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ABSTRACT Piecewise signals appear in many application fields. Here, we propose a framework for
segmenting such signals based on the modeling of each piece using a parametric probability distribution. The
proposed framework first models the segmentation as an optimization problem with sparsity regularization.
Then, an algorithm based on dynamic programming is utilized for finding the optimal solution. However,
dynamic programming often suffers from a heavy computational burden. Therefore, we further show that
the proposed framework is parallelizable and propose using GPU-based parallel computing to accelerate the
computation. This approach is highly desirable for the analysis of large volumes of data that are ubiquitous.
The experiments on both the simulated and real genomic datasets from the next-generation sequencing
demonstrate an improved performance in terms of both segmentation quality and computational speed.

INDEX TERMS Parallel computing, piecewise distribution, segmentation algorithm, dynamic program-
ming, next generation sequencing.

I. INTRODUCTION
Piecewise signals appear in many fields of applications,
and a piecewise signal consists of several pieces, and each
piece obeys a distinct parameterized distribution. Specifi-
cally, the parameters of a distribution vary with each piece.

In communication, a random telegraph signal can be mod-
eled as a piecewise constant signal that is contaminated with
i.i.d. zero mean Gaussian noise. It is actually a piecewise
signal, whose pieces follow a Gaussian distribution with the
same variance but different means. In genetics, microarray
data are also modeled as piecewise constant signals con-
taminated with Gaussian noise [1]. The read depth signal,
which is generated by next generation sequencing (NGS)
techniques, was modeled as a piecewise Poisson distributed
signal in our previous work [2]. The segmentation of both
microarray data and read depth signals helps us detect the
so-called copy number variation (CNV) [3], [4], which is an
important biomarker frequently observed in human genomes
and associated with complex diseases.

The segmentation of piecewise signals has been studied
for decades, and the key problem is to detect the break-
points between consecutive pieces. Circular binary segmenta-
tion (CBS) [5], whichwas originally designed for array-based
DNA CNV detection, is one of the most commonly used
algorithms and is based on hypothesis testing. High noise
levels significantly degenerate the specificity of detection.
Thus, signals must be smoothed in preprocessing, but at
the cost of reduced detection sensitivity. As a result, several
more advanced methods have been proposed for smoothing
signals and detecting breakpoints simultaneously. The total
variation method [6], which uses a total variation term for
smoothing, has been found to be robust in detecting break-
points. Nikolova [7] showed that when the penalty potential
is nonsmooth at the origin, e.g., `1 norm, then breakpoints can
be preserved while smoothing a locally homogenous signal.
Therefore, several methods that involve an `1 norm penalty
have been proposed. Harchaoui and Lévy-Leduc [8] proposed
detecting breakpoints with LASSO; Tibshirani and Wang [9]
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proposed the fused LASSO for smoothing piecewise constant
signals; and Kim et al. [10] proposed the `1 trend filter
for smoothing piecewise linear signals. Since an `1-norm-
penalty-based solution is biased [11], the `0-norm penalty
is used as an alternative [12], [13]. Such problem can be
viewed asmodel complexity problems. Thus, model selection
criteria such as the Akaike information criterion (AIC) [14]
and the Bayesian information criterion (BIC) [15] can be
employed.

Here, we propose a framework for segmenting piece-
wise signals. The proposed framework first models each
piece using a parametric probability distribution. Then,
the maximum likelihood estimator with sparsity regulariza-
tion is derived as the optimization criterion for segmentation.
An algorithm based on dynamic programming is proposed
for finding the optimal solution. However, dynamic program-
ming often suffers from a heavy computational burden, and
this issue is exacerbated for high-dimensional data such as
genomic data arising from NGS. For example, chromosome
22, which is the shortest one in humans, consists of 47million
base pairs. To accelerate computation, we further show that
the proposed framework is parallelizable, and we employ
GPU-based parallel computing.

¯
The rest of the paper is organized as follows: in Sec. II,

we present the general optimization criterion (Subsec. II-A),
and then apply the general criterion to multiple specific
problems (Subsec. II-B). In Sec. III, we present the general
algorithm (Subsec. III-B) and an accelerated version with
GPU-based parallel computing (Subsec. III-C) and discuss
related issues (Subsecs. III-E, III-D, and III-F). In Sec. IV,
the segmentation (Subsec. IV-A) and computational perfor-
mances (Subsec. IV-B) are tested on both simulated and real
data. The conclusions of the study are presented in the last
section, followed by an appendix (A) describing the compu-
tation of a specific example.

II. PROPOSED FRAMEWORK
A. DEFINITION OF PIECEWISE DISTRIBUTED SIGNALS
A signal y = [y1, y2, . . . , yN ]T is assumed to be piecewise
distributed if the following holds:

p(y|2, I) =
K∏
k=1

fk (yIk |θk ),

where k = 1, 2, . . . ,K denotes the segment index, K is the
number of total segments,2 = {θ1, θ2, . . . , θK }, θk consists
of the parameter(s) of the kth segment, segmentation I =
{I1, I2, . . . , IK }, Ik consists of the indices i that belong to
the kth segment, and yIk = {yi|i ∈ Ik}.
If the segmentation I is known a priori, i.e., the locations

of the breakpoints are known in advance, then for a spec-
ified segment k the maximal likelihood estimator of θk is
expressed as

θ∗k = argmax
θk

fk (yIk |θk ).

By taking the negative natural logarithm, this estimator is
equivalent to

θ∗k = argmin
θk

ε(yIk |θk ), (1)

where

ε(yIk |θk ) , − ln
(
fk (yIk |θk )

)
.

As a result, the minimum at the kth segment is

ε∗k , ε(yIk |θ
∗
k )

However, in practice, K is usually unknown, not to say I,
which determines the locations of the breakpoints. If we
assume that I is known, then K is the cardinality of set I,
which is denoted by |I| = K (note that I is a set whose
elements are also sets (Ik )). Following the law of Occam’s
razor, which is a widely used approach, each segment is
penalized by λ to reduce the number of segments. A large
penalty discourages segmentation. Therefore, the estimator
of2 and I is

(2∗, I∗) = argmin
2,I

{
K∑
k=1

ε(yIk |θk )+ λK

}
In the piecewise-distributed model, each segment can be

estimated separately if I is known. Therefore, the joint esti-
mation problem can be decomposed intoK separate subprob-
lems, with each yielding an estimator as defined in Eq. (1).
Consequently,

I∗ = argmin
I

{
K∑
k=1

ε∗k + λK

}
. (2)

In Sec. III, an algorithm that is based on dynamic program-
ming is presented for solving Eq. (2) after all possible ε∗k
values have been precomputed. However, before proceeding,
certain examples are discussed.

B. EXAMPLES
Several real application signals can be solved by this model.
In the following, we discuss three of them.

1) PIECEWISE POISSON PROCESS
In the NGS techniques, the read depth signal [16] is typically
derived, based on which the CNV can be detected [3]. The
read depth signal is assumed to be a piecewise Poisson pro-
cess [17], [18], i.e., yi ∼ Poisson(τk ), i ∈ Ik :

fk (yi|θk ) =
τ
yi
k e
−τk

yi!
,

where τk is the Poisson parameter of the kth segment.
In this example, since the Poisson distribution has only

one parameter, θk = τk and the negative natural logarithm
likelihood function is expressed as

ε(yIk |θk ) =
∑
i∈Ik

(−yi ln τk + τk + ln(yi!)) ,
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and the maximal likelihood estimator is

θ∗k = τ
∗
k = yIk ,

where

yIk ,

∑
i∈Ik yi
|Ik |

,

and |Ik | is the cardinality of set Ik . Thus,

ε∗k = |Ik |yIk (1− lnyIk )+
∑
i∈Ik

ln(yi!), (3)

and the incarnation of criterion Eq. (2) in this example is

I∗ = argmin
I

{
K∑
k=1

(
−|Ik |yIk lnyIk

)
+ λK + cst1

}
,

where the constant cst1 =
∑N

i=1(yi + ln yi!) does not depend
on I or2.

2) PIECEWISE CONSTANT SIGNALS CONTAMINATED BY
GAUSSIAN NOISE WITH DISTINCT VARIANCES
Suppose that x = [x1, x2, . . . , xN ]T is a piecewise constant
signal, i.e., xi = µk , i ∈ Ik , and is contaminated by Gaussian
noise ni, which is also piecewise distributed with zero mean
and variance σ 2

k , i.e., ni ∼ N (0, σ 2
k ), i ∈ Ik . As a result,

the observation y = x+ n follows yi ∼ N (µk , σ 2
k ), i ∈ I.

If I is known, then each segment parameter θk = (µk , σ 2
k )

can be estimated as

µ∗k = yIk , σ
2
k
∗
= σ̃ 2

yIk
,

1
|Ik |

∑
i∈Ik

(yi − yIk )
2.

Therefore,

ε∗k = |Ik | ln(
√
2πeσ̃yIk

), (4)

and

I∗ = argmin
I

{
K∑
k=1

|Ik | ln(
√
2πeσ̃yIk

)+ λK

}
.

3) PIECEWISE CONSTANT SIGNALS CONTAMINATED BY
GAUSSIAN NOISE WITH THE SAME VARIANCE
If all segments share the same variance σ , i.e., σ1 = σ2 =

. . . = σK = σ , then we have

ε∗k =
|Ik |σ̃ 2

yIk

2σ 2 + |Ik | ln(
√
2πσ ), (5)

and the segmentation problem becomes

I∗ = argmin
I

{
K∑
i=1

|Ik |σ̃ 2
yIk

2σ 2 + N ln(
√
2πσ )+ λK

}
. (6)

Multiplying the above criterion by 2σ 2 yields

I∗ = argmin
I

{
K∑
i=1

|Ik |σ̃ 2
yIk
+ λ1K + cst2

}
, (7)

where λ1 = 2σ 2λ and cst2 = 2σ 2N ln(
√
2πσ ).

The recovery of x from y is typically formulated as a total
variation penalized least-square minimization problem [6]:

min
x

{
N∑
i=1

(yi − xi)2 + λ1
N−1∑
i=1

|xi+1 − xi|0

}
, (8)

where |x|0 is the scalar version of the `0 quasi-norm, which
equals to 0 if and only if x is 0, and 1 otherwise.
Problem (7) and (8) are equivalent up to a constant. The

penalty term of (8) forces x to be a piecewise constant signal.
Therefore if the segmentation profile I is known, then x∗i =
yIk , i ∈ Ik . As a result, the first term in Problem (7) and (8)
is equal. The second term in (8) is equal to λ1(K − 1) since
there are K − 1 breakpoints between K segments.

4) WEAK STRING MODEL
To reconstruct a visual signal from noisy data, Blake pro-
posed the weak string model [19]:

min
xi,li

{
N∑
i=1

(yi − xi)2+α
N−1∑
i=1

(xi+1 − xi)2(1− li)+β
N−1∑
i=1

li

}
,

(9)

where the first term defines the data distortion, the second
term reflects the smoothness of reconstruction with non-
negative scaling factor α, and the third term penalizes each
breakpoint with non-negative β. li is introduced to distinguish
the continuity:

li =

{
1, (yi, yi+1) is discontinuous;
0, otherwise.

Note that (9) can be rewritten as:

min
x

{
N∑
i=1

(yi − xi)2 + min
l

N−1∑
i=1

[
α(xi+1 − xi)2(1− li)+ βli

]}

= min
x

{
N∑
i=1

(yi − xi)2+

min
l

N−1∑
i=1

hα,β (xi+1 − xi, li)

}

= min
x

{
N∑
i=1

(yi − xi)2 +
N−1∑
i=1

h∗α,β (xi+1 − xi)

}
,

where

hα,β (x, l) = αx2(1− l)+ βl,

and

h∗α,β (x) = min
l∈{0,1}

hα,β (x, l) =

{
αx2, |x| <

√
β/α;

β, otherwise.

Note that when β = 1 and α tends to infinity, h∗α,β (x) tends
to |x|0 (see Fig. 1). Therefore, when β = λ1 and α tends
to infinity, Problem (9) approaches Problem (8) and is thus
covered by (2).
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TABLE 1. The computation of ε for four examples.

FIGURE 1. The penalty function h∗
α,β

(x) in the weak string model with
β = 1. Note that when α tends to infinity, this function tends to |x|0.

III. OPTIMIZATION ALGORITHM
In this section, we utilize a dynamic programming algo-
rithm for solving (2) when all possible ε∗k are known (or
precomputed). However, before proceeding, we discuss the
computation of ε.

A. PRECOMPUTATION OF ε∗K
As shown in Example 1 of Subsec. II-B, cst1 does not depend
on segmentation I. Therefore, the second term in (3) can be
discarded to reduce the number of computations. In addition,
in Example 2 of Subsec. II-B, when all σ 2

k are assumed to
equal σ 2, factor 2σ 2 is implied by λ1. Therefore, (7) is more
advantageous than (6) from a computational point of view.
In summary, segmentation does not require us to compute ε∗k
exactly.

Therefore, without loss of generality, for the kth segment
Ik = {uk , uk + 1, . . . , vk}, which ranges from yuk to yvk ,
we introduce ε∗(uk , vk ), 1 6 uk 6 vk 6 N to denote the
portion of ε∗k that is indispensable for segmentation. Note that
u1 = 1, vK = N , and that uk+1 = vk + 1, 1 6 k 6 K − 1.
Therefore, the independent variables of segmentation I are
v1, v2, . . . , vK−1.
Tab. 1 lists the computations of ε∗(u, v) for the examples

in Subsec. II-B.

B. GENERAL ALGORITHM
When all possible values of ε∗(u, v) have been precomputed,
the following problem can be solved by dynamic program-
ming:

E∗ = min
v1,...,vK−1

{
K∑
k=1

ε∗(uk , vk )+ λK

}
(10)

We introduce φk (v) to denote the minimal cost from the
first data point y1 to yv with a maximum of k segments.

Based on the reduction principle [20], the general algo-
rithm is expressed as

φ1(v) = ε∗(1, v)+ λ, (2 6 v 6 N )

φk (v) = min
{

min
16u6v−1

[
φk−1(u)+ ε∗(u+ 1, v)+ λ

]
,

ε∗(1, v)+ λ
}
, (2 6 k 6 K ). (11)

Here we note that in the case ε∗ > 0 (e.g., Gaussian
2 model), we can introduce φk (0) = 0 and φk (1) = λ,
therefore, the outer minimum in Eq. (11) can be avoided.
However, in general cases this is not true.

Once all φk (v) have been evaluated, the break points can
be called backwards recursively as follows:

vK = N ,

vk−1 = pk−1(vk ), (2 6 k 6 K ),

where pk−1(v) is a backwards pointer that stores the mini-
mizer of the inner optimization problem in Eq. (11), or equiv-
alently (omitting λ)

pk−1(v) = argmin
16u6v−1

[
φk−1(u)+ ε∗(u+ 1, v)

]
.

C. ACCELERATION WITH PARALLEL COMPUTING
The computation burden consists of two parts: the computa-
tion of ε∗ and the computation of φ.

To cache ε∗ and φ, an upper-triangular matrixE ∈ RN×N

and a matrix8 ∈ RK×N are needed, with elements [E]u,v =
ε∗(u, v), u < v and [8]k,v = φk (v).
Note that the computational complexity of ε∗ depends on

the model (see Tab. 1), but that of φ does not (see (11)).
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The aforementioned examples are considered again in the
following.

1) COMPUTATION OF ε∗

For the piecewise Poisson process, the main computation is
the calculation the mean value of segment yu:v; while for the
Gaussian 1 and 2 models (distinct variances and the same
variance), the main computation is the calculation of σ̃ 2

yu:v ,
which also requires the computation of yu:v. As a results,
an upper-triangular matrix Y ∈ RN×N is used to cache those
mean values, with element [Y ]u,v = yu:v.

To compute each diagonal element of Y ,O(N ) operations
(summations and divisions) are needed. Therefore, the com-
putational complexity isO(N 2) for Y . Moreover, to compute
each element in E, 3 additional operations (1 natural loga-
rithm and 2 multiplications) are needed once Y is known.
Therefore, the overall computational complexity is O( 52N

2)
for E of the piecewise Poisson process.

Note that the elements in E are computationally indepen-
dent of one another. Therefore, the elements of the diagonal
(or row or column) can be computed in parallel, thereby
accelerating the speed by a factor of N . Furthermore, all
elements in E can be computed in parallel when sufficiently
many processers are provided. Thus, the minimal computa-
tional time is bounded by O(log2 N ), which corresponds to
the longest summation (from y1 to yN ) when parallel prefix
summation [21] is used.

For the Gaussian 1 and 2 models, to compute σ̃ 2
yu:v of each

diagonal of E, 3N additional operations (N subtractions, N
squares, N summations or divisions) are needed once Y is
known. To computeE, 1 or 2 additional operations (1 natural
logarithm and 1 multiplication) are needed for each element.
Therefore, the overall computational complexity is O(5N 2).
Parallel computing can also be employed for acceleration.

For the weak string model, Appendix A provides an accel-
eration strategy for the computation of ε.

2) COMPUTATION OF φ
For a given value of k , the computational complexity of
φk (v) (see Eq. (11)) isO(2(v−1)) (including v−1 summations
and v − 1 logical comparisons, omitting λ), if ε is known;
when v increases from 1 to N , the computational complex-
ity is approximately O(N 2). As a result, the computational
complexity of 8 is O(KN 2).
Note that the computation of φk (v) depends on φk−1(i), but

not on φk (i) for all i < v, i.e., each element of the kth row of
8 can be computed in parallel when the k − 1th row of 8 is
known. Therefore, computation can be accelerated by a factor
of N . When the concept of parallel prefix summation [21] is
extended to the logical comparison in Eq. (11), the minimal
computational time is bounded byO(log2 N ) for each row of
8. Thus, O(K log2 N ) for 8.

3) OVERALL COMPUTATION AND IMPLEMENTATION ISSUES
In summary, taking the piecewise Poisson process for exam-
ple, the computational complexities of ε are φ is O( 52N

2)

and O(KN 2), respectively. Therefore, when K � 2.5, then
the overall computational complexity is O(KN 2). When the
elements of rows of E and 8 are computed in parallel,
the computation time can be reduced by a factor of N , i.e.,
O(KN ); when parallel prefix summation is used, the com-
putation time can reach O(K log2 N ); and when the pruning
rules in pruned exact linear time (PELT) [22] are equipped,
computation time can be further reduced.

D. UPPER BOUND OF K
Since the proposed algorithm searches values of segmen-
tation number k from 1 to K (the maximal segmentation
number), the computational burden is linearly dependents on
K (see Subsec. III-C). Therefore, the following provides an
upper bound for K .

Since K is between 1 and N , the minimum of Eq. (10) i.e.,
E∗, is no larger than both ε∗(1,N )+ λ and

∑N
u=1 ε

∗(u, u)+
λN , corresponding to K = 1 and N , respectively.
In contrast, E∗ is greater than K (ε0 + λ), where ε0 is the

minimum of ε∗(u, v). Together, we have

K (ε0 + λ) 6 E∗ 6 min{ε∗(1,N )+ λ,
N∑
u=1

ε∗(u, u)+ λN }.

Therefore, if ε0 + λ > 0, K is upper bounded by

K 6
min{ε∗(1,N )+ λ,

∑N
u=1 ε

∗(u, u)+ λN }
ε0 + λ

.

As an example, for the Gaussian 2 model, since ε0 = 0 and
ε∗(u, u) = 0, K is upper bounded by min{ ε

∗(1,N )
λ
+ 1,N },

which indicates that a large values of λ reduces the computa-
tional burden.

E. SELECTION OF PENALTY PARAMETERS
Since the penalty parameter λ controls the trade-off between
the data fitting fidelity and the number of segments [23], it is
necessary to tune this parameter with caution.

From the model selection point of view, λ can be deter-
mined using information criteria, such as the Akaike informa-
tion criterion (AIC) [14], the Bayesian information criterion
(BIC) [15], which is also known as the Schwarz information
criterion (SIC), the Hannan and Quinn criterion (HQC) [24],
the Draper information criterion (DIC) [25], and other vari-
ants [26]. The minimum description length (MDL) [27],
which is popular for model selection, can be approximated
by the BIC or DIC [26].

Tab. 2 lists the settings of λ on the basis of these informa-
tion criteria.

F. RESTRICTION ON THE MINIMAL SEGMENT LENGTH
As an option, one can easily impose aminimal segment length
restriction on the proposed model. For example, one can
achieve the goal of having the length of all segments to be
larger than L by setting ε∗(u, v) = +∞,∀0 < v − u < L
or, equivalently, setting the first L diagonals above the main
diagonal in E to positive infinity.
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TABLE 2. The setting of λ with popular information criteria.

IV. EXPERIMENTS AND RESULTS
To test the performance of the proposed framework in terms
of segmentation accuracy and computation speed, we con-
sider both simulated and real-world datasets. In the in silico
studies, two types of data are simulated: one follows the
Poisson distribution and the other follows the Gaussian dis-
tribution. These datasets are fed to the proposed method and
circular binary segmentation (CBS) [5], which is one of the
most famous segmentation algorithms. In the analysis of the
real-world dataset, the detection of CNV in NGS data from
a breast cancer cell line was conducted as an example. CNV
detection in NGS data is an important problem in genomics.

A. SEGMENTATION PERFORMANCE
1) PIECEWISE POISSON DISTRIBUTED SIGNALS
A signal y of lengthN = 1000 is first simulated with Poisson
parameter τ = 40. Then, 9 segments with various lengths and
Poisson parameters are implanted into y. The parameters are
listed in Tab. 3.

This signal y is segmented under the proposed framework,
which includes the piecewise distributed Poisson model,
the Gaussian model with distinct variance (Gaussian1), and
the Gaussian model with the same variance (Gaussian2).
In addition, CBS is also included for comparison. The penalty
parameter λ (or λ1) of the proposed frame work is set over a
wide range, from 2−10 to 210 with a common ratio of 2. CBS
has a similar hyperparameter αCBS (alpha in the MATLAB
function cghcbs) which tunes the significance level for the
statistical tests of breakpoint detection. We also implement
CBS with several αCBS values from 2−18 to 2−1 with a com-
mon ratio 2, and from 0.6 to 0.9 with a common difference
of 0.1.

To evaluate the average performance, 100 Monte Carlo
replicates are conducted, i.e., 100 signals y are simulated. For
each signal y and hyperparameter ( λ for the piecewise Pois-
son process, ‘Gaussian1’ and ‘Gaussian2’, or αCBS for CBS),
we implement these segmentation algorithms and calculate
the statistics.

Fig. 2(a) shows the normalized `2 reconstruction error, i.e.,
‖y−ŷ‖2
‖y‖2

, with respect to the hyperparameters, where ŷ is the
reconstructed signal of y after segmentation. The proposed
framework outperforms CBS when proper penalty parame-
ter is provided. Markers ‘diamond’, ‘square’, and ‘triangle’
correspond to the values of the penalty parameter λ that are
determined by information criteria AIC, HQC and BIC/SIC,
respectively; marker ‘cross’ corresponds to the recommended
value of αCBS (0.01). The figure suggests that BIC/SIC pro-
vides the best solution among the three alternative informa-
tion criteria, since the triangle markers are always the closest
to the valley bottom of the error curves.

Fig. 2(b) shows the best segmentations obtained by each
method (which correspond to the lowest points in Fig. 2(a)) as
examples. CBS fails to detect the two pulses (the trench near
locus 300 and the peak near locus 400), which are challenging
to detect since both the amplitude and size are small (20 and
10, respectively).

Fig. 2(c) shows a more rigid test, in which the hit rate
is recorded with respect to the hyperparameters. A hit is
defined as a case in which a method finds the ground truth
segmentation and the hit rate is the percentage of hits that
a method achieves among 100 Monte Carlo replicates. The
Poisson model and the Gaussian model with the same vari-
ance (Gaussian2) achieve higher hit rates than CBS.However,
for Gaussian2, a wider range of values of the hyperparameter
yield high hit rates than for the Poisson model.

It is also shown in Fig. 2(b) that the Gaussian model with
distinct variances (Gaussian1) prefers segments of small size
(the red curve), thereby yielding many false breakpoints, and
zero hit rate in Fig. 2(c). To avoid this situation, the minimal
segmentation length restriction was applied in subsequent
experiments. Since the minimal segment is of length 10 in
the ground truth, L = 8 is applied.
Fig. 2(d),(e) and (f) shows the normalized `2 reconstruction

error, best segmentation, and hit rate with minimal segmen-
tation length restriction, respectively. The performance of the
Gaussian model with distinct variance (Gaussian1) improves
substantially. Note that since all methods find the same
segmentations, the reconstruction curves are overlapping

TABLE 3. The settings for the simulated piecewise Poisson process.
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FIGURE 2. The segmentation of piecewise Poisson process. (a) shows the normalized `2 reconstruction error with respect to hyperparameters
(λ for the piecewise Poisson process, ‘Gaussian1’, ‘Gaussian2’, and αCBS for CBS). The markers ‘diamond’, ‘square’, ‘triangle’ correspond to λ
determined by information criteria AIC, HQC and BIC/SIC, respectively; the marker ‘cross’ corresponds to the recommended value of αCBS (0.01).
‘Gaussian1’ and ‘Gaussian2’ represent the Gaussian model with distinct and same variance, respectively. (b) shows a typical best segmentations of
each method (corresponding to the lowest points in (a)). (c) shows the hit rate (in percentage) with respect to hyperparameters. (d) (e) and (f) show
the normalized `2 reconstruction error, best segmentation, and hit rate respectively, when the minimal segmentation length restriction (L = 8) is
applied. (g) and (h) show the hit rate when the Poisson parameter of ground-true signal is halved and tripled respectively.

in Fig. 2(e), and only the top curve (the black curve, which
corresponds to Poisson model) is visible.

To simulate more and less challenging scenarios, the Pois-
son parameters of the ground-true signal y are halved and
tripled and the hit rates are shown in Fig. 2(g) and (h), respec-
tively. The hit rate decreases to 5%, or increases to 95%,
respectively. Nevertheless, in both scenarios, the proposed
framework outperforms CBS.

2) PIECEWISE GAUSSIAN DISTRIBUTED SIGNALS
This simulation further evaluates the performance of the pro-
posed framework when the data follow a Gaussian distribu-
tion. Since negative data points may occur, which yield an
undefined likelihood for the Poisson distribution (see Tab. 1),
the Poisson model is excluded from this simulation.

The ground-truth signal y is a piecewise-constant signals,
i.e., the expectation signal of the piecewise Poisson process
in the previous simulation (the black signal in Fig. 2(e)).
To mimic various noise level scenarios, i.i.d. Gaussian noise
with mean zero is added to y, and the signal-to-noise
ratio (SNR) is calculated to indicate the noise level.

Fig. 3(a) shows the best hit rates that are obtained by
employing the Gaussian model with distinct variances (Gaus-
sian1) and the same variances (Gaussian2) by employing
CBS with respect to SNR. This panel shows that with the
increase of SNR, the hit rates of all methods increase mono-
tonically from 0 to 100%, and both Gaussian1 and Gaus-
sian2 achieve higher hit rates than CBS.

When SNR drops below 10 dB, neither method offers
a single hit. As a result, the previously used normalized
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FIGURE 3. The segmentation of piecewise Gaussian distributed signal. (a) shows the hit rates with respect to the SNR. (b) shows the normalized `2
reconstruction error with respect to hyperparameter at a low SNR scenario (SNR = 10), and (c) shows the corresponding ROC at this scenario.

`2 reconstruction error and the receiver operating charac-
teristic (ROC) curve are employed instead of the hit rate.
The ROC displays the true-positive rate (TPR or sensi-
tivity/statistical power/recall) versus the false-positive rate
(FPR or 1-specificity). In the ground-truth signal y, segments
with amplitude 40 are assumed to be negatives, while other
segments (peaks and trenches) are assumed to be positives.

Fig. 3(b) presents the normalized `2 reconstruction error.
Relative to CBS, the proposed framework yields a smaller
error when a proper penalty parameter is provided.

Fig. 3(c) shows the ROC of each method with varying
hyperparameters. The proposed framework achieves higher
sensitivity and specificity than CBS, which suggests better
detection performance.

3) CNV DETECTION
The CNV is a type of structural variation (SV) that occurs
frequently in mammalian genomes including human, which
is associated with genetic diseases and cancers [28], [29]. The
NGS technique enables us to study CNV in a much faster and
more informative way and has been widely adopted in the
study of genomics.

The detection of CNV in NGS data has been proven to
be both effective and efficient [17], [30], yet the underlying
signal processing problem has not been fully explored. The
majority of detection methods make use of the piecewise fea-
tures of the read depth signal, which is derived fromNGS data
by counting the number of sequencing reads that are aligned
with fixed-size non-overlapping bins or a sliding window
along the chromosomes. Therefore, a data point in the read
depth signal follows the Poisson distribution. Furthermore,
the Poisson parameter is proportional to the copy number
locally. Therefore the read depth signal can be modeled as a
piecewise Poisson process. As a result, CNVs can be detected
by segmenting the read depth signal [3], [4].

In this study, we used the proposed piecewise Pois-
son model to process a real read depth signal that was
extracted from the whole-genome sequencing data of cell line
HCC1143, whichwas generated from a 52 year old Caucasian
womanwith breast cancer [31]. This cell line has been studied

extensively as a breast cancer model and sequenced with the
Illumina platform.

A condensed data after mapping, i.e., a BAM file [32]
was downloaded. This file includes several types of align-
ment information, such as the chromosome index, short-read
mapping coordinates in the reference genome (homo sapiens
NCBI37/hg19), and orientation flag of each mate pair. There
are approximately 10 million short reads with a read length
of 36 base pairs (bps) or, equivalently, a coverage of 0.17 of
the whole human genome.

Then, a bin size of 10 kbp was used to calculate the read
depth signal, which is the number (only considering the first
base of the 3’ end for each read) of aligned short reads in each
bin. The resultant read depth is approximately 47 on average.

Subsequently, the read depth signal was processed with
both the proposed piecewise Poisson model and CBS, and
Fig. 4 shows the results of chromosome 17 at genomic coor-
dinates 56.5 to 61.5 Mbp as a showcase. The two algorithms
produce similar segmentation results, except the Poisson
model detected a CNV loss at the genomic coordinate from

FIGURE 4. The segmentation result (genomic coordinate from 56.5 to
61.5 Mbp) of the read depth signal (black dots) of chromosome 17 of
HCC1143, which was generated by next generation sequencing from a
Caucasian woman with breast cancer. The red thick line (genomic
coordinate from 59.80 to 59.92 Mbp) covers the breast cancer gene
BRIP1 (OMIM entry number: 605882).
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59.80 to 59.92 Mbp, which is highlighted as the red thick
line. Further investigation shows that this region covers a
susceptible gene, namely, breast cancer interacting protein 1
(BRIP1) [33], which has OMIM entry number 605882 [34].

B. COMPUTATIONAL PERFORMANCE
We tested the computational performance of the proposed
framework in terms of execution time. The MATLAB stop-
watch timer function tic and toc were used to record the
elapsed time on a desktop with an Intel Core i7 processor and
32 GB memory.

FIGURE 5. The computational performance. (a) shows the computation
time of tested methods with respect to the hyperparameters, while
(b) shows the computational time with respect to the problem
dimension N .

Fig. 5(a) shows the average time cost of 100 Monte Carlo
replicates with respect to the hyperparameters. The test sig-
nal follows a piecewise Poisson process and the problem
dimension N is 1000. The time cost of CBS varies from
40 to 70 seconds. For the proposed method, the computation
time is at most 22.5 seconds, and with increasing penalty
parameter λ, the computation time decreases steeply to zero.
Overall, the proposed method spends half as much time as
the CBS.

We implemented the GPU-based parallel computing ver-
sion code (see Sec. III-C) of the proposed framework with

the MATLAB GPU computing toolbox and tested the perfor-
mance on a workstation with an nVIDIA Tesla C2050 GPU.
Fig. 5(b) shows the computation timewith respect to the prob-
lem dimension N . In this panel, ‘CPU’ and ‘GPU’ represent
the serial computing version code and a parallel alternative
on a CPU and GPU, respectively, while ‘CPU+parallel’ rep-
resents the parallel computing version code on a CPU, i.e.,
data matrices E and 8 are stored in normal memory instead
of gpuArray to disable the GPU-based parallel computing.

The GPU-based parallel computing version code increases
the computational speed by approximately one order of mag-
nitude relative to its CPU-based serial computing alterna-
tive. The time cost increases with respect to the problem
dimension N quadratically (from 4 seconds at N = 1000
to 200 seconds at N = 7000), which is consistent with the
computational complexity analysis in Sec. III-C. Note that
‘CPU+parallel’ costs more time than ‘CPU’ since there are
additional expenses involved in parallelizing the proposed
framework from its serial alternative.

V. CONCLUSIONS AND DISCUSSION
We have proposed a parallel-computing-based framework for
segmenting piecewise signals. The main contributions are
three-fold:

• The proposed framework is applicable not only to sig-
nals that follow the distributions that are mentioned in
the current paper but also to other distributions, such
as the negative binomial distribution, which is used in
the NGS data analysis [35], the gamma distribution; and
the Nakagami distribution, which is used in ultrasound
tissue characterization [36], [37].

• The proposed framework is capable of incorporating
parallel computing to accelerate the computing speed,
which is of great importance for many applications
that demand high-throughput analysis methods, such as
large-volume NGS data. i

• In the proposed framework, a restriction on the minimal
segmentation length (i.e., the minimal distance between
adjacent breakpoints) can be applied easily, which is
useful for suppressing false-positive detection.

We tested the proposed framework on both simulated and
real genomic data; the results shows that the proposed frame-
work outperforms existing segmentation algorithms, such as
the representative CBS, in terms of both segmentation accu-
racy and computational cost.

The selection of a proper model distribution remains an
open problem. When the distribution is known a priori for
a specific application, a precise model can be built, e.g., the
piecewise Poisson process addressed here. However, in most
applications this knowledge is missing. In such cases, based
on our experiences, the use of the Gaussian model with the
same variance is a safe choice. As shown in Sec. IV-A.1,
at small τ (20), the Poisson model outperforms the Gaussian
models. However, when the Poisson parameter τ is large
(e.g., greater than 50), the Poisson distribution is close to the
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Gaussian distribution with mean τ and variance τ , and there
is little difference between the two criteria.

The selection of penalty parameters is another open prob-
lem. As noted in Sec. III-E, several information criteria have
been proposed for tackling this problem. Our experiments
show that for the segmentation problem, the BIC/SIC pro-
vides more realistic parameter settings than the other two cri-
teria, namely, AIC and HQC. For further investigation on this
topic, Markon and Krueger [26] provided a comprehensive
comparison.

One main limitation of dynamic programming is the heavy
computational burden, which increases sharply with the
dimension. As mentioned previously, one of the three main
contributions of this work is the use of parallel computing to
accelerate the execution. At present, the parallel computing
was implemented in the GPU. Because the memory and cores
in our GPU are limited (3 GB and 448, respectively, in the
nVIDIA Tesla C2050), the maximal problem dimension is
7000 and the computing is not fully parallelized. For higher
dimensionality, implementation on other platforms is neces-
sary, e.g., on a high-performance computer, to further explore
the potential of the proposed framework.

APPENDIX
COMPUTATION OF ε∗ FOR THE WEAK STRING MODEL
This appendix describes the computation of ε∗ for the weak
string model (9), which is much more complex than the
examples discussed previously. Subsec. A-A presents a direct
method for computing this quantity. However, since this
direct method involves a matrix inversion (see Eq. (12)),
the computational burden is high. Therefore, in Subsec. A-B
we show an indirect method that avoids matrix inversion by
updating ε∗ (see Eq. (26)). Based on this indirect method,
a recursive updating algorithm is shown in Subsec. A-C.

A. DIRECT COMPUTATION
For the weak string model (9), without loss of generality,
suppose that a segment starts at 1 (u = 1) and ends at

v, (v > 1), i.e., li =
{
1, i = v;
0, i = 1, . . . , v− 1.

. Denote z =

[y1, . . . , yv]T ∈ Rv, w = [x1, . . . , xv]T ∈ Rv, and e =
[0, . . . , 0, 1]T ∈ Rv. The sum of the first two terms in Eq. (9)
is

ε(w) = ‖z −w‖2 + α‖Dvw‖
2,

where

Dv =


−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 1

 ∈ R(v−1)×v.

ε(w) is quadratic with respect to w. Therefore,

∂ε(w)
∂w

= 2(w − z)+ 2αDT
v Dvw = 0

⇒ w∗ = (Iv + αDT
v Dv)−1z = A−1v z,

where Iv ∈ Rv×v is an identity matrix and

Av = Iv + αD
T
v Dv ∈ R

v×v

is symmetric, positive definite, and nonsingular with α > 0.
Therefore, it is invertible:

ε∗(1, v) = ε(w∗)

= (z −A−1v z)T (z −A−1v z)

+α(DvA
−1
v z)T (DvA

−1
v z)

= zT [(Iv −A−1v )2 + αA−1v DT
v DvA

−1
v ]z

= zT [(Iv −A−1v )2 +A−1v (Av − Iv)A−1v ]z

= zT [(Iv −A−1v )2 + (Iv −A−1v )A−1v ]z

= zT (Iv −A−1v )z

= zTz − zTA−1v z. (12)

B. INDIRECT COMPUTATION
Furthermore, denoting z+ = [y1, . . . , yv, yv+1]T ∈ Rv+1 and
w+ = [x1, . . . , xv, xv+1]T ∈ Rv+1, from Eq. (12) we obtain

ε∗(1, v+ 1) = zT+z+ − zT+A
−1
v+1z+, (13)

where

Av+1 = Iv+1 + αD
T
v+1Dv+1

= Iv+1 + α

[
DT

v Dv + eeT −e
−eT 1

]
=

[
Iv + αD

T
v Dv + αee

T
−αe

−αeT 1+ α

]
=

[
Av + αee

T
−αe

−αeT 1+ α

]
=

[
B11 B12
B21 B22

]
,

and

B11 = Av + αee
T (14)

B12 = −αe (15)
B21 = −αe

T (16)
B22 = 1+ α.

From the block matrix inversion lemma [38], we have

A−1v+1 =

[
S−11 −B−111 B12S

−1
2

−S−12 B21B
−1
11 S−12

]
, (17)

where

S1 = B11 −B12B
−1
22 B21

= Av + αee
T
− (−αe)

1
1+ α

(−αe)T

= Av + αee
T
−

α2

1+ α
eeT

= Av +
α

1+ α
eeT (18)

S2 = B22 −B21B
−1
11 B12

= 1+ α − (−αeT )B−111 (−αe)

= 1+ α − α2eTB−111 e (19)
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Since Av is non-singular, we can designate the last main
diagonal element and the last column ofA−1v as [A−1v ]v,v = ρ
and [A−1v ]·,v = a, respectively. Therefore A−1v e = a and
eTA−1v e = eTa = ρ = aTe. Since Av is positive definite,
we have ρ > 0. Therefore, 1+ αρ > 0.
From the Woodburg matrix identity, we have

B−111 = (Av + αee
T )−1

= A−1v −A−1v e(
1
α
+ eTA−1v e)−1eTA−1v

= A−1v − a(
1
α
+ ρ)−1aT

= A−1v −
α

1+ αρ
aaT (20)

Comparing Eq. (14) with Eq. (18) and replacing α in
Eq. (20) with α

1+α , we obtain

S−11 = A−1v −
α

1+α

1+ α
1+αρ

aaT

= A−1v −
α

1+ α + αρ
aaT

= A−1v − ρ1aa
T (21)

where

ρ1 =
α

1+ α + αρ
.

Substituting Eq. (20) into Eq. (19), we obtain

S2 = 1+ α − α2eTB−111 e

= 1+ α − α2eT (A−1v −
α

1+ αρ
aaT )e

= 1+ α − α2(eTA−1v e−
α

1+ αρ
eTaaTe)

= 1+ α − α2(ρ −
α

1+ αρ
ρ2)

=
1+ α + αρ
1+ αρ

=
1
ρ2
, (22)

where

ρ2 =
1+ αρ

1+ α + αρ
, (23)

and

ρ1 + ρ2 = 1.

Substituting Eqs. (21), (22), (14), and (15) into Eq. (17)
yields

A−1v+1 =

[
A−1v − ρ1aa

T ρ1a

ρ1a
T ρ2

]
. (24)

Assigning

ϕ = zTa, (25)

and substituting Eq. (24) into Eq. (13), we obtain

ε∗(1, v+ 1)

= zTz + y2v+1 − [zT (A−1v − ρ1aa
T )z

+ 2zTρ1ayv+1 + ρ2y2v+1]

= zTz + y2v+1 − zTA−1v z + ρ1ϕ
2

− 2ρ1yv+1ϕ − ρ2y2v+1
= ε∗(1, v)+ ρ1(y2v+1 + ϕ

2
− 2yv+1ϕ)

= ε∗(1, v)+ (1− ρ2)(yv+1 − ϕ)2 (26)

Based on the above equation, ε∗(1, v), (1 6 v 6 N ) can be
computed recursively.

C. RECURSIVE RELATIONSHIPS
Note that [A−1v ]v,v = ρ and that [A

−1
v+1]v+1,v+1 = S−12 = ρ2.

From Eq. (23), the recursive relationship of ρ2 is expressed
as

ρ
(i+1)
2 =

1+ αρ(i)2
1+ α + αρ(i)2

, (i > 0)

ρ
(0)
2 = 1.

FromEq. (25) and Eq. (24), we define ϕu:v = [yu, . . . , yv]a
and the recursive relationship of ϕ is expressed as

ϕu:v+1 =
[
[yu, . . . , yv] yv+1

] [ ρ1a
ρ2

]
= ρ1[yu, . . . , yv]a+ ρ2yv+1
= ρ1ϕu:v + ρ2yv+1
= (1− ρ(v−u+1)2 )ϕu:v + ρ

(v−u+1)
2 yv+1, (u6v<N )

ϕu:u = yu, (1 6 u 6 N ).

Finally, from Eq. (26), for any u, the recursive relationship
of ε∗ is expressed as

ε∗(u, v+ 1) = (1− ρ(v−u+1)2 )(yv+1 − ϕu:v)2

+ ε∗(u, v), (u 6 v < N )

ε∗(u, u) = 0, (1 6 u 6 N ).
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