Quasi-optimal nonconforming approximation of elliptic PDES with contrasted coefficients and minimal regularity - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Quasi-optimal nonconforming approximation of elliptic PDES with contrasted coefficients and minimal regularity

Résumé

In this paper we investigate the approximation of a diffusion model problem with contrasted diffusivity and the error analysis of various nonconforming approximation methods. The essential difficulty is that the Sobolev smoothness index of the exact solution may be just barely larger than one. The lack of smoothness is handled by giving a weak meaning to the normal derivative of the exact solution at the mesh faces. The error estimates are robust with respect to the diffusivity contrast. We briefly show how the analysis can be extended to the Maxwell's equations.
Fichier principal
Vignette du fichier
contrasted_diffusivity.pdf (440.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01964299 , version 1 (21-12-2018)
hal-01964299 , version 2 (03-05-2021)
hal-01964299 , version 3 (24-11-2021)

Identifiants

  • HAL Id : hal-01964299 , version 1

Citer

Alexandre Ern, Jean-Luc Guermond. Quasi-optimal nonconforming approximation of elliptic PDES with contrasted coefficients and minimal regularity. 2018. ⟨hal-01964299v1⟩
327 Consultations
240 Téléchargements

Partager

More