On the quantitative isoperimetric inequality in the plane with the barycentric distance - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

On the quantitative isoperimetric inequality in the plane with the barycentric distance

Chiara Bianchini
  • Fonction : Auteur
  • PersonId : 884405
Antoine Henrot
  • Fonction : Auteur
  • PersonId : 831020

Résumé

In this paper we study the following quantitative isoperimetric inequality in the plane: $\lambda_0^2(\Omega) \leq C \delta(\Omega)$ where $\delta$ is the isoperimetric deficit and $\lambda_0$ is the barycentric asymmetry. Our aim is to generalize some results obtained by B. Fuglede in \cite{Fu93Geometriae}. For that purpose, we consider the shape optimization problem: minimize the ratio $\delta(\Omega)/\lambda_0^2(\Omega)$ in the class of compact connected sets and in the class of convex sets.
Fichier principal
Vignette du fichier
20210718-BianchiniCroceHenrot-submitted.pdf (372.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02090603 , version 1 (04-04-2019)
hal-02090603 , version 2 (26-07-2021)

Identifiants

  • HAL Id : hal-02090603 , version 2

Citer

Chiara Bianchini, Gisella Croce, Antoine Henrot. On the quantitative isoperimetric inequality in the plane with the barycentric distance. 2021. ⟨hal-02090603v2⟩
129 Consultations
148 Téléchargements

Partager

More