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ON THE QUANTITATIVE ISOPERIMETRIC INEQUALITY IN THE PLANE WITH
THE BARYCENTRIC DISTANCE

CHIARA BIANCHINI, GISELLA CROCE, AND ANTOINE HENROT

ABSTRACT. In this paper we study the following quantitative isoperimetric inequality in the plane: )\%(Q) <
Co(92) where ¢ is the isoperimetric deficit and Ao is the barycentric asymmetry. Our aim is to generalize
some results obtained by B. Fuglede in [I0]. For that purpose, we consider the shape optimization problem:
minimize the ratio 6(Q)/A\3(Q) in the class of compact connected sets and in the class of convex sets.

1. INTRODUCTION

In the last thirty years quantitative isoperimetric inequalities have received much attention in the lit-
terature. Several distances between a set and the ball of same measure have been proposed to establish
quantitative isoperimetric inequalities, where the isoperimetric deficit

P(Q) — P(B)
P(B)

majorizes a power of such a distance. In 1989, Fuglede [9] used the Hausdorff distance of a set 2 from
the ball of same volume centered at the barycentre of 2. He called it the uniform spherical deviation. He
proved a series of inequalities for convex sets and nearly spherical sets, that is, star-shaped sets with respect
to their barycentre (which may be taken to be 0) written as {y € R" : y = tz(14u(z)),z € S*~1,t € [0,1]},
where u : S"~! — R positive Lipschitz, with HuHLoo < 52 and ||Vu\|Loo < 1. The same inequalities hold
for a more general family of sets, as showed in [12], where the minimum of the Hausdorff distance of a set
Q from the ball of same volume as €2, among all balls of R", is used.
L. E. Fraenkel proposed the now called Fraenkel asymmetry to enlarge the family of sets for which a
quantitative isoperimetric inequality can hold:
[QAB,|
AQ) = inf, T

6(Q) = Bl =2

Byl = 9.

This distance can be seen as an L' distance between  and any ball By, centered at y € R", with same
measure as ). On the contrary, the Hausdorff distance is in some sense an L distance between sets. Many
mathematicians studied quantitative isoperimetric inequalities with the Fraenkel asymmetry, establishing
sharp inequalities (see for example [14], [15], [1], [7], [I3], [4], [11], [6]) and even existence of an optimal set
for the optimization problem of the ratio between the isoperimetric deficit and the square of the Fraenkel
asymmetry (see [5] and [2]).

In the spirit of the Fraenkel asymmetry, Fuglede proposed in [10] the barycentric asymmetry, which is
obviously much easier to compute than the Fraenkel asymmetry:

_ |QAB,|

1]
where By is a ball centered at the barycentre x of Q2 and such that || = |B;|. We recall that the barycenter
of a set (2 is defined as

Ao(92)

il

— [ zdz.

Q] Jo
Fuglede proved that there exists a positive constant (depending only on the dimension n) such that
(1) 5(Q) > C(n)[Mo(Q)]*, VQ C R™ convex.
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2 CHIARA BIANCHINI, GISELLA CROCE, AND ANTOINE HENROT

In this paper we propose two kinds of generalizations of Fuglede’s results [10], in dimension n = 2.

(1) We will be able to prove that there exists a strictly positive constant C' such that inequality (1)) holds
for compact connected sets (see Section . As already observed by Fuglede, the connectedness
assumption is necessary (cf. Remark [3.4)).

(2) In the class of convex sets, we will prove the existence of a minimizer of the ratio )

A5(9)
. We will also study the regularity of the optimal set in Section |5| and write different kinds of
optimality conditions.

(see Section

We would like to make some observations about the existence and the shape of an optimal set for the

5(©)

A5()

- For the moment we are not able to prove the existence of an optimal set for the minimization

5(Q)

of %)
conjecture about its shape.

- Among convex sets, our conjecture is that the optimal set is a stadium, the same found in [I] for

minimization of in the plane.

among compact connected sets, as explained in Remark H However we formulate a

the minimization of %. In Section [5| we will prove that if the optimal set is a stadium, then it

is the minimizer of /\52((99)).

- In [2] our aim was to compute the infimum of %. If one can compute the infimum of the

ratio )%((QQ)) then an estimate from below of the infimum of /\52((%)) follows (since A(2) < Ao(£2)).
As observed by Fuglede [I0], an estimate from below of the infimum of /\52((99)) is given in Lemma

2.1 of [I4]: one has ;52((99)) > 0.02 for every  C R?; see also [7] for an estimate in any dimension.
However, we think that one should get a better estimate than the preceding ones (see our conjecture

in Remark .

2. PRELIMINARIES

We denote by E¢ the complementary set of E. We denote by E° the e—enlargement of F, that is,
{x € R? : d(z,FE) < ¢} where d is the euclidean distance. We collect here several results which will be
useful in the sequel.

For the isoperimetric deficit we will consider the perimeter in the Minkowski sense:

P(S) = lim(|°] — Q) /¢

We will explain later in Remark why this notion of perimeter is adapted to our problem and why the
classical perimeter in the sense of De Giorgi is not suitable here. B
Let Q C R? be open and bounded. Let IC(2) be the set of all compact connected subsets of Q. We

recall that the Hausdorff distance between two sets K and K3 in IC(2) is defined by

dy (K1, K2) := max { sup dist(x, K3), sup dist(m,Kl)} ,
zeK1 € Ko
with the conventions dist(z,()) = diam(Q2) and sup® = 0. K = 0 and dy(0, K) = diam(Q?) if K # 0.
We recall the classical Blaschke’s Theorem (cfr. Theorem 2.2.3 in [1§]):

Theorem 2.1. Let {K,} be a sequence in IC(S). Then there exists a subsequence which converges in the

Hausdorff metric to a set K € K(12).

Theorem 2.2. Let {K,} be a sequence of compact convex sets converging in the Hausdorff metric to a
set K. Then K is compact and conver.

We will also use the following semicontinuity result, analogous to the Golab Theorem for the Minkowski
perimeter in the plane, proved by Henrot and Zucco in [19]:

Theorem 2.3. Let {K,} C R? be a sequence contained in K () converging to a set K € K(Q) in the
Hausdorff metric. Then

P(K) < liminf P(K,).

n—oo
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We will also use the following consequences of the Hausdorff convergence of sets (see Proposition 2.2.21
of [18]). Here xx denotes the characteristic function of a set K.

Proposition 2.4. Let K, K in K(Q). If K,, — K in the Hausdorff metric, then
(1) [Kn\ K| =0
(2) xx > limsup,_,. Xk, a-e.
(3) If xx, — x in LY () (or even weak-star in (L', L>)), then x < XK.

We also recall a compactness result about the L' convergence of sets, that is, the L' convergence of
characteristic functions of sets. PP% denotes the De Giorgi perimeter.

Proposition 2.5. Let K, be a sequence of sets contained in an open set with finite measure, such that
PPG(K,) + |K,| is uniformly bounded. Then there exists a set K such that K, — K in L', up to a
subsequence.

For the proof, see [18].

Remark 2.6. We also recall that PPY(K) < P(K) if K C R? is a compact connected set, as remarked
in [19].
We recall the following result proved in [2]. There the notion of De Giorgi perimeter was used to define

the isoperimetric deficit, but the same results hold with the notion of Minkowski perimeter:

Theorem 2.7. Let {Q:}o>0 be a sequence of planar sets converging to a ball B in the sense that |BAQ:| —
0 ase — 0. Then

inf {hgﬂé"lf N2 84—n)
We will use the following results in the minimization of % among convex sets.

Theorem 2.8. There exists an optimal set for the minimization problem
6(K)

in
KCR2conver A2 (K)

The infimum is realized by an explicitely described stadium S and  min 0K — 52(S) ~ 0.406.
KCR2convex ) A%(S)

For the proof see [1]. See also Remark

Remark 2.9. In the sequel we will use the set D given by two balls of area 5, connected by a segment

whose length is equal 2. We will call it dumbbell. We observe that its Minkowski perimeter counts twice
the length of the segment and therefore
§(D)  V2—-1 1 5(S)

= — ~0.26 < —5 24 ~ 0.406
Ao(D)2 i Ton A (S) ’

where S is the stadium of the above theorem.

We will use nearly spherical sets, studied by Fuglede in [9]. Let us consider the star-shaped sets
E={yeR?:y=tr(l+u()),r e St el0,1]}, withu:S" — (0,+0c0) Lipschitz. Assume that the
barycenter of E is 0 and |E| = m. Let B be the unit ball centered at 0. Then, it is straightforward to
check:

1 27
|EAB]:§/ |(14u)? -1,
0

HY(OE) =

27
+u)? + [u|2,
0
2m 2m 2w
/ cos0(1+u)3:0:/ sin (1 + u)?, / (1+u)*>=2r.
0 0 0

We will also use the the following result by Fuglede (Lemma 2.2 in [9]):
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Theorem 2.10. Let K, be a sequence of convex compact sets of area 7, converging in the Hausdorff metric
to the unit ball B, written in the form K, = {y € R? : y = tx(1 + u,(z)),x € S',t € [0,1]} where uy, is a
Lipschitz function. The following estimate holds:

1+ [Junl| L

! <2 :
||un||L°° =1 ||un||Loo ||u"HL°°

The following result has been proved in [17]:

2 2T
Lemma 2.11. Let R be a real function such that R(t)sin(t) = R(t)cos(t) = 0. Then a solution
0 0
of
W' +h=R
h 2m-periodic
2w 2w
h(t)sin(t) = h(t)cos(t) =0
0 0

18
|t]

2) h(6) :/_T;G(t)}z(eﬂ)dt, G(t) = ;<1—W) sin |f].

In the next result we recall the Riesz inequality, about the symmetric decreasing rearrangement for
functions. We will consider functions defined on symmetric intervals A C R with respect to the origin.
For a bounded function u we define

u*(0) = ess sup(u);
u*(s) =inf{t: {y:u(y) >t} <s}, s>0.
The following properties of the symmetric decreasing rearrangement are a direct consequence of the defi-
nition.

Proposition 2.12. Let u,v be two bounded functions on a symmetric interval A C R with respect to the
origin. Let c € R. Then

(3) /Au:/Au

(4) (u+c) =u"+c
(5) u<v ae =u" <v* ae.

The following Riesz inequality is classical, but generally stated for positive functions. For sake of
completeness we prove the following version.

Theorem 2.13. Let f,g,h: [-T,T] — R be three bounded functions and let g be 2T -periodic. Then

/ / F(D)g(t — 0)h(B)dtdd < / / FE(0)g* (t — O)h* (8)dedf .
172 -T.1)?

Proof. In [16] the inequality

[ n@n-oys@da < [[ i@ -o1s@)das
R2 R2

was established for positive f1, f2, f3 functions, vanishing at infinity. This inequality can be applied to the
integral

= // £) + ¢llg(t — 8) + co)[h(8) + enldtde,

where ¢y, ¢4, ¢p, are three constants such that f(t ) +cf,9(t) + cg, h(t) + ¢, are positive and extended by 0
for |t| > T. Therefore I < I'*, where

// 1) + ¢ [g(t — 0) + cg]* [ (0) + 3] dtdé?—// ) 4 csllg™(t — 0) + cg] (A (6) + cpldtdo,
RQ TT
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by . We observe that

1= / F(@)g(t—0)n(@)drdo-+ [ / ot=0)cndido-+ [ / (O)cqdtdo- [ / (t)cendtdd
—T,T]? TT]2 TT]2
// crg(t —0)h(0)dtdl + // crg(t — 0)cpdtdd + // creqh(0)dtdd + // cregepdtdd
T T]2 [7T7T]2 [7T7T]2 [7T7T}2

/ / “(t— )" (0)dtdo + / / F*()g* (t — O)cndtdd + / / (61" (0)c,dtd6
TT]2 T,T)? 7,72
// (t)cgendtdd + // crg*(t — 0)h™(0)dtdd + // cfg — 0)cpdtdd
TT]2 7,72
—I-// cregh™(0)dtdd + // cregepdtdd .
[_TvTP [—T,T]Q

By the periodicity of g and property , the i-th term of I is equal to the i-th term of I, for ¢ > 2. We

deduce that
/ / F(D)g(t — 0)h(B)dtdd < / / FE(0)g* (t — O)h* (8)dedf .
[—T,7)2 [—T,T)2
0

Theorem 2.14. Let K C R? be a compact connected set. Then D(K) < iP(K), where D(K) is its
diameter and P(K) is its Minkowski perimeter.

Proof. We recall that D(K) = D(coK), where coK is the convex hull of K. Since coK is compact and
convex, then D(coK) < $PP%(coK) (see for exemple [23]), where PPY denotes the general notion of
perimeter in the sense of De Giorgi. Now, by [§], PP%(coK) < PPY(K). Finally, by section 2 of [19], one
has PPY(K) < P(K). O

3. MINIMIZATION OF )fSQ((&—Z)) WITHIN COMPACT CONNECTED SETS

In this section, we consider compact connected sets of positive measure (in order the shape functionals
d and g be well-defined). We are going to prove the following result.

Theorem 3.1. There exists C > 0 such that the inequality \3(K) < CS(K) holds for any connected
compact set K C R2.

In the proof we will use the following simple lemma:

Lemma 3.2. Let By and By be two balls such that their area equals m and the distance between their
centers equals a < 2. Then

a2
dr1 (B, B2) f4aarcsm<2) +2a4/1 — T = 4a + o(a).

Proof. Up to a rotation we can assume that By = B(gg) and By = B, ), where B(, ) denote the ball of
area m centered at (a,0), 0 < a < 2. Let 7 = arcsin(a/2). The quantity dr1(B ), B(a,0)) is equal to 4
times the area of the domain whose boundary is composed by the following three arcs:

(1) (a+cost,sint),t € (0,a),a =5 +7;

(2) (cost,sint),t € (0,8),8=75 —T;

(3) (t,0),t € (1,1+a).
By Green’s theorem, the area of this domain is given by

Z—r

1 217 9 1 [2 a
7/ (a+c0s7-)cos7'+sint—f/ 1+0=7+ scosT.
2 Jo 2 Jo 2

Asa— 0, dra (B(O,O)v B(O,a)) =~ 4a. ([
We are now going to prove Theorem



6 CHIARA BIANCHINI, GISELLA CROCE, AND ANTOINE HENROT

6(Kn) . . 0(E)
f

N(K,) " E N(E)

assume that all the sets K, have area w. By Theorem |2.8| one has

5K, _ 8(S) _ 8(S)

No(Kn) = AB(S) — A%(S)
where S denotes the stadium of Theorem Since Ag(F) < 2 for any set F, we get
(6) P(K,) <16.6.

Proof. Let K, be a minimizing sequence, that is,

. Without loss of generality, we can

~ 0.406 ,

Therefore the sets K, are all contained in a fixed ball, since they are connected and their perimeter is
uniformly bounded. Theorem gives us the existence of a connected compact set towards which K,
converges in the Hausdorff metric. Now, there can be two possibilities:

(1) K, converges to a ball B in the Hausdorff metric;
(2) K, converges to a set K different from a ball in the Hausdorff metric.

(K
In both cases we are going to prove that lim inf )\(2)((;:)

(1) In this first case we can assume that 6(K,) — 0 and A\(K,,) = 2, — 0, as n — co. By Theorem
one has

> (. This will imply our result.

§(Ky,) > 0.45 - 4¢3

We are now going to prove that
(7) MER) = do(Kn)| < e

for some explicit constant A > 0. Therefore
(Ky) d(Ky) 1.8
M (K, - 122 A2’
5(Kn) ()\(Kn) + 476n) (2 + 47>
which gives the desired estimate in the case of a minimizing sequence K, converging to a ball in

the Hausdorff metric.
To prove @ it is sufficient to find a positive constant A such that

(8) |G, — Fy| < Aey,

where G, is the barycentre of K,, and F), is the centre of an optimal ball for A\(K,,). Indeed, by
the triangle inequality,

dLl (Kn’ BGn) S dLl (KT“ BFn) + dLl (BGn7 BFn) ’
where Bp, is an optimal ball for the Fraenkel asymmetry. This inequality together with and

Lemma imply .
We are now going to prove , which will end the proof of this case. We can always assume
that an optimal ball for the Fraenkel asymmetry is centered in 0. We are now going to estimate
1
2 = —/ z1dxridre. Writing the last integral on (K, \ B) U B\ (B \ K,,) and recalling that
7
1

—/ xidridre = 0, we get
T JB

/ xldxldxg — / a;ldxldarg
n\B B\K,

By using Theorem to estimate the first of the last two terms, we get

|$1Gn| < 8.3¢, n En _ 9.3¢,
T T T

n

s

1
Gn
27| =

1 1
< */ |x1\ dridxe + — / ‘1'1’ dxridxs .
T JK,\B T JB\Kn

since P(K,) < 16.6 as observed above. The same estimate can be obtained for |z5™|. Therefore
G| < V2235 and (8)) is proved.
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(2) We are going to analyse the case where K, converges to a connected compact set K (in the
Hausdorff metric) different from a ball.

Since the sets K, are connected and their perimeter is uniformly bounded, they are all included

in a ball. Therefore there exists a set K such that x K, = Xj in L' and ]R' | =7, by Proposition

and Remark We are going to prove that K=K (we note that the only Hausdorff convergence
does not allow us to say that |K| = 7).
By Proposition (3) applied to K¢ et K¢ we have
9) X < XK
since Xk, — Xji in L'. Therefore
(10) K| >n=|K]|.
Since K,, — K in the Hausdorff metric, K C K,, C K;. By the definition of the Minkowski

perimeter, we have, for every € > 0,

(11) |K| < |K:| <|Kp|+eP(Ky,)+o(e) =n+eP(K,)+oe) .

Since P(K,) are uniformly bounded, inequality yields |K| < m. This inequality and imply
|K| = 7. We deduce that K = K a.e. from (9).
By Theorem P(K) < hH_l)ian(Kn). Since K,, — K in L, as n — oo, we have \o(K,) —
n—oo

Mo(K). Indeed, by the triangle inequality,
7| Ao (Kp) — M(K)| < dpi (Kp, K) +dpi (B, By) .

The first term in the right hand side tends to 0, as n — oo by the L' convergence. The second one
tends to 0 by Lemma since

1
‘le” — a:lc‘ < —/ |z1|dx1dzy ,
T JK\K

where the last term tends to 0, since the diameter of K, is uniformly bounded and |K,, \ K| — 0,
as n — oo. The same holds for the second coordinate. Therefore

lim inf 0(Kn) > O(K)

0.
nhe 2(K,) = (K)

O

Remark 3.3. We conjecture that the infimum of % within the connected sets is realized by the dumbbell
0
described in Remark[2.9.

In the case where the minimizing sequence K, converges to the ball (in the Hausdorff metric), we get

K,)

an estimate from below of linrr_1>i£f A(Q)(Kn)

0
dumbbell. This is the reason why we are not able to prove the existence of an optimal set for this problem.
We were not able to find a sort of rearrangement, as in [2], to exclude sequences converging to a ball

, but our estimate is lower than the value of 5V computed on the

with the aim to prove that there exists minimizer for among connected compacts sets K C R?.

AG(K)’

Remark 3.4. The assumption that £ is connected is necessary. Indeed one can construct the following
sequence of non connected sets Qy,, given by the union of the disk centered in (2,0), of radius R, =1 — %,

and the disk centered in (—2(7171)2 O), of radius r, = ,/2251 . 1t is easy to check that |Q,| = =, the

2n—1
barycentre of U, is the origin, 6(Qy) = Ry + 1, —1 — 0 as n — 0o and \o(2,) = 2. Thus
6(Qn)
—0, n— o0.
A3 ()

This exemple shows why the classical De Giorgi perimeter is not suitable for the barycentric asymmetry.
Indeed, the set €, obtained by connecting the above two balls by a long segment would have the same De
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Giorgi perimeter as the perimeter of €, since the De Giorgi perimeter of the long segment would be 0.
Thus _
6(S2)
A5 ()
On the contrary, for the Minkowski perimeter, §(€),) — 400, since one has to consider twice the length of
the long segment.

— 0, n— o0.

Remark 3.5. The notion of Minkowski perimeter is central in the second part of the above proof, in
inequality (1)), to prove that |K| = n.

5(92)

4. MINIMISATION OF 2(Q) WITHIN COMPACT CONVEX SETS
0

In this section we prove the following theorem :

(9
Theorem 4.1. There exists an optimal set of Qconlvr(lsl;cw )\2((Q))

I(Kn)
) and the

definition of Ao imply that 0(K,,) is uniformly bounded. Therefore the sets K, are all contained in a fixed
ball, since they are convex and they perimeter is uniformly bounded.

Theorems and give us the existence of a convex compact set towards which K,, converges in the
Hausdorff metric. Now, as in the previous theorem, there can be two possibilities:

Proof. Let K, be a minimizing sequence of convex compact sets. The uniform bound on

(1) K, converges to a ball B in the Hausdorff metric;
(2) K, converges to a set K different from a ball in the Hausdorff metric.

In the next theorem we are going to analyse the first case, proving that hm mf )\2(( 7 )) > 0.406 which is
5(9)

() where S is the stadium of Theorem This means that a minimizing sequence cannot

converge to a ball Therefore the only possibility for a minimizing sequence is a second one. In this case we
can prove that K is a minimizer with the same arguments as in the proof of case (2) of Theorem

the value of

Theorem 4.2. Let K, be a sequence of convexr compact sets converging to a ball in the Hausdorff metric.
Then lim inf 2E2) < 041,

n—oo /\Q(Kn)
If a set E has barycenter in 0, it can be written in polar coordinates with respect to 0, as
(12) E={ycR?:y=te(l+u(x)),zcS"te01]},

5(E)
A (E)

with u Lipschitz function. Then we are interested in minimizing the functional which can be written

as a function of u defining E (see the computations in Section :

oz TP

2 27 9
{;/ (1 +u)? — 1\d9}
0
with the constraints of area and barycentre in 0:

1 21
NL1) — 1 2d0 = 1:
(NL1) 5= [0 wan = 1

(NL2) / " cos(O)[1 + u(0)*d = 0 = /0 7 sin(O)[1 + u(0)de:

(NL3) u(0) = u(2r).

This leads to a complicated problem in the calculus of variations. Thus, our strategy will consist in
replacing this problem by a simpler one which can be seen as a sort of of linearization:

2w
(13) =  inf /0 (0=

weHL(0,27) 2 2
{ / \u|d9}
0
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with the constraints:

2w
L) [ udo=0
L2 /0% 0)dd =0= g 0)udo
( )/ ucos(f) do = —/0 sin(6)u

0
(L3) u(0) = u(2m).
Proposition 4.3. Let 0 < e < 1/24. Let

(14) me = inf{J(u), ||u|| g~ = €, u satisfies (NL1),(NL2),(NL3)}.
Then
™
- >
(15) h?i}élfmg 2 4m

Proof. The idea of the proof is the following:

(1) we replace the optimization problem by a new one (problem ) which yields a smaller value;

(2) we prove that problem has a minimizer u.;

(3) we prove that v. = “= (which is on the unit sphere of L) is bounded in H' and converges
uniformly to some function wy;

(4) by passing to the limit as € — 0, we prove that vg is a test function for the optimization problem
whence the desired inequality.

In the sequel of the proof C will denote a constant independent of e.
2
Step 1. Since / (2u + u*) = 0 by (NL1), the minimization of J(u) is equivalent to the minimization
0
(with the same constraints) of

27 27
w2+ u?2—1(df— u+ u?/2)do
LT [

? {%/{)2wy(1+u)2—1|d9r

We are going to estimate the numerator of Ji, that is,

27
/ {\/1+2u+u2+u’2—1—(u+u2/2)}dH
0

from below. We will assume that ¢ < 1/24 and

(16) [l < 3vE

(this is possible by the estimate ||u||r~ < e and Theorem [2.10). We first observe that
1 p P p P

17 f < = 1 >l4+=z——=4+ = —-—.

(17) orlpl <5, Vitp 2145 -+ 53

By , one has the estimate \2u+u2 +u’2] <2+4e249:< 12 < % We can apply to 2u + u? +u’2
to infer

1 1 1
(1+u)?+u?—-1>u+ §u'2 - §U/4 - §UU/2 +Ce.
2m 12 2 L 4 /2 3
Therefore, the numerator of J; is estimated from below by 3 / {u —u U } + Ce”.
0

We are going to estimate the denominator of .J;. Since |2u + u?| < (2 + ¢)|u| one has that

R 2

e 2 27
() [l
- < * 2 { 0 ’u@
Therefore, under the constraints (NL1), (NL2), (NL3) one has J(u) = Ji(u) > Ja(u), where
™2

27 1
/ {u’Q —u? - Zu’4 — uu’Q} +Ce?
(18) Jo(u) = 5=

? (1+;)2 Mﬂur

—_ 3
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Defining
(19) m. := inf{Jy(u), |ul|p~ = €, u satisfies (NL1),(NL2),(NL3)},
we have mg > m..

Step 2. We prove that problem has a minimizer u. (we notice that here € is fixed).
Let uf, be a minimizing sequence for Jo. We know that ||ug ||z~ = € and ||(uf)'||z < 34/¢ for every n
(by ) Therefore us, — u. weakly in W1°°(0, 27) and uniformly in (0, 27), as n — oo.

To pass to the limit, as n — oo, in Jo(ug), we need to study the integral in the numerator of Jo. We
will use a standard argument in the calculus of variations. For small |s| and [¢| (recall that |s| < e < o
and [¢| < 3y/€), the function j(s,§) = £3(1 — s) — s? — 1&*, defining the integrand, is convex with respect
to €. This gives

j($7§) > ](3a77) +V£](3777> ' (5—77)7
where Veji(s, &) = 26(1 — s) — &3. Therefore

2 2 20
(20) [ ey 2 [T+ [ Vet (6 )

The uniform convergence of u, to u. implies that j(uS,u.) converges in L'(0,27) to j(u,ul), as n — oo.
Moreover (uf,)" — ul converges weakly to 0 in L>°(0,27) and ||Vej(us,ul) is bounded uniformly in n

|
LOO
and . Passing to the lim inf in , we get

2w 2w
timinf [ (s, () = [ g,
n—+oo Jq 0
We deduce the existence of a minimizer u. for Js.
Step 3. We define a new sequence, renormalizing u. (the minimizer of problem ):
Ue
Ve = — .
€
We are going to prove some estimates on v, which will allow us to compute the limit of v., as € — 0. The
estimates on v, will be established thanks to the test function w,, that we are about to define.
Let a. = /4 —en/6 and b, = 37/4 —em/6. Let w® be the function, piecewise affine, m-periodic, defined
by

€é t €0,a.],
w(t) = —25,;—“;5 +e te€asb],
_57?:;5 t € [be,m].

It is easy to see that w® satisfies ||w||L~ = ¢ and (NL3). It also satisfies (NL2), since (1 + w®)?3 is
m—periodic and therefore orthogonal to sine and cosine. We are going to check (NL1), that is,

™ s
2/ ws—i-/ w = 0.
0 0
Elementary calculations provide:

i 1 1 i e?
/0 w® = 50— 5(7‘(’ — be)e, /0 w? = TS

Therefore (NL1) is satisfied as soon as a. + b. — m = —¢/3 which is true with our choice of a. and b.. We
also remark that
2 2 2 2T
w? < Ce?, / w? < Ce?, w? < Cet, ww'? < Ced
0 0 0 0
and

2
€
g
/0 |w®| em 2
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These estimates imply that Jo(w®) < C for every €. Therefore Ja(u.) < Jo(w®) < C which yields

2w 2 2w 9 1 4 2 3 2 2
/ (ug)™” < / uZ + Z(ug) + us(us)” + Ce’ + C / lue|| .
0 0 0

27
We deduce that / (ue)'2 < Ce?.

0
From the definition of v, we have ||v.||f= = 1. By the above estimate we get

2T 9
(21) / V2 <.
0

The sequence v, is bounded in H'(0,27) and, as ¢ — 0, up to some sequence, v. converges weakly in
H'(0,27) and uniformly to some vy. Using we deduce that [|vL||fe < %, and then using (21)), we

have
21 9 27 C
4 2
/ vl <= / vt < =
0 g Jo IS

Moreover

by and ||ve||pe = 1.

Step 4. We now prove that the function vy found in Step 3 is a test function for the optimization problem
(13). This will allow us to prove the statement of this Proposition.

We observe that, by and the definition of v., we have

(22) mL =

€

1 2w 62
- 2/0 {vf T vaf - 5115022} + Ce
2

(1+;>2 Vo%m\r

Passing to the limit in , we get

On the other hand, passing to the limit in (NL1) and (NL2), we see that vy satisfies (L1) and (L2) and
therefore is an admissible test function for the optimization problem . For exemple, (NL1) is equivalent

27 2T
to / (u? + 2u.) = 0. This implies that 0 < /
0 0

3

27
u? = —2/ ue < Ce? by the estimate |juc||f~ < ¢.
0

2w

Therefore, by the definition of v, one has /
0

The inequality lim inf m. > lim inf m. > Tm follows.
e—0 e—0 4

2
ve — 0, as € — 0, which gives / vg = 0.
0

Lemma 4.4. Let m be defined by . If u is a minimizer, then the function ug = il satisfies
m

(23) /_ 7; luo(6)|d0 = / /[_Tr  Sam o) (OH (6 — D)sign(u)(0)drdo

1 1
where H(x) = —G(x) + or + yy cos(x), with G defined by (%/ Moreover
T 4w

1

2 :
| ol
0

(24) m =
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Proof. The existence of a minimizer of the functional in follows easily from the direct methods of

27
the calculus of variations. One can assume that / |u| = 1 by homogeneity. The Euler equation of this
0

problem is
—u" —u=m-sgn(u) + Ao+ A1 cosf + Agsinf.
By integrating on (0, 27) one finds

2w
m/ sgn(u(0))do + 2w o = 0.
0

By multiplying The Euler equation by cos 6 and sin § and then integrating on (0, 27) one gets, respectively

2m 2
(25) m/ sgn(u(f)) cos0do + A =0, m/ sgn(u(f))sinfdh + wha = 0.
0 0
The function ug = X satisfies
m
(26) uf +ug = —sgn(ug) — Ao — A cosf — Agsin @,
where
1 2 _ 1 [2m . 1 [2m -
—/ sgn(up(t))dt = —Xg , —/ sgn(up(t)) costdt = —Aq —/ sgn(ug(t)) sintdt = — A2
21 Jo T Jo ™ Jo
and m = W It is easy to see that the function at the right hand side of equation is orthogonal
o U0

to sine and cosine by . Therefore Lemma applies with

R(6) = —sgn(uo(8)) + % /_ : sgn(uo(s)) [% +cos(s — 0)] ds

and gives
() = / G()R(0 + t)dt
. : 1 Ity .
with G defined by (2), that is, G(t) = 5 1 — — | sin|t|. We observe that
i

o (6) = — /7r G(t)sgn(uo(0 + £))d + % /7; sqn(uo(s)) /: G(t) %Jr cos(s — 0 — 1)) dtds.

Since B :
/::G(t) E%—Cos(s—&—t)} dt:%%— icos(s—&),
one has
wo(6) = /_T; sgn(uo(s) | ~G(s — 0) + % + i cos(s — 0)| ds.
We can now prove Theorem [£.2]
Proof. As we already observed, we can write K, in polar coordinates (see ); this implies that

R (S
hnrglcgf )\%(Kn) = llggfmg

where m, is defined by . By Proposition it is sufficient to prove the estimate

(27) %m > 0.41,

where m is defined by . To do that, we are going to estimate the L!'(—m,7) norm of ug, thanks to
formula . Recall that

/_ 7; o (6)]d6 = / /[_7r 5 (00) (H O~ )sign(uo) (0t
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by . By applying Theorem one has
(28) / "LL() ’de < // ] - t)[X( a,a) (0) - X(—a,a)ﬂ(e)][X(—a,a) (t) - X(—a,a)c(t)]dtd‘9
™,

where 2a = |I| = 27 — |J|, with [ = {6 € [-m, 7] : up(0) > 0} and J = {0 € [—7, 7] : up(#) < 0}. We are
going to analyse separately the four terms of the integral in right hand side of . We observe that H*
is even. Let F'* be a primitive of H*, nul at 0.

The first term gives

a a 2a
H*(0 —t)X(—a.a)(0)X(—a.a)(t)dtdO = de H*(0 —t)dt =2 F*(s)ds.
2 (—asa) (—a,a)

—a —a 0

The second term gives

//[ o H O = DX o OX (o (B)dtdd =
_/_ o [ CH(0 -t + de/ HY (0 _tdt—i-/ do H* _t)dt+/ dg/ B8 — tyat

m— a 2w T+a
—4/ ds+2 F* (s)ds — 2 F*(s)ds.
2a

The third term gives

/ d0/ H*(e—t)dt:/ do [~ H*(e—t)dt+/ dH/ H*(6— t)dt
—a (—a,a)c —a -7 —a a

2a

T+a
=-2 F*(s)ds—|—2/ F*(s)ds.
0 T—a
The fourth term gives
/ do H*(H—t)dt:/_ o [ H*(H—t)dt+/ o [ HH 0= t)dr
(—a,a) (—a,a) -7 —a a a

T—a T+a
_ —2/ F*(s)ds + 2/ F*(s)ds.
0 2

a

Summing up, we get

™ 2a T+a T—a
/ uo(@)dd <4 [ F*(s)ds—4 [ F*(s)ds+ 4/ P
0

-7 0 2a
2a 7r+a T— a
The fonction a — 4 F*(s)ds — 4 s)ds + 4 / s)ds is maximal for a = 7. Therefore
0 2a
(29) / o (6)|d6 < 8/ F*(s)ds = 8/ da:/ H (£)dt
— 0 0 0

Let M > H be defined as follows. Let x1 = 0.355, o = 0.59, z3 = 1.3, z4 = 1.9, x5 = 2.25. Let

r5(z) = (z =27 +a5) - (x — 25)

©0.99

75(7)
Tl — T2

ri(x) = (x — x29)

1

— m(z —x9)(x — (z2 + x3))

ro(x)

r3(z) = —(z — 2.15)(z — (23 — 0.85)) 2
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T2 <8< 13

r3(s), x3<s<ay
ra(s), x4 <s<us

r5(s), w5 <s<w

We observe that M*(s) is the inverse function of

0.25 : :

0.2

0.15

0.1

0.05

-0.05

3 35

FicUrE 1. The function M ant its symmetrization M*.

t— {xe0,n]: M(z) >t} =

H=(1),
rit () + =y (),
ry () + = (1),

ry () + 7 — 13 (1),

tZH(xl)
OStSH(wl)
7’4(:64) StSO

r3(z3 <t < rg(xy)
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and by property M* > H*. By one has
1 s s xT s X ™
_ mwmu0§8/cM/‘HWWﬁ§8/zh/<Mﬂﬂﬁ:8/(ﬂ—@hﬂ@ﬂx%8ﬂ2%0
w 0 0 0 0 0

m _

which implies .
O

Remark 4.5. Although Fuglede [9] was interested in the uniform spherical deviation, that is, the Hausdorff
distance of a set E from the ball of same measure centered at the barycenter of E, one can easily deduce
from his results the inequality 6(E) > C(n)[\o(E)]? for nearly spherical sets (see Theorem 3.1 in [11]),
where C(n) is a constant depending on the dimension. In particular the following estimate can be proved
in the plane:

§(E) > 1—16)\0(E)2.

Howewver this estimate is not sufficient to exclude sequences converging to the ball.
Our first attempt to prove Theorem[{.9 was the following. For the denominator of J one has

50 - 1|d9r <3/ 2”|u<e>r<2+e>d9r - (1 5) 2,

For the numerator

2
/0 (V1 +w)? +w(0)2d0 — 1) do

/27r { N u? (ul)2 [4 2 4 qud + dun’ + ut + W + u2u/2]2 Sud
Uu + 2
0

2 8 t 16

> Jas

> /0277 {(“/)Q - uﬂ o + o(2) > C; ! /027ru2d9+0(2)

= 2
27 27
/ (')2d0 > c/ W2d6.
0 0

27
. / w2df
lim inf J(u) > 0 5

e—0 - Z 27
{ / mue}
0

by Hoélder inequality. Again, this estimate is not sufficient to exclude sequences converging to the ball.
Note also that the minimization problem is difficult to solve exactly due to the three constraints.
This explains why we performed this complicated and computational method via symmetrization and Riesz
inequality.

where ¢ = 4 s such that

Therefore

> - =0.375

| W

5. ON THE REGULARITY AND ON THE SHAPE OF THE OPTIMAL CONVEX SET

In this section we will prove that an optimal set for the minimization of % among convex sets in the
0

plane is Cb!. About its shape, we conjecture that the stadium S which minimizes /\5—2 (see Theorem
also minimizes our functional. Indeed, we will show that among stadia, S is the only one satisfying the
optimality conditions that we will write in Theorem Unfortunately we are not able to prove that sets
different from S do not satisfy the optimality condition.

In the proof of the regularity of the optimal set we will essentially use the first order optimality condition
in the spirit of [2I]. Let us first recall how to write these optimality conditions, in the case of convexity

constraint, when representing the boundary of the convex set with the gauge function about the problem

27 40
(30) min {j(u),u e HY(0,27),u" +u > 0,m(u) := /0 3= mo}

(see Proposition 2.3.3 of [20]).
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Proposition 5.1. Assume that ug solves (@/ where j : HY(0,27) — R is C?. Then there exist &
nonnegative, u € R such that & = 0 on the support of (ug + ug) and

7' (uo)v =< E+€" v > —pm/ (ug)v
for every v € H(0,27).

In this section, we prove the following regularity result:

Theorem 5.2. A minimizer of % within convex compact sets of the plane is C* and C> on strictly
0

convex parts of the boundary (except at the intersection with the circle of the barycentric disc).

For the proof, we first express the optimality condition of Proposition [5.1]in our context:

Proposition 5.3. Let r,0 be the polar coordinates. Let u(f) = Tle) be the gauge function used to describe

the boundary of a set. The optimal set satisfies the following condition: there exists € € H', positive, nul
when the boundary is strictly convex, and there exists fig, fi1, fla € R such that
1 u+u” 26 sign(u® —1) flo fi1 cos 0 + fizsin @

"
_ _ - _ Ko 4
2 (u2 +w2): T u? &+e u? 2ut

(31)

Proof. We are going to apply Proposition adapted to our constraints. To do that, we need to compute
the derivative of % and of the constraints.
0

1) The derivative of X is L 3 P _2753 “A. 1\IOW7 the derivative of P is
A A A 0
0 0 0

2m
/ U + u//
- ———wv.
(u? +u?)z
The derivative of w\q is the derivative of Xo\B + / XB\o Which gives
{u<1} {u>1}

1/ —2@+1/ 2v
2 Jfucty w2 Jfus1p Ut

(2) The derivative of the constraints
1/ db 0 1/2“0089 1/2”sin9
—_ —_— 7'(" = - —_— -
2 ) u?(0) 2Jo ud 2o wd
[

i1 cos 1o sin 6
ud’ 2ut 2ut

equals respectively

We are now able to prove Theorem

Proof. We are going to use the notations of the above proposition. On the strictly convex parts of the
boundary, £ = 0 and u satisfies a second order ordinary differential equation:

(1) in the exterior of the unit ball u < 1, and so u” is continuous. By a classical bootstrap argument
u is C°;

(2) in the exterior of the unit ball u > 1, and so u” is continuous. By a bootstrap argument u is C°;

(3) on the boundary of the unit ball « = 1, v” is bounded, but not continuous. Thus u is W2 there.

This and the above proposition imply that on strictly convex parts on 0B, u is C11.

Now, let us prove that © is C'. If this was not the case, we would have a corner for some y. This
implies that the Gauge function satisfies: «” + u contains a Dirac mass, with a positive weight at 6.
Thus, the H' function ¢ appearing in the optimality condition must also satisfy: &’ + £ contains a
Dirac mass at 0. Now, since £(6y) = 0 and & > 0, the weight of this Dirac mass must be non-negative, in
contradiction with the minus sign appearing in the left-hand side of in front of u” + w.

We are left with the conjunctions between a strictly convex part of the boundary and a non strictly
convex part. For that, it is sufficient to remark that any C?(RT)(C°°(R™T)) function, nul for = 0, can be
extended by 0 on R, getting a C11(R) function. This ends the proof that an optimal set is C1:1.

O



ON THE QUANTITATIVE ISOPERIMETRIC INEQUALITY IN THE PLANE WITH THE BARYCENTRIC DISTANCE 17

We are going to write differently the optimality conditions on strictly convex parts. In particular, this

will give the explicit expression of the Lagrange multipliers in . We can assume that all our sets have
area equal to .

Theorem 5.4. Let Q be an optimal set. Let B be the unit ball centered at the origin. Let 00N = 00N B,
90CUT = 9N B¢, BN = 9BNQ, 9BOUT = 9BNOC. Then the curvature of ) satisfies on every strictly
convex part:

40 40 .
(32) C:l—36+m(|aBOUT]—|8BIN\)i/\—O+u1x+my,
(+ at the exterior of B and — in the interior of B) where
46
= — {/ costdt —/ cOS tdt} )
Ao LJopouT dBIN

. 49 . .
fo = —— {/ sin tdt —/ sin tdt} .
Ao L/gpouT dBIN

Proof. We are going to perform shape variations on the strictly convex parts of 9Q2. The proof is divided
into several steps.

(1) Let Q = (I + tV)(Q). Then
\Qt|=7r+t/ Ven+o(t).
o0

(2) The barycenter constraint implies that / xdxdy = 0+t / xV - n 4+ o(t). Since by definition

) Q a0
Tt = 17— xdxdy, by the above formulas one has
|Qt| Q
t
Xy = —/ zV -n+o(t).
™ JoQy
A similar formula holds for y;:
t
yo=— | yV-n+o(t).
™ Jon

(3) Let By = (I +tW)(B), where
W(z,y) = (a,b) + a(z,y),

1 1
(a,b):f(/ xV-nj/ yV-n),oz::— V.n.
™ \Joq El9) 271 Joq

(4) The difference between |, AB;| and |QAB]| is given by two terms: one comes from the area from
B and By, and the other one from the deformation of 2. More precisely

with

\QtABt|:|QAB|it/ Wontt| Von:
0B oN

for the second term of the right hand side + is on 9BPUT and — is on 9B'V; for the last term of
the right hand side, + is 9Q°UT and — on OQN.
In the next part of the proof we will write | AB;| = [QAB| + tR.

(5) We have
R
|UAB| IQAB| +tR L+ tgag] {R Ao }

Ao(€) = = =XQ) ——————— =X Q)+t |— — — V.n|.
olfh) |€%| Q] +1 ooV -1 o L+ % foqVn oD +t|T - oa

Therefore .

d)\o(Q,V):—{i/ Won+ V-n—)\o/ Vo,
@ OB o9 o9
that is,

1
d/\o(Q,V):—{/ W.n— W-n+/ V-n—/ V-n—)\o/ V-n}.
i oBouT OBIN onouT ONIN o0
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V. V.
(6) If r is the radius of the ball having the same area as €, then r, = \/ W =1+ t%.

This gives
() = —-1= —1= —1.
27y 2+t [50V -1 2+t [50V -1
With the same computations as for Ag
_ JoaCV-n  P(Q) [poV -n
() =6(Q) +t o t o

and so

(¢ (+1)2 [ Cc-6-1

dd 20
The optimality condition —

2 Fd)\o = 0 can be written as
0 0

/(C—é—l)V—n:M{/ W.-n— W‘n—i—/ V‘n—/ V-n—)\o/ V-n}.
a0 Ao LJgpouT OBIN 9QouUT HQIN a0

Now, W -n =acosf + bsinf 4+ « (since (z,y) -n =1 on dB), so

1
W -n =cosf :BV-n+Sin0/ yV-n+ — V-n
o9 o0 27 Joq
which gives
6:5+1—45+4—5(1830U7’\—yanN\)i@ﬂzlir@y.
27‘(’)\0 )\0

O

Remark 5.5. If S denotes the stadium of Theorem|2.8, we can prove that S is the only stadium satisfying
the optimality conditions (@

To see that, let us consider a stadium centered at 0, given by the union of a rectangle of dimensions
2r x 21 and two half discs of radius v < 1. Let 0 be the angle such that r = sin 6. Assuming without loss
of generality that the area is m, one has

7 — wsin? 6

[ =

4sin 6
The perimeter equals 41 + 2mr = 575 + msin @ which implies
1 sin 6
O =ssme 2
The double of the area of the stadium minus the ball of radius 1 helps us computing A\o:
2
Ao(0) = —(m — 26 — sin(20)) .
T

On one hand, an optimal stadium is a critical point of the function 6 w 6(0)/A3(6). This leads to solve
the nonlinear equation

(33) 8sinf(1 — sin6)? — cos f(m — 260 — sin(26)) = 0.

It is a simple exercise to prove that this equation has a unique solution, providing the stadium S which

corresponds to the value 6 ~ 0.5750.

On the other hand, writing condition @ for a stadium yields, with the same notations, to the equation
3 5 (1 —sind)?(r—20)

34 4sin 6 — = sin?(0) — = +2

(34) sind = 5 s (0) = 5 4 2 0)

It is easy to check that equation has a unique solution in (0,7/2) and that solution is the same as the

one to equation . Therefore an only stadium satisfies ; this stadium is S, since Ag and X take the

same value on any stadium.

=0.
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