A parallelizable framework for segmenting piecewise signals - Archive ouverte HAL
Article Dans Une Revue IEEE Access Année : 2019

A parallelizable framework for segmenting piecewise signals

Junbo Duan
  • Fonction : Auteur
  • PersonId : 982855
Charles Soussen
David Brie
Yu-Ping Wang
  • Fonction : Auteur

Résumé

Piecewise signals appear in many application fields. Here, we propose a framework for segmenting such signals based on the modeling of each piece using a parametric probability distribution. The proposed framework first models the segmentation as an optimization problem with sparsity regularization. Then, an algorithm based on dynamic programming is utilized for finding the optimal solution. However, dynamic programming often suffers from a heavy computational burden. Therefore, we further show that the proposed framework is parallelizable and propose using GPU-based parallel computing to accelerate the computation. This approach is highly desirable for the analysis of large volumes of data which are ubiquitous. Experiments on both simulated and real genomic datasets from next generation sequencing demonstrate improved performance in terms of both segmentation quality and computational speed.
Fichier principal
Vignette du fichier
Duan19.pdf (3.8 Mo) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

hal-01978681 , version 1 (15-05-2020)

Identifiants

Citer

Junbo Duan, Charles Soussen, David Brie, Jérôme Idier, Yu-Ping Wang, et al.. A parallelizable framework for segmenting piecewise signals. IEEE Access, 2019, 7, pp.13217-13229. ⟨10.1109/ACCESS.2018.2890077⟩. ⟨hal-01978681⟩
118 Consultations
54 Téléchargements

Altmetric

Partager

More