
v′ε

2 ≤ C.

The sequence vε is bounded in H1(0, 2π) and, as ε → 0, up to some sequence, vε converges weakly in
H1(0, 2π) and uniformly to some v0. Using (16) we deduce that ‖v′ε‖L∞ ≤ 3√

ε
, and then using (21), we

have ∫ 2π

0
v′ε

4 ≤ 9

ε

∫ 2π

0
v′ε

2 ≤ C

ε
.

Moreover ∣∣∣∣∣
∫ 2π

0
vεv
′
ε
2

∣∣∣∣∣ ≤
∫ 2π

0
v′ε

2 ≤ C

by (21) and ‖vε‖L∞ = 1.
Step 4. We now prove that the function v0 found in Step 3 is a test function for the optimization problem
(13). This will allow us to prove the statement of this Proposition.
We observe that, by (19) and the definition of vε, we have

(22) m′ε =
π

2

1

2

∫ 2π

0

ñ
v′ε

2 − v2
ε −

ε2

4
v′ε

4 − εvεv′ε
2

ô
+ CεÅ

1 +
ε

2

ã2
ñ∫ 2π

0
|vε|
ô2 .

Passing to the limit in (22), we get

lim inf
ε→0

m′ε ≥
π

2

1

2

∫ 2π

0

î
v′0

2 − v2
0

óñ∫ 2π

0
|v0|
ô2 .

On the other hand, passing to the limit in (NL1) and (NL2), we see that v0 satisfies (L1) and (L2) and
therefore is an admissible test function for the optimization problem (13). For exemple, (NL1) is equivalent

to

∫ 2π

0
(u2
ε + 2uε) = 0. This implies that 0 ≤

∫ 2π

0
u2
ε = −2

∫ 2π

0
uε ≤ Cε2 by the estimate ‖uε‖L∞ ≤ ε.

Therefore, by the definition of vε, one has

∫ 2π

0
vε → 0, as ε→ 0, which gives

∫ 2π

0
v0 = 0.

The inequality lim inf
ε→0

mε ≥ lim inf
ε→0

m′ε ≥
π

4
m follows.

�

Lemma 4.4. Let m be defined by (13). If u is a minimizer, then the function u0 =
u

m
satisfies

(23)

∫ π

−π
|u0(θ)|dθ =

∫∫
[−π,π]2

sign(u0)(t)H(θ − t)sign(u0)(θ)dtdθ ,

where H(x) = −G(x) +
1

2π
+

1

4π
cos(x), with G defined by (2). Moreover

(24) m =
1∫ 2π

0
|u0|

.
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Proof. The existence of a minimizer of the functional in (13) follows easily from the direct methods of

the calculus of variations. One can assume that

∫ 2π

0
|u| = 1 by homogeneity. The Euler equation of this

problem is

−u′′ − u = m · sgn(u) + λ0 + λ1 cos θ + λ2 sin θ .

By integrating on (0, 2π) one finds

m

∫ 2π

0
sgn(u(θ))dθ + 2πλ0 = 0 .

By multiplying The Euler equation by cos θ and sin θ and then integrating on (0, 2π) one gets, respectively

(25) m

∫ 2π

0
sgn(u(θ)) cos θdθ + πλ1 = 0 , m

∫ 2π

0
sgn(u(θ)) sin θdθ + πλ2 = 0 .

The function u0 =
u

m
satisfies

(26) u′′0 + u0 = −sgn(u0)− λ̃0 − λ̃1 cos θ − λ̃2 sin θ ,

where

1

2π

∫ 2π

0
sgn(u0(t))dt = −λ̃0 ,

1

π

∫ 2π

0
sgn(u0(t)) cos tdt = −λ̃1 ,

1

π

∫ 2π

0
sgn(u0(t)) sin tdt = −λ̃2

and m = 1∫ 2π

0
|u0|

. It is easy to see that the function at the right hand side of equation (26) is orthogonal

to sine and cosine by (25). Therefore Lemma 2.11 applies with

R(θ) = −sgn(u0(θ)) +
1

π

∫ π

−π
sgn(u0(s))

ï
1

2
+ cos(s− θ)

ò
ds

and gives

u0(θ) =

∫ π

−π
G(t)R(θ + t)dt

with G defined by (2), that is, G(t) =
1

2

Ç
1− |t|

π

å
sin |t|. We observe that

u0(θ) = −
∫ π

−π
G(t)sgn(u0(θ + t))dt+

1

π

∫ π

−π
sgn(u0(s))

∫ π

−π
G(t)

ï
1

2
+ cos(s− θ − t)

ò
dt ds .

Since ∫ π

−π
G(t)

ï
1

2
+ cos(s− θ − t)

ò
dt =

1

2
+

1

4
cos(s− θ) ,

one has

u0(θ) =

∫ π

−π
sgn(u0(s))

ï
−G(s− θ) +

1

2π
+

1

4π
cos(s− θ)

ò
ds .

�

We can now prove Theorem 4.2.

Proof. As we already observed, we can write Kn in polar coordinates (see (12)); this implies that

lim inf
n→∞

δ(Kn)

λ2
0(Kn)

= lim inf
ε→0

mε

where mε is defined by (14). By Proposition 4.3 it is sufficient to prove the estimate

(27)
π

4
m > 0.41 ,

where m is defined by (13). To do that, we are going to estimate the L1(−π, π) norm of u0, thanks to
formula (24). Recall that∫ π

−π
|u0(θ)|dθ =

∫∫
[−π,π]2

sign(u0)(t)H(θ − t)sign(u0)(θ)dtdθ
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by (23). By applying Theorem 2.13, one has

(28)

∫ π

−π
|u0(θ)|dθ ≤

∫∫
[−π,π]2

H∗(θ − t)[χ(−a,a)(θ)− χ(−a,a)c(θ)][χ(−a,a)(t)− χ(−a,a)c(t)]dtdθ

where 2a = |I| = 2π − |J |, with I = {θ ∈ [−π, π] : u0(θ) ≥ 0} and J = {θ ∈ [−π, π] : u0(θ) ≤ 0}. We are
going to analyse separately the four terms of the integral in right hand side of (28). We observe that H∗

is even. Let F ∗ be a primitive of H∗, nul at 0.
The first term gives∫∫

[−π,π]2
H∗(θ − t)χ(−a,a)(θ)χ(−a,a)(t)dtdθ =

∫ a

−a
dθ

∫ a

−a
H∗(θ − t)dt = 2

∫ 2a

0
F ∗(s)ds .

The second term gives ∫∫
[−π,π]2

H∗(θ − t)χ(−a,a)c(θ)χ(−a,a)c(t)dtdθ =

=

∫ −a
−π

dθ

∫ −a
−π

H∗(θ − t)dt+

∫ −a
−π

dθ

∫ π

a
H∗(θ − t)dt+

∫ π

a
dθ

∫ −a
−π

H∗(θ − t)dt+

∫ π

a
dθ

∫ π

a
H∗(θ − t)dt

= 4

∫ π−a

0
F ∗(s)ds+ 2

∫ 2π

a+π
F ∗(s)ds− 2

∫ π+a

2a
F ∗(s)ds .

The third term gives∫ a

−a
dθ

∫
(−a,a)c

H∗(θ − t)dt =

∫ a

−a
dθ

∫ −a
−π

H∗(θ − t)dt+

∫ a

−a
dθ

∫ π

a
H∗(θ − t)dt

= −2

∫ 2a

0
F ∗(s)ds+ 2

∫ π+a

π−a
F ∗(s)ds .

The fourth term gives∫
(−a,a)c

dθ

∫
(−a,a)

H∗(θ − t)dt =

∫ −a
−π

dθ

∫ −a
−a

H∗(θ − t)dt+

∫ π

a
dθ

∫ −a
a

H∗(θ − t)dt

= −2

∫ π−a

0
F ∗(s)ds+ 2

∫ π+a

2a
F ∗(s)ds .

Summing up, we get∫ π

−π
|u0(θ)|dθ ≤ 4

∫ 2a

0
F ∗(s)ds− 4

∫ π+a

2a
F ∗(s)ds+ 4

∫ π−a

0
F ∗(s)ds .

The fonction a→ 4

∫ 2a

0
F ∗(s)ds− 4

∫ π+a

2a
F ∗(s)ds+ 4

∫ π−a

0
F ∗(s)ds is maximal for a = π

2 . Therefore

(29)

∫ π

−π
|u0(θ)|dθ ≤ 8

∫ π

0
F ∗(s)ds = 8

∫ π

0
dx

∫ x

0
H∗(t)dt .

Let M ≥ H be defined as follows. Let x1 = 0.355, x2 = 0.59, x3 = 1.3, x4 = 1.9, x5 = 2.25. Let

r5(x) = − 1

0.99
(x− 2π + x5) · (x− x5)

r1(x) =
r5(π)

x1 − x2
(x− x2)

r2(x) =
1

4.34
(x− x2)(x− (x2 + x3))

r3(x) = −(x− 2.15)(x− (x3 − 0.85))
r2(1.3)

(0.85)2

r4(x) =
r3(x4)

x4 − x5
(x− x5)
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M(s) =



H(s), 0 ≤ s ≤ x1

r1(s), x1 ≤ s ≤ x2

r2(s), x2 ≤ s ≤ x3

r3(s), x3 ≤ s ≤ x4

r4(s), x4 ≤ s ≤ x5

r5(s), x5 ≤ s ≤ π

We observe that M∗(s) is the inverse function of

0 0.5 1 1.5 2 2.5 3 3.5
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 1. The function M ant its symmetrization M∗.

t→ |{x ∈ [0, π] : M(x) > t}| =



H−1(t), t ≥ H(x1)

r−1
1 (t) + π − r−1

5 (t), 0 ≤ t ≤ H(x1)

r−1
2 (t) + π − r−1

4 (t), r4(x4) ≤ t ≤ 0

r−1
2 (t) + π − r−1

3 (t), r3(x3 ≤ t ≤ r4(x4)
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and by property (5) M∗ ≥ H∗. By (29) one has

1

m
=

∫ π

−π
|u0(θ)|dθ ≤ 8

∫ π

0
dx

∫ x

0
H∗(t)dt ≤ 8

∫ π

0
dx

∫ x

0
M∗(t)dt = 8

∫ π

0
(π − x)M∗(x)dx ≈ 8 · 0.2320

which implies (27).
�

Remark 4.5. Although Fuglede [9] was interested in the uniform spherical deviation, that is, the Hausdorff
distance of a set E from the ball of same measure centered at the barycenter of E, one can easily deduce
from his results the inequality δ(E) ≥ C(n)[λ0(E)]2 for nearly spherical sets (see Theorem 3.1 in [11]),
where C(n) is a constant depending on the dimension. In particular the following estimate can be proved
in the plane:

δ(E) ≥ 1

16
λ0(E)2 .

However this estimate is not sufficient to exclude sequences converging to the ball.
Our first attempt to prove Theorem 4.2 was the following. For the denominator of J one hasñ

1

2

∫ 2π

0
|(1 + u(θ))2 − 1|dθ

ô2

≤
ñ

1

2

∫ 2π

0
|u(θ)|(2 + ε)dθ

ô2

=

Å
1 +

ε

2

ã2

‖u‖2
L1
.

For the numerator ∫ 2π

0

(»
(1 + u)2 + u′(θ)2dθ − 1

)
dθ

≥
∫ 2π

0

ñ
u+

u2 + (u′)2

2
− [4u2 + 4u3 + 4uu′ + u4 + u′4 + 2u2u′2]2

8
+

8u3

16

ô
dθ

≥
∫ 2π

0

ñ
(u′)2

2
− u2

2

ô
dθ + o(2) ≥ c− 1

2

∫ 2π

0
u2dθ + o(2)

where c = 4 is such that ∫ 2π

0
(u′)2dθ ≥ c

∫ 2π

0
u2dθ .

Therefore

lim inf
ε→0

J(u) ≥ 3π

4

∫ 2π

0
u2dθñ∫ 2π

0
|u|dθ

ô2 ≥
3

8
= 0.375

by Hölder inequality. Again, this estimate is not sufficient to exclude sequences converging to the ball.
Note also that the minimization problem (13) is difficult to solve exactly due to the three constraints.
This explains why we performed this complicated and computational method via symmetrization and Riesz
inequality.

5. On the regularity and on the shape of the optimal convex set

In this section we will prove that an optimal set for the minimization of δ
λ2

0
among convex sets in the

plane is C1,1. About its shape, we conjecture that the stadium S which minimizes δ
λ2 (see Theorem 2.8)

also minimizes our functional. Indeed, we will show that among stadia, S is the only one satisfying the
optimality conditions that we will write in Theorem 5.4. Unfortunately we are not able to prove that sets
different from S do not satisfy the optimality condition.

In the proof of the regularity of the optimal set we will essentially use the first order optimality condition
in the spirit of [21]. Let us first recall how to write these optimality conditions, in the case of convexity
constraint, when representing the boundary of the convex set with the gauge function about the problem

(30) min

®
j(u), u ∈ H1(0, 2π), u′′ + u ≥ 0,m(u) :=

∫ 2π

0

dθ

u2
= m0

´
(see Proposition 2.3.3 of [20]).
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Proposition 5.1. Assume that u0 solves (30) where j : H1(0, 2π) → R is C2. Then there exist ξ0

nonnegative, µ ∈ R such that ξ0 = 0 on the support of (u′′0 + u0) and

j′(u0)v =< ξ + ξ′′, v > −µm′(u0)v

for every v ∈ H1(0, 2π).

In this section, we prove the following regularity result:

Theorem 5.2. A minimizer of δ(Ω)
λ2

0(Ω)
within convex compact sets of the plane is C1,1 and C∞ on strictly

convex parts of the boundary (except at the intersection with the circle of the barycentric disc).

For the proof, we first express the optimality condition of Proposition 5.1 in our context:

Proposition 5.3. Let r, θ be the polar coordinates. Let u(θ) = 1
r(θ) be the gauge function used to describe

the boundary of a set. The optimal set satisfies the following condition: there exists ξ ∈ H1, positive, nul
when the boundary is strictly convex, and there exists µ̂0, µ̂1, µ̂2 ∈ R such that

(31) − 1

2πλ2
0

u+ u′′

(u2 + u′2)
3
2

− 2δ

πλ3
0

sign(u2 − 1)

u3
= ξ′′ + ξ − µ̂0

u3
− 3

µ̂1 cos θ + µ̂2 sin θ

2u4
.

Proof. We are going to apply Proposition 5.1, adapted to our constraints. To do that, we need to compute
the derivative of δ

λ2
0

and of the constraints.

(1) The derivative of δ
λ2

0
is 1

2πλ2
0
· P ′ −2 δ

λ3
0
· λ′0. Now, the derivative of P is

−
∫

u+ u′′

(u2 + u′2)
3
2

v .

The derivative of πλ0 is the derivative of

∫
{u<1}

χΩ\B +

∫
{u>1}

χB\Ω which gives

1

2

∫
{u<1}

−2v

u3
+

1

2

∫
{u>1}

2v

u3
.

(2) The derivative of the constraints

1

2

∫
dθ

u2(θ)
= π , 0 =

1

2

∫ 2π

0

cos θ

u3
=

1

2

∫ 2π

0

sin θ

u3

equals respectively

−
∫
µ̂0

u3
,−3

∫
µ̂1 cos θ

2u4
,−3

∫
µ̂2 sin θ

2u4
.

�

We are now able to prove Theorem 5.2:

Proof. We are going to use the notations of the above proposition. On the strictly convex parts of the
boundary, ξ = 0 and u satisfies a second order ordinary differential equation:

(1) in the exterior of the unit ball u < 1, and so u′′ is continuous. By a classical bootstrap argument
u is C∞;

(2) in the exterior of the unit ball u > 1, and so u′′ is continuous. By a bootstrap argument u is C∞;
(3) on the boundary of the unit ball u = 1, u′′ is bounded, but not continuous. Thus u is W 2,∞ there.

This and the above proposition imply that on strictly convex parts on ∂B, u is C1,1.
Now, let us prove that Ω is C1. If this was not the case, we would have a corner for some θ0. This

implies that the Gauge function satisfies: u′′ + u contains a Dirac mass, with a positive weight at θ0.
Thus, the H1 function ξ appearing in the optimality condition (31) must also satisfy: ξ′′ + ξ contains a
Dirac mass at θ0. Now, since ξ(θ0) = 0 and ξ ≥ 0, the weight of this Dirac mass must be non-negative, in
contradiction with the minus sign appearing in the left-hand side of (31) in front of u′′ + u.

We are left with the conjunctions between a strictly convex part of the boundary and a non strictly
convex part. For that, it is sufficient to remark that any C2(R+)(C∞(R+)) function, nul for x = 0, can be
extended by 0 on R, getting a C1,1(R) function. This ends the proof that an optimal set is C1,1.

�
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We are going to write differently the optimality conditions on strictly convex parts. In particular, this
will give the explicit expression of the Lagrange multipliers in (31). We can assume that all our sets have
area equal to π.

Theorem 5.4. Let Ω be an optimal set. Let B be the unit ball centered at the origin. Let ∂ΩIN = ∂Ω∩B,
∂ΩOUT = ∂Ω∩Bc, ∂BIN = ∂B∩Ω, ∂BOUT = ∂B∩Ωc. Then the curvature of Ω satisfies on every strictly
convex part:

(32) C = 1− 3δ +
4δ

2πλ0

Ä
|∂BOUT | − |∂BIN |

ä
± 4δ

λ0
+ µ̂1x+ µ̂2y ,

(+ at the exterior of B and − in the interior of B) where

µ̂1 =
4δ

πλ0

ï∫
∂BOUT

cos tdt−
∫
∂BIN

cos tdt

ò
,

µ̂2 =
4δ

πλ0

ï∫
∂BOUT

sin tdt−
∫
∂BIN

sin tdt

ò
.

Proof. We are going to perform shape variations on the strictly convex parts of ∂Ω. The proof is divided
into several steps.

(1) Let Ωt = (I + tV )(Ω). Then

|Ωt| = π + t

∫
∂Ω
V · n+ o(t) .

(2) The barycenter constraint implies that

∫
Ωt

xdxdy = 0 + t

∫
∂Ω
xV · n + o(t). Since by definition

xt =
1

|Ωt|

∫
Ωt

xdxdy, by the above formulas one has

xt =
t

π

∫
∂Ω
xV · n+ o(t) .

A similar formula holds for yt:

yt =
t

π

∫
∂Ω
yV · n+ o(t) .

(3) Let Bt = (I + tW )(B), where

W (x, y) = (a, b) + α(x, y) ,

with

(a, b) =
1

π

Å∫
∂Ω
xV · n,

∫
∂Ω
yV · n

ã
, α :=

1

2π

∫
∂Ω
V · n .

(4) The difference between |Ωt∆Bt| and |Ω∆B| is given by two terms: one comes from the area from
B and Bt, and the other one from the deformation of Ω. More precisely

|Ωt∆Bt| = |Ω∆B| ± t
∫
∂B
W · n± t

∫
∂Ω
V · n :

for the second term of the right hand side + is on ∂BOUT and − is on ∂BIN ; for the last term of
the right hand side, + is ∂ΩOUT and − on ∂ΩIN .

In the next part of the proof we will write |Ωt∆Bt| = |Ω∆B|+ tR.
(5) We have

λ0(Ωt) =
|Ωt∆Bt|
|Ωt|

=
|Ω∆B|+ tR

|Ω|+ t
∫
∂Ω V · n

= λ0(Ω) ·
1 + t R

|Ω∆B|

1 + t
π

∫
∂Ω V · n

= λ0(Ω) + t

ï
R

π
− λ0

π

∫
∂Ω
V · n

ò
.

Therefore

dλ0(Ω, V ) =
1

π

ï
±
∫
∂B
W · n±

∫
∂Ω
V · n− λ0

∫
∂Ω
V · n

ò
,

that is,

dλ0(Ω, V ) =
1

π

ï∫
∂BOUT

W · n−
∫
∂BIN

W · n+

∫
∂ΩOUT

V · n−
∫
∂ΩIN

V · n− λ0

∫
∂Ω
V · n

ò
.
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(6) If rt is the radius of the ball having the same area as Ωt, then rt =

…
π+t

∫
∂Ω

V ·n
π = 1 + t

∫
∂Ω

V ·n
2π .

This gives

δ(Ωt) =
P (Ωt)

2πrt
− 1 =

P (Ωt)

2π + t
∫
∂Ω V · n

− 1 =
P (Ω) + t

∫
∂Ω CV · n

2π + t
∫
∂Ω V · n

− 1 .

With the same computations as for λ0

δ(Ωt) = δ(Ω) + t

∫
∂Ω CV · n

2π
− t

P (Ω)
∫
∂Ω V · n

4π2

and so

dδ(Ω, V ) =

∫
∂Ω

ñ
C
2π
− (δ + 1)2π

4π2

ô
V · n =

∫
∂Ω

C − δ − 1

2π
V · n .

The optimality condition
dδ

λ2
0

− 2δ

λ3
0

dλ0 = 0 can be written as

∫
∂Ω

(C − δ − 1)V · n =
4δ

λ0

ï∫
∂BOUT

W · n−
∫
∂BIN

W · n+

∫
∂ΩOUT

V · n−
∫
∂ΩIN

V · n− λ0

∫
∂Ω
V · n

ò
.

Now, W · n = a cos θ + b sin θ + α (since (x, y) · n = 1 on ∂B), so

W · n = cos θ

∫
∂Ω
xV · n+ sin θ

∫
∂Ω
yV · n+

1

2π

∫
∂Ω
V · n

which gives

C = δ + 1− 4δ +
4δ

2πλ0

Ä
|∂BOUT | − |∂BIN |

ä
± 4δ

λ0
+ µ̂1x+ µ̂2y .

�

Remark 5.5. If S denotes the stadium of Theorem 2.8, we can prove that S is the only stadium satisfying
the optimality conditions (32).

To see that, let us consider a stadium centered at 0, given by the union of a rectangle of dimensions
2r × 2l and two half discs of radius r ≤ 1. Let θ be the angle such that r = sin θ. Assuming without loss
of generality that the area is π, one has

l =
π − π sin2 θ

4 sin θ
.

The perimeter equals 4l + 2πr = π
sin θ + π sin θ which implies

δ(θ) =
1

2 sin θ
+

sin θ

2
− 1 .

The double of the area of the stadium minus the ball of radius 1 helps us computing λ0:

λ0(θ) =
2

π
(π − 2θ − sin(2θ)) .

On one hand, an optimal stadium is a critical point of the function θ 7→ δ(θ)/λ2
0(θ). This leads to solve

the nonlinear equation

(33) 8 sin θ(1− sin θ)2 − cos θ(π − 2θ − sin(2θ)) = 0.

It is a simple exercise to prove that this equation has a unique solution, providing the stadium S which
corresponds to the value θ ∼ 0.5750.
On the other hand, writing condition (32) for a stadium yields, with the same notations, to the equation

(34) 4 sin θ − 3

2
sin2(θ)− 5

2
+ 2

(1− sin θ)2(π − 2θ)

π − 2θ − sin(2θ)
= 0.

It is easy to check that equation (34) has a unique solution in (0, π/2) and that solution is the same as the
one to equation (33). Therefore an only stadium satisfies (32); this stadium is S, since λ0 and λ take the
same value on any stadium.
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Vandoeuvre-les-Nancy Cedex, France.

E-mail address: antoine.henrot@univ-lorraine.fr


	1. Introduction
	2. Preliminaries
	3. Minimization of ()02() within compact connected sets
	4. Minimisation of ()02() within compact convex sets
	5. On the regularity and on the shape of the optimal convex set
	References

