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QUASI-OPTIMAL NONCONFORMING APPROXIMATION OF1

ELLIPTIC PDES WITH CONTRASTED COEFFICIENTS AND2

MINIMAL REGULARITY∗3

ALEXANDRE ERN† AND JEAN-LUC GUERMOND‡,4

Abstract. In this paper we investigate the approximation of a diffusion model problem with5
contrasted diffusivity and the error analysis of various nonconforming approximation methods. The6
essential difficulty is that the Sobolev smoothness index of the exact solution may be just barely larger7
than one. The lack of smoothness is handled by giving a weak meaning to the normal derivative of8
the exact solution at the mesh faces. The error estimates are robust with respect to the diffusivity9
contrast. We briefly show how the analysis can be extended to the Maxwell’s equations.10
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This article is dedicated to the memory of Christine Bernardi.14

1. Introduction. The objective of the present paper is to revisit and unify15

the error analysis of various nonconforming approximation techniques applied to a16

diffusion model problem with contrasted diffusivity. We also briefly show how to17

extend the analysis to Maxwell’s equations.18

1.1. Content of the paper. The nonconforming techniques we have in mind19

are Crouzeix–Raviart finite elements [14], Nitsche’s boundary penalty method [32],20

the interior penalty discontinuous Galerkin (IPDG) method [2], and the hybrid high-21

order (HHO) methods [16, 18] which are closely related to hybridizable discontinuous22

Galerkin methods [13]. The main difficulty in the error analysis is that owing to23

the contrast in the diffusivity, the Sobolev smoothness index of the exact solution24

is barely larger than one. This makes the estimation of the consistency error in-25

curred by nonconforming approximation techniques particularly challenging since the26

normal derivative of the solution at the mesh faces is not integrable and it is thus27

not straightforward to give a reasonable meaning to this quantity on each mesh face28

independently.29

The main goal of the present paper is to establish quasi-optimal error estimates by30

using a mesh-dependent norm that remains bounded as long as the exact solution has31

a Sobolev smoothness index strictly larger than one. By quasi-optimality, we mean32

that the approximation error measured in the augmented norm is bounded, up to a33

generic constant, by the best approximation error of the exact solution measured in34

the same augmented norm by members of the discrete trial space. A key point in the35

analysis is that the above generic constant is independent of the diffusivity contrast.36

We emphasize that quasi-optimal error estimates are more informative than the more37

traditional asymptotic error estimates, which bound the approximation error by terms38
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2 A. ERN, J.-L. GUERMOND

that optimally decay with the mesh size. Indeed, the former estimates cover the whole39

computational range whereas the latter estimates only cover the asymptotic range.40

One key novelty herein is the introduction of a weighted bilinear form that accounts41

for the default of consistency in all the cases (see (3.12)).42

The paper is organized as follows. The model problem under consideration and43

the discrete setting are introduced in §2. The weighted bilinear form mentioned above44

which accounts for the consistency default at the mesh interfaces and boundary faces45

is defined in §3. The key results in this section are Lemma 3.3 and Lemma 3.5. We46

collect in §4 the error analyses of the approximation of the model problem with the47

Crouzeix–Raviart approximation, Nitsche’s boundary penalty method, the IPDG ap-48

proximation, and the HHO approximation. To avoid invoking Strang’s second Lemma,49

we introduce in §4.1 a linear form δh that measures consistency but does not need the50

exact solution to be inserted into the arguments of the discrete bilinear form at hand.51

The weighted bilinear form (3.12) turns out to an essential tool to deduce robust52

estimates of the norm of the consistency form δh for all the nonconforming methods53

considered. One originality of this paper is that all the error estimates provided in §454

involve constants that are uniform with respect to the diffusivity contrast. Another55

salient feature is that the source term is assumed to be only in Lq(D), where q is56

such that Lq(D) is continuously embedded in H−1(D) := (H1
0 (D))′; specifically, this57

means that q > 2∗ := 2d
2+d ≥ 1 (here, d ≥ 2 is the space dimension).58

1.2. Literature overview. Let us put our work in perspective with the liter-59

ature. Perhaps a bit surprisingly, error estimates for nonconforming approximation60

methods are rarely presented in a quasi-optimal form in the literature. A key step to-61

ward achieving quasi-optimal error estimates has been achieved in Veeser and Zanotti62

[34, 35]. Therein, the approximation error and the best-approximation error are both63

measured using the energy norm and the source term is assumed to be just in the64

dual space H−1(D). However, at the time of this writing, this setting does not yet65

cover robust estimates w.r.t. the diffusivity contrast. In the present work, we proceed66

somewhat differently to obtain robust quasi-optimal error estimates. This is done at67

the following price: (i) We invoke augmented norms, which are, however, compatible68

with the elliptic regularity theory; (ii) We only consider source terms in the Lebesgue69

spaces Lq(D) with q > 2∗ := 2d
2+d ≥ 1; notice though that this regularity is weaker70

than assuming that source terms are in L2(D), as usually done in the literature.71

The traditional approach to tackle the error analysis for nonconforming approxi-72

mation techniques are Strang’s lemmas. However, an important shortcoming of this73

approach whenever the Sobolev smoothness index of the exact solution is barely larger74

than one, is that it is not possible to insert the exact solution in the first argument of75

the discrete bilinear form. To do so, one needs to assume some additional regularity76

on the exact solution which often goes beyond the regularity provided by the prob-77

lem at hand. This approach has nevertheless been used by many authors to analyze78

discontinuous Galerkin (dG) methods (see, e.g., [15, 21] and the references therein).79

One way to overcome the limitations of Strang’s Second Lemma has been proposed80

by Gudi [29]. The key idea consists of introducing a mapping that transforms the81

discrete test functions into elements of the exact test space. An important property82

of this operator is that its kernel is composed of discrete (test) functions that are83

only needed to “stabilize” the discrete bilinear form, but do not contribute to the84

interpolation properties of the approximation setting. We refer to this mapping as85

trimming operator. The notion of trimming operator has ben used in Li and Mao86

[31] to perform the analysis of the Crouzeix–Raviart approximation of the diffusion87
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Contrasted diffusion 3

problem and source term in L2(D) (see e.g., the definitions (5)–(7) and the identity88

(11) therein). The trimmed error estimate (which is sometimes referred to as “medius89

analysis” in the literature) has been applied in Gudi [29] to the IPDG approximation90

of the Laplace equation with a source term in L2(D) and to a fourth-order problem; it91

has been applied to the Stokes equations in Badia et al. [3] and to the linear elasticity92

equations in Carstensen and Schedensack [12]. One problem with methods using the93

trimming operator, though, is that they require constructing H1-conforming discrete94

quasi-approximation operators that do not account for the diffusivity contrast; this95

entails error estimates with constants that depend on the diffusivity contrast, i.e.,96

these error estimates are not robust.97

It is shown in [25] in the case of Nitsche’s boundary penalty method that the98

dependency of the constants with respect to the diffusivity contrast can be eliminated99

by introducing an alternative technique based on mollification and an extension of100

the notion of the normal derivative. The objective of the present paper is to revisit101

and extend [25]. The analysis presented here is significantly simplified and modified102

to include the Crouzeix–Raviart approximation, the IPDG approximation, and the103

HHO approximation. One key novelty is the introduction of the weighted bilinear form104

(3.12) that accounts for the consistency default in all the cases. The present analysis105

hinges on two key ideas which are now part of the numerical analysis folklore. To106

the best of our knowledge, these ideas have been introduced/used in Lemma 4.7 in107

Amrouche et al. [1], Lemma 2.3 and Corollary 3.1 in Bernardi and Hecht [5] and108

Lemma 8.2 in Buffa and Perugia [9]. However, we believe that detailed proofs are109

seemingly missing in the literature, and another purpose of this paper is to fill this110

gap.111

The first key idea is a face-to-cell lifting operator. Such an operator is mentioned112

in Lemma 4.7 in [1], and its construction is briefly discussed. The weights used in113

the norms therein, though, cannot give estimates that are uniform with respect to114

the mesh size. This operator is also mentioned in Lemma 2.3 in [5]. The authors115

claim that the face-to-cell operator has been constructed in Bernardi and Girault [4,116

Eq. (5.1)], which is unclear to us. A similar operator is invoked in Lemma 8.2 in117

[9]. The operator therein is constructed on the reference element K̂ and its stability118

properties are proved in the Sobolev scale (Hs(K̂))s∈(0,1). The authors invoke also119

the Sobolev scale (Hs(K))s∈(0,1) for arbitrary cells K in a mesh Th belonging the120

shape-regular sequence (Th)h∈H. The norm equipping Hs(K) is not explicitly defined121

therein, which leads to one statement that looks questionable (see e.g., Eq. (8.11)122

therein; a fix has been proposed in [8, Lem. A.3]). In particular, it is unclear how123

to keep track of constants that depend on K when one uses the real interpolation124

method to define Hs(K). In order to clarify the status of this face-to-cell operator,125

which is essential for our analysis, and without claiming originality, we give (recall)126

all the details of its construction in the proof of Lemma 3.1. As in [1, Lem. 4.7], we127

use the Sobolev–Slobodeckij norm to equip the fractional-order Sobolev spaces; this128

allows us to track all the constants easily.129

The second key idea introduced in the above papers is that of extending the notion130

of face integrals by using a duality argument together with the face-to-cell operator.131

The argument is deployed in Corollary 3.3 in [5], but the sketch of the proof has typos132

(e.g., an average has to be removed to make the inverse estimate in step (1) correct).133

This corollary is quoted and invoked in Cai et al. [11, Lem. 2.1]; it is the cornerstone134

of the argumentation therein. This argument is also deployed in Lemma 8.2 in [9].135

A similar argument is invoked in [1, Lem. 4.7] in a slightly different context. In all136

This manuscript is for review purposes only.



4 A. ERN, J.-L. GUERMOND

the cases one must use a density argument to complete the proofs, but this argument137

is omitted and implicitly assumed to hold true in all the above references. We fill138

this gap in Lemma 3.3 and provide the full argumentation in the proof, including139

the passage to the limit by density. The proof invokes mollifiers that commute with140

differential operators and behave properly at the boundary of the domain; these tools141

have been recently revisited in [22] elaborating on seminal ideas from Schöberl [33].142

2. Preliminaries. In this section we introduce the model problem and the dis-143

crete setting for the approximation.144

2.1. Model problem. Let D be a Lipschitz domain in Rd, which we assume for145

simplicity to be a polyhedron. We consider the following scalar model problem:146

(2.1) −∇·(λ∇u) = f in D, γg(u) = g on ∂D,147

where γg : H1(D) → H
1
2 (∂D) is the usual trace map (the superscript g refers to148

the gradient), and g ∈ H
1
2 (∂D) is the Dirichlet boundary data. The scalar-valued149

diffusion coefficient λ ∈ L∞(D) is assumed to be uniformly bounded from below away150

from zero. For simplicity, we also assume that λ is piecewise constant in D, i.e., there151

is a partition of D into M disjoint Lipschitz polyhedra D1, · · · , DM s.t. λ|Di
is a152

positive real number for all i ∈ {1:M}.153

It is standard in the literature to assume that f ∈ L2(D). We are going to relax154

this hypothesis in this paper by only assuming that f ∈ Lq(D) with q > 2d
2+d . Note155

that q > 1 since d ≥ 2. Note also that Lq(D) ↪→ H−1(D) since H1
0 (D) ↪→ Hq′(D)156

with the convention that 1
q + 1

q′ = 1. Since 2d
2+d < 2, we are going to assume without157

loss of generality that q ≤ 2.158

In the case of the homogeneous Dirichlet condition (g = 0), the weak formulation159

of the model problem (2.1) is as follows:160

(2.2)

{
Find u ∈ V := H1

0 (D) such that

a(u,w) = `(w), ∀w ∈ V,
161

with the bilinear and linear forms162

(2.3) a(v, w) :=

∫
D

λ∇v·∇w dx, `(w) :=

∫
D

fw dx.163

The bilinear form a is coercive in V owing to the Poincaré–Steklov inequality, and it164

is also bounded on V×V owing to the Cauchy–Schwarz inequality. The linear form `165

is bounded on V since the Sobolev embedding theorem and Hölder’s inequality imply166

that |`(w)| ≤ ‖f‖Lq(D)‖w‖Lq′ (D) ≤ c‖f‖Lq(D)‖w‖H1(D). Note that q ≥ 2d
2+d is the167

minimal integrability requirement on f for this boundedness property to hold true.168

The above coercivity and boundedness properties combined with the Lax–Milgram169

Lemma imply that (2.2) is well-posed. For the non-homogeneous Dirichlet boundary170

condition, one invokes the surjectivity of the trace map γg to infer the existence of a171

lifting of g, say ug ∈ H1(D) s.t. γg(ug) = g, and one decomposes the exact solution172

as u = ug + u0 where u0 ∈ H1
0 (D) solves the weak problem (2.2) with `(w) replaced173

by `g(w) = `(w) − a(ug, w). The weak formulation thus modified is well-posed since174

`g is bounded on H1
0 (D).175

The notion of diffusive flux, which is defined as follows, will play an important176

role in the paper:177

(2.4) σ(v) := −λ∇v ∈ L2(D), ∀v ∈ H1(D).178

We use boldface notation to denote vector-valued functions and vectors in Rd.179
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Contrasted diffusion 5

Lemma 2.1 (Exact solution). Assume that there exist r > 0 and q ∈ ( 2d
2+d , 2]180

such that the exact solution u is in H1+r(D) and the source term f is in Lq(D), then181

(2.5) u ∈ VS := {v ∈ H1
0 (D) | σ(v) ∈ Lp(D), ∇·σ(v) ∈ Lq(D)},182

for some real number p > 2. �183

Proof. The Sobolev embedding theorem implies that there is p > 2 s.t. Hr(D) ↪→184

Lp(D). Indeed, if 2r < d, we have Hr(D) ↪→ Ls(D) for all s ∈ [2, 2d
d−2r ] and we can185

take p = 2d
d−2r > 2, whereas if 2r ≥ d, we have Hr(D) ↪→ H

d
2 (D) ↪→ Ls(D) for186

all s ∈ [2,∞), and we can take any p > 2. The above argument implies that ∇u ∈187

Lp(D), and since λ is piecewise constant and σ(u) = −λ∇u, we have σ(u) ∈ Lp(D).188

Moreover, since ∇·σ(u) = f and f ∈ Lq(D), we have ∇·σ(u) ∈ Lq(D).189

The regularity assumption u ∈ H1+r(D), r > 0, is reasonable owing to the elliptic190

regularity theory (see Theorem 3 in Jochmann [30], Lemma 3.2 in Bonito et al. [7] or191

Bernardi and Verfürth [6]). In general, one expects that r ≤ 1
2 whenever u is supported192

on at least two contiguous subdomains where λ takes different values; otherwise the193

normal derivative of u would be continuous across the interface separating the two194

subdomains in question, and owing to the discontinuity of λ, the normal component195

of the diffusive flux σ(u) would be discontinuous across the interface, which would196

contradict the fact that σ(u) has a weak divergence. It is however possible that r > 1
2197

when the exact solution is supported on one subdomain only. If r ≥ 1, we notice that198

one necessarily has f ∈ L2(D) (since f|Di
= λ|Di

(∆u)Di
for all i ∈ {1:M}), i.e., it is199

legitimate to assume that q = 2 if r ≥ 1.200

Remark 2.2 (Extensions). One could also consider lower-order terms in (2.1),201

e.g.,−∇·(λ∇u)+β·∇u+µu = f with β ∈W 1,∞(D) and µ ∈ L∞(D) s.t. µ− 1
2∇·β ≥ 0202

a.e. in D (for simplicity). The error analysis presented in this paper still applies pro-203

vided the lower-order terms are not too large, e.g., λ ≥ max(h‖β‖L∞(Ω), h
2‖µ‖L∞(D)),204

where h denotes the mesh-size. Standard stabilization techniques have to be invoked205

if the lower-order terms are large when compared to the second-order diffusion op-206

erator. Furthermore, the error analysis can be extended to account for a piecewise207

constant tensor-valued diffusivity d; then, the various constants in the error estimate208

depend on the square-root of the anisotropy ratios measuring the contrast between209

the largest and the smallest eigenvalue of d in each subdomain Di. Finally, one can210

consider that the diffusion tensor d is piecewise smooth instead of being piecewise211

constant; a reasonable requirement is that d|Di
is Lipschitz for all i ∈ {1:M}. This212

last extension is, however, less straightforward because the discrete diffusive flux is213

no longer a piecewise polynomial function. �214

2.2. Discrete setting. We introduce in this section the discrete setting that we215

are going to use to approximate the solution to (2.2). Let Th be a mesh from a shape-216

regular sequence (Th)h∈H. Here, H is a countable set with 0 as unique accumulation217

point. A generic mesh cell is denoted K ∈ Th and is conventionally taken to be an218

open set. We also assume that Th covers each of the subdomains {Di}i∈{1:M} exactly219

so that λK := λ|K is constant for all K ∈ Th. Let (K̂, P̂ , Σ̂) be the reference finite220

element; we assume that Pk,d ⊂ P̂ ⊂ W k+1,∞(K̂) for some k ≥ 1. Here, Pk,d is the221

(real) vector space composed of the d-variate polynomials of degree at most k. For all222

K ∈ Th, let TK : K̂ → K be the geometric mapping and let ψg
K(v) = v ◦ TK be the223

pullback by the geometric mapping. We introduce the broken finite element space224

(2.6) P b
k (Th) = {vh ∈ L∞(D) | vh|K ∈ PK , ∀K ∈ Th},225
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6 A. ERN, J.-L. GUERMOND

where PK := (ψg
K)−1(P̂ ) ⊂ W k+1,∞(K). For any function vh ∈ P b

k (Th), we define226

the broken diffusive flux σ(vh) ∈ L2(D) by setting σ(vh)|K := −λK∇(vh|K) for all227

K ∈ Th. Upon introducing the notion of broken gradient ∇h : W 1,p(Th) := {v ∈228

Lp(D) | ∇(v|K) ∈ Lp(K), ∀K ∈ Th} by setting (∇hv)|K := ∇(v|K) for all K ∈ Th229

and all v ∈W 1,p(Th), we have σ(vh) = −λ∇hvh.230

For any cell K ∈ Th we denote by nK the unit normal vector on ∂K pointing231

outward. We denote by F◦h the collection of the mesh interfaces and F∂h the collection232

of the mesh faces at the boundary of D. We assume that Th is oriented in a generation-233

compatible way, and for each mesh face F ∈ F◦h ∪ F∂h , we denote by nF the unit234

vector orienting F . For all F ∈ F◦h , we denote by Kl,Kr ∈ Th the two cells s.t.235

F = ∂Kl ∩ ∂Kr and the unit normal vector nF orienting F points from Kl to Kr,236

i.e., nF = nKl
= −nKr

. For all F ∈ Fh, let TF be the collection of the one or two237

mesh cells sharing F . For all K ∈ Th, let FK be the collection of the faces of K and238

let εK,F = nF ·nK = ±1. The jump across F ∈ F◦h of any function v ∈ W 1,1(Th) is239

defined by setting [[v]]F (x) = v|Kl
(x)−v|Kr

(x) for a.e. x ∈ F . If F ∈ F∂h , this jump is240

conventionally defined as the trace on F , i.e., [[v]]F (x) = v|Kl
(x) where F = ∂Kl∩∂D.241

We omit the subscript F in the jump whenever the context is unambiguous.242

3. The bilinear form n]. In this section, we give a proper meaning to the243

normal trace of the diffusive flux of the solution to (2.2) over each mesh face. The244

material presented in §3.1 and §3.2 has been introduced in [25, §5.3] and is inspired245

from Amrouche et al. [1, Lem. 4.7], Bernardi and Hecht [5, Cor 3.3], and Buffa and246

Perugia [9, Lem. 8.2]; it is included here for the sake of completeness. The reader247

familiar with these techniques is invited to jump to §3.3 where the weighted bilinear248

form n] is introduced. This bilinear form is the main tool for the error analysis in §4.249

3.1. Face-to-cell lifting operator. Let us first motivate our approach infor-250

mally. Let K ∈ Th be a mesh cell, let FK be the collection of all the faces of K,251

and let F ∈ FK be a face of K. Let v be a vector field defined on K. We are252

looking for (mild) regularity requirements on the field v to give a meaning to the253

quantity
∫
F

(v·nK)φ ds, where φ is a given smooth function on F (e.g., a polyno-254

mial function). It is well established that it is possible to give a weak meaning in255

H−
1
2 (∂K) to the normal trace of v on ∂K by means of an integration by parts for-256

mula if v ∈ H(div;K) := {v ∈ L2(K) | ∇·v ∈ L2(K)}. In this situation, one can257

define the normal trace γd
∂K(v) ∈ H− 1

2 (∂K) by setting258

(3.1) 〈γd
∂K(v), ψ〉∂K :=

∫
K

(
v·∇w(ψ) + (∇·v)w(ψ)

)
dx,259

for all ψ ∈ H 1
2 (∂K), where w(ψ) ∈ H1(K) is a lifting of ψ, i.e., γg

∂K(w(ψ)) = ψ, and260

γg
∂K : H1(K) → H

1
2 (∂K) is the trace map locally in K. Then, one has γd

∂K(v) =261

v|∂K ·nK whenever v is smooth, e.g., if v ∈H(div;K) ∩C0(K). However, the above262

meaning is too weak for our purpose because we need to localize the action of the263

normal trace to functions φ only defined on a face F , i.e., φ may not be defined over264

the whole boundary ∂K. The key to achieve this is to extend φ by zero from F to265

∂K. This obliges us to change the functional setting since the extended function is266

no longer in H
1
2 (∂K). In what follows, we are going to use the fact that the zero-267

extension of a smooth function defined on a face F of ∂K is in W 1− 1
t ,t(∂K) if t < 2,268

i.e., t(1− 1
t ) < 1. Let us now present a rigorous construction.269
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Contrasted diffusion 7

Let p, q be two real numbers such that270

(3.2) p > 2, q >
2d

2 + d
.271

Notice that q > 1 since d ≥ 2. Let p̃ ∈ (2, p] be such that q ≥ p̃d
p̃+d ; this is indeed272

possible since p > 2, q > 2d
2+d , and the function z 7→ zd

z+d is increasing over R+.273

Lemma 3.1 shows that there exists a bounded lifting operator274

(3.3) LKF : W
1
p̃ ,p̃
′
(F ) −→W 1,p̃′(K),275

with conjugate number p̃′ s.t. 1
p̃ + 1

p̃′ = 1, so that for any φ ∈ W
1
p̃ ,p̃
′
(F ), LKF (φ) is a276

lifting of the zero-extension of φ to ∂K, i.e.,277

(3.4) γg
∂K(LKF (φ))|∂K\F = 0, γg

∂K(LKF (φ))|F = φ.278

Notice that the domain of LKF is of the form W 1− 1
t ,t(F ) with t = p̃′ < 2, which is279

consistent with the above observation regarding the zero-extension to ∂K of functions280

defined on F . We also observe that281

(3.5) LKF (φ) ∈W 1,p′(K) ∩ Lq
′
(K),282

with conjugate numbers p′, q′ s.t. 1
p + 1

p′ = 1, 1
q + 1

q′ = 1. Indeed, LKF (φ) ∈W 1,p′(K)283

just follows from p′ ≤ p̃′ (i.e., p̃ ≤ p), whereas LKF (φ) ∈ Lq
′
(K) follows from284

W 1,p̃′(K) ↪→ Lq
′
(K) owing to the Sobolev Embedding Theorem (since q′ ≤ p̃′d

d−p̃′ ,285

as can be verified from d ≥ 2 > p̃′ and 1
p̃′ −

1
d = 1 − ( 1

p̃ + 1
d ) ≤ 1 − 1

q = 1
q′ because286

q ≥ p̃d
p̃+d ). We now state our main result on the lifting operator LKF .287

Lemma 3.1 (Face-to-cell lifting). Let p and q satisfy (3.2). Let p̃ ∈ (2, p] be such288

that q ≥ p̃d
p̃+d . Let K ∈ Th be a mesh cell and let F ∈ FK be a face of K. There289

exists a lifting operator LKF : W
1
p̃ ,p̃
′
(F )→W 1,p̃′(K) satisfying (3.4), and there exists290

c, uniform w.r.t. h ∈ H, but depending on p and q, s.t. the following holds true:291

(3.6) h
d
p

K |L
K
F (φ)|W 1,p′ (K) + h

−1+ d
q

K ‖LKF (φ)‖Lq′ (K) ≤ c h
− 1

p̃ + d
p̃

K ‖φ‖
W

1
p̃
,p̃′

(F )
,292

for all φ ∈W
1
p̃ ,p̃
′
(F ) with the norm ‖φ‖

W
1
p̃
,p̃′

(F )
:= ‖φ‖Lp̃′ (F ) + h

1
p̃

F |φ|W 1
p̃
,p̃′

(F )
. �293

Proof. (1) The face-to-cell lifting operator LKF is constructed from a lifting op-294

erator LK̂
F̂

on the reference cell. Let K̂ be the reference cell and let F̂ be one of295

its faces. Let us define the operator LK̂
F̂

: W
1
p̃ ,p̃
′
(F̂ ) → W 1,p̃′(K̂). For any func-296

tion ψ ∈ W
1
p̃ ,p̃
′
(F̂ ), let ψ̃ denote the zero-extension of ψ to ∂K̂. Owing to Gris-297

vard [28, Thm. 1.4.2.4, Cor. 1.4.4.5], ψ̃ is in W
1
p̃ ,p̃
′
(∂K̂) since p̃′

p̃ = 1
p̃−1 < 1 (i.e.,298

p̃ > 2), and we have ‖ψ̃‖
W

1
p̃
,p̃′

(∂K̂)
≤ ĉ1‖ψ‖

W
1
p̃
,p̃′

(F̂ )
with the norm ‖ψ‖

W
1
p̃
,p̃′

(F̂ )
:=299

‖ψ‖Lp̃′ (F̂ ) +`
1
p̃

K̂
|ψ|

W
1
p̃
,p̃′

(F̂ )
where `K̂ = 1 is a length scale associated with K̂. Then we300

use the surjectivity of the trace map γg

K̂
: W 1,p̃′(K̂)→W

1
p̃ ,p̃
′
(∂K̂) (see Gagliardo [27,301

Thm. 1.I]) to define LK̂
F̂

(ψ) ∈W 1,p̃′(K̂) s.t. γg

K̂
(LK̂

F̂
(ψ)) = ψ̃ and ‖LK̂

F̂
(ψ)‖W 1,p̃′ (K̂) ≤302
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8 A. ERN, J.-L. GUERMOND

ĉ2‖ψ̃‖
W

1
p̃
,p̃′

(∂K̂)
, i.e., ‖LK̂

F̂
(ψ)‖W 1,p̃′ (K̂) ≤ ĉ‖ψ‖

W
1
p̃
,p̃′

(F̂ )
, with ĉ = ĉ1ĉ2. By construc-303

tion, we have γg

∂K̂
(LK̂

F̂
(ψ))|F̂ = ψ and γg

∂K̂
(LK̂

F̂
(ψ))|∂K̂\F̂ = 0.304

(2) We define the lifting operator LKF : W
1
p̃ ,p̃
′
(F )→W 1,p̃′(K) by setting305

(3.7) LKF (φ)(x) := LK̂
F̂

(φ ◦ TK|F̂ )(T−1
K (x)), ∀x ∈ K, ∀φ ∈W

1
p̃ ,p̃
′
(F ),306

where TK : K̂ → K is the geometric mapping and F̂ = T−1
K (F ). By definition, if307

x ∈ F , then x̂ := T−1
K (x) ∈ F̂ and TK|F̂ (x̂) = x, so that308

γg
∂K(LKF (φ))(x) = γg

∂K̂
(LK̂

F̂
(φ ◦ TK|F̂ ))(x̂) = φ(TK|F̂ (x̂)) = φ(x),309

whereas if x ∈ ∂K \ F , then x̂ ∈ ∂K̂ \ F̂ , so that γg

∂K̂
(LK̂

F̂
(φ ◦ TK|F̂ ))(x̂) = 0. The310

above argument shows that (3.4) holds true.311

(3) It remains to prove (3.6). Let us first bound |LKF (φ)|W 1,p′ (K). Notice that312

the definition of LFK is equivalent to LKF (φ) ◦ TK(x̂) := LK̂
F̂

(φ ◦ TK|F̂ )(x̂); that is,313

ψg
K(LKF (φ)) := LK̂

F̂
(ψg
F (φ)), where ψg

K is the pullback by TK , and ψg
F is the pullback314

by TK|F̂ . Denoting by JK the Jacobian of the geometric mapping TK , we infer that315

|LKF (φ)|W 1,p′ (K) ≤ c ‖J
−1
K ‖`2 |det(JK)|

1
p′ |LK̂

F̂
(ψg
F (φ))|W 1,p′ (K̂)316

≤ c′ ‖J−1
K ‖`2 |det(JK)|

1
p′ |LK̂

F̂
(ψg
F (φ))|W 1,p̃′ (K̂)317

≤ c′′ ‖J−1
K ‖`2 |det(JK)|

1
p′ ‖ψg

F (φ)‖
W

1
p̃
,p̃′

(F̂ )
,318

319

where the first inequality follows from the chain rule, the second is a consequence of320

p̃′ ≥ p′ (since p̃ ≤ p), and the third follows from the stability of the reference lifting321

operator LK̂
F̂

. Using now the chain rule and the shape-regularity of the mesh sequence,322

we infer that ‖ψg
F (φ)‖

W
1
p̃
,p̃′

(F̂ )
≤ c|det(JF )|−

1
p̃′ ‖φ‖

W
1
p̃
,p̃′

(F )
, where JF is the Jacobian323

of the mapping TK|F̂ : F̂ → F . Combining these bounds, we obtain324

|LKF (φ)|W 1,p′ (K) ≤ c ‖J
−1
K ‖`2 |det(JK)|

1
p′ |det(JF )|−

1
p̃′ ‖φ‖

W
1
p̃
,p̃′

(F )
325

≤ c′ h−
1
p̃ +d( 1

p̃−
1
p )

K ‖φ‖
W

1
p̃
,p̃′

(F )
,326

327

where the second bound follows from the shape-regularity of the mesh sequence.328

This proves the bound on |LKF (φ)|W 1,p′ (K) in (3.6). The proof of the bound on329

‖LKF (φ)‖Lq′ (K) uses similar arguments together with W 1,p̃′(K̂) ↪→ Lq
′
(K̂) owing to330

the Sobolev Embedding Theorem and q′ ≤ p̃′d
d−p̃′ (as already shown above).331

3.2. Face localization of the normal diffusive flux. Let K ∈ Th be a mesh332

cell, F ∈ FK be a face of K, and consider the following functional space:333

(3.8) Sd(K) := {τ ∈ Lp(K) | ∇·τ ∈ Lq(K)},334

equipped with the following dimensionally-consistent norm:335

(3.9) ‖τ‖Sd(K) := ‖τ‖Lp(K) + h
1+d( 1

p−
1
q )

K ‖∇·τ‖Lq(K).336
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Contrasted diffusion 9

With the lifting operator LKF in hand, we now define the normal trace on the face F of337

K of any field τ ∈ Sd(K) to be the linear form in (W
1
p̃ ,p̃
′
(F ))′ denoted by (τ ·nK)|F338

and whose action on any function φ ∈W
1
p̃ ,p̃
′
(F ) is339

(3.10) 〈(τ ·nK)|F , φ〉F :=

∫
K

(
τ ·∇LKF (φ) + (∇·τ )LKF (φ)

)
dx.340

Here, 〈·, ·〉F denotes the duality pairing between (W
1
p̃ ,p̃
′
(F ))′ and W

1
p̃ ,p̃
′
(F ). Notice341

that the right-hand side of (3.10) is well-defined owing to Hölder’s inequality and (3.6).342

Owing to (3.4), we readily verify that we have indeed defined an extension of the343

normal trace since we have 〈(τ ·nK)|F , φ〉F =
∫
F

(τ ·nK)φ ds whenever the field τ is344

smooth. Let us now derive an important bound on the linear form (τ ·nK)|F when345

acting on a function from the space PF , which we define to be composed of the346

restrictions to F of the functions in PK . Note that PF ⊂W
1
p̃ ,p̃
′
(F ).347

Lemma 3.2 (Bound on normal component). There exists a constant c, uniform348

w.r.t. h ∈ H, but depending on p and q, s.t. the following holds true:349

|〈(τ ·nK)|F , φh〉F | ≤ c h
d( 1

2−
1
p )

K ‖τ‖Sd(K)h
− 1

2

F ‖φh‖L2(F ),(3.11)350351

for all τ ∈ Sd(K), all φh ∈ PF , all K ∈ Th, and all F ∈ FK . �352

Proof. A direct consequence of (3.10), Hölder’s inequality, and Lemma 3.1 is that353

|〈(τ ·nK)|F , φ〉F | ≤ c h
− 1

p̃ +d( 1
p̃−

1
p )

K ‖τ‖Sd(K)‖φ‖
W

1
p̃
,p̃′

(F )
,354

for all φ ∈ W
1
p̃ ,p̃
′
(F ). Recalling that ‖φ‖

W
1
p̃
,p̃′

(F )
= ‖φ‖Lp̃′ (F ) + h

1
p̃

F |φ|W 1
p̃
,p̃′

(F )
, the355

shape-regularity of the mesh sequence implies that the following inverse inequality356

‖φh‖
W

1
p̃
,p̃′

(F )
≤ ch(d−1)( 1

2−
1
p̃ )

F ‖φh‖L2(F ) holds true for all φh ∈ PF (note that 1
2 −

1
p̃ =357

1
p̃′ −

1
2 ). The estimate (3.11) follows readily.358

3.3. Definition of n] and key identities. Let us consider the functional space359

VS defined in (2.5). For all v ∈ VS, Lemma 2.1 shows that σ(v)|K ∈ Sd(K) for all360

K ∈ Th, and Lemma 3.2 implies that it is possible to give a meaning by duality361

to the normal component of σ(v)|K on all the faces of K separately. Moreover,362

since we have set σ(vh)|K := −λK∇(vh|K) for all vh ∈ P b
k (Th), and since we have363

PK ⊂ W k+1,∞(K) with k ≥ 1, we infer that σ(vh)|K ∈ Sd(K) as well. Thus,364

σ(v)|K ∈ Sd(K) for all v ∈ (VS + P b
k (Th)). Let us now introduce the bilinear form365

n] : (VS + P b
k (Th))× P b

k (Th)→ R defined as follows:366

n](v, wh) :=
∑
F∈Fh

∑
K∈TF

εK,F θK,F 〈(σ(v)|K ·nK)|F , [[wh]]〉F ,(3.12)367

368

where the weights θK,F are still unspecified but are assumed to satisfy369

(3.13) θKl,F , θKr,F ∈ [0, 1] and θKl,F + θKr,F = 1, ∀F ∈ F◦h ,370

whereas for all F ∈ F∂h with F = ∂Kl ∩ ∂D, we set θKl,F := 1, θKr,F =: 0. We371

will see in (3.19) below how these weights must depend on the diffusion coefficient to372

get a robust boundedness estimate on n]. The definition (3.12) is meaningful since373
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10 A. ERN, J.-L. GUERMOND

[[wh]]F ∈ PF for all wh ∈ P b
k (Th). The factor εK,F in (3.12) handles the relative374

orientation of nK and nF . For all v ∈ W 1,1(Th), we define weighted averages as375

follows for a.e. x ∈ F ∈ F◦h :376

{v}F,θ(x) := θKl,F v|Kl
(x) + θKr,F v|Kr

(x),(3.14a)377

{v}F,θ̄(x) := θKr,F v|Kl
(x) + θKl,F v|Kr

(x).(3.14b)378379

Whenever θKl,F = θKr,F = 1
2 , these two definitions coincide with the usual arithmetic380

average. On boundary faces F ∈ F∂h , we have {v}F,θ(x) = v|Kl
(x), and {v}F,θ̄(x) = 0381

for a.e. x ∈ F . We omit the subscript F whenever the context is unambiguous. The382

following identity will be useful:383

(3.15) [[vw]] = {v}θ[[w]] + [[v]]{w}θ̄.384

The following lemma is fundamental to understand the role that the bilinear form385

n] will play in the next section in the analysis of various nonconforming approximation386

methods.387

Lemma 3.3 (Identities for n]). The following holds true for any choice of weights388

{θK,F }F∈Fh,K∈TF and for all wh ∈ P b
k (Th), all vh ∈ P b

k (Th), and all v ∈ VS:389

n](vh, wh) =
∑
F∈Fh

∫
F

{σ(vh)}θ·nF [[wh]] ds,(3.16a)390

n](v, wh) =
∑
K∈Th

∫
K

(
σ(v)·∇wh|K + (∇·σ(v))wh|K

)
dx.(3.16b) �391

392

Proof. (1) Proof of (3.16a). Let vh, wh ∈ P b
k (Th). Since the restriction of σ(vh)393

to each mesh cell is smooth, and since the restriction of LKF ([[wh]]) to ∂K is nonzero394

only on the face F ∈ FK where it coincides with [[wh]], we have395

〈(σ(vh)|K ·nK)|F , [[wh]]〉F =

∫
K

(
σ(vh)|K ·∇LKF ([[wh]]) + (∇·σ(vh)|K)LKF ([[wh]])

)
dx396

=

∫
∂K

σ(vh)|K ·nKLKF ([[wh]]) ds =

∫
F

σ(vh)|K ·nK [[wh]] ds,397
398

where we used the divergence formula in K. Therefore, after using the definitions of399

εK,F and of θK,F , we obtain400

n](vh, wh) =
∑
F∈Fh

∑
K∈TF

εK,F θK,F

∫
F

σ(vh)|K ·nK [[wh]] ds401

=
∑
F∈Fh

∫
F

{σ(vh)}θ·nF [[wh]] ds.402

403

(2) Proof of (3.16b). Let v ∈ VS and wh ∈ P b
k (Th). Let Kd

δ : L1(D) → C∞(D) and404

Kb
δ : L1(D) → C∞(D) be the mollification operators introduced in [22, §3.2]. These405

two operators satisfy the following key commuting property:406

(3.17) ∇·(Kd
δ (τ )) = Kb

δ (∇·τ ),407

for all τ ∈ L1(D) s.t. ∇·τ ∈ L1(D). It is important to realize that this property can408

be applied to σ(v) for all v ∈ VS since ∇·σ(v) ∈ L1(D) by definition of VS. (Note409
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that this property cannot be applied to σ(vh) with vh ∈ P b
k (Th), since the normal410

component of σ(vh) is in general discontinuous across the mesh interfaces, i.e., σ(vh)411

does not have a weak divergence.) Let us consider the mollified bilinear form412

n]δ(v, wh) :=
∑
F∈Fh

∑
K∈TF

εK,F θK,F 〈(Kd
δ (σ(v))|K ·nK)|F , [[wh]]〉F .413

Owing to the commuting property (3.17), we infer that414

415

〈(Kd
δ (σ(v))|K ·nK)|F , [[wh]]〉F =416 ∫

K

(
Kd
δ (σ(v))·LKF ([[wh]]) +Kb

δ (∇·σ(v))LKF ([[wh]])
)

dx.417
418

Then Theorem 3.3 from [22] implies that419

420

lim
δ→0

∫
K

(
Kd
δ (σ(v))·LKF ([[wh]]) +Kb

δ ((∇·σ(v)))LKF ([[wh]])
)

dx =421 ∫
K

(
σ(v)·LKF ([[wh]]) + (∇·σ(v))LKF ([[wh]])

)
dx = 〈(σ(v)|K ·nK)|F , [[wh]]〉F .422

423

Summing over the mesh faces and the associated mesh cells, we infer that424

lim
δ→0

n]δ(v, wh) = n](v, wh).425

Moreover, since the mollified function Kd
δ (σ(v)) is smooth, by repeating the calcula-426

tion done in Step (1), we also have427

n]δ(v, wh) =
∑
F∈Fh

∫
F

{Kd
δ (σ(v))}θ·nF [[wh]] ds.428

429

Using the identity (3.15) with [[Kd
δ (σ(v))]]·nF = 0 for all F ∈ F◦h , recalling that430

[[whKd
δ (σ(v))]] = whKd

δ (σ(v))|F for all F ∈ F∂h , and using the divergence formula in431

K and the commuting property (3.17), we obtain432

n]δ(v, wh) =
∑
F∈Fh

∫
F

{Kd
δ (σ(v))}θ·nF [[wh]] ds+

∑
F∈F◦h

∫
F

[[Kd
δ (σ(v))]]·nF {wh}θ̄ ds433

=
∑
F∈Fh

∫
F

[[whKd
δ (σ(v))]]·nF ds =

∑
K∈Th

∫
∂K

Kd
δ (σ(v))·nKwh|K ds434

=
∑
K∈Th

∫
K

(
Kd
δ (σ(v))·∇wh|K +Kb

δ (∇·σ(v))wh|K

)
dx.435

436

Invoking again Theorem 3.3 from [22] leads to the assertion since437

lim
δ→0

n]δ(v, wh) =
∑
K∈Th

∫
K

(
σ(v)·∇wh|K + (∇·σ(v))wh|K

)
dx.

438

Remark 3.4 (Identity (3.16b)). The identity (3.16b) is the key tool to assert in439

a weak sense that σ(v)·n is continuous across the mesh interfaces without the need440

to assume that v is smooth, say v ∈ H1+r(D) with r > 1
2 . �441

This manuscript is for review purposes only.



12 A. ERN, J.-L. GUERMOND

We now establish an important boundedness estimate on the bilinear form n].442

Since σ(v)|K ∈ Sd(K) for all K ∈ Th and all v ∈ VS +P b
k (Th), we can equip the space443

VS + P b
k (Th) with the seminorm444

(3.18) |v|2n]
:=

∑
K∈Th

λ−1
K

(
h

2d( 1
2−

1
p )

K ‖σ(v)|K‖2Lp(K) + h
2d( 2+d

2d −
1
q )

K ‖∇·σ(v)|K‖2Lq(K)

)
.445

We notice that this seminorm is dimensionally-consistent with the classical energy-446

norm defined as
∑
K∈Th λK‖∇v|K‖

2
L2(K). Straightforward algebra shows that |v|] ≤447

cλ
− 1

2

[ (`
d( 1

2−
1
p )

D ‖σ(v)‖Lp(D) + `
d( 2+d

2d −
1
q )

D ‖∇·σ(v)‖Lq(D)), for all v ∈ VS; here `D denotes448

a characteristic length of D. (Recall that ‖a‖`s(I) ≤ ‖a‖`t(I) for any finite sequence449

(ai)i∈I if 0 < t ≤ s, and we assumed that q ≤ 2.)450

In order to get robust error estimates with respect to λ, it is important to avoid451

any dependency on the ratio of the values taken by λ in two adjacent subdomains;452

otherwise, the error estimates become meaningless when the diffusion coefficient λ is453

highly contrasted. To avoid such dependencies, we introduce the following diffusion-454

dependent weights for all F ∈ F◦h , with F = ∂Kl ∩ ∂Kr:455

(3.19) θKl,F :=
λKr

λKl
+ λKr

, θKr,F :=
λKl

λKl
+ λKr

.456

We also define457

(3.20) λF :=
2λKl

λKr

λKl
+ λKr

if F ∈ F◦h and λF := λKl
if F ∈ F∂h .458

The two properties we are going to use are that |TF |λKθK,F = λF , for all K ∈ TF ,459

and λF ≤ minK∈TF λK . (Here |TF | denotes the cardinality of TF .)460

Lemma 3.5 (Boundedness of n]). With the weights defined in (3.19) and λF461

defined in (3.20) for all F ∈ Fh, there is c, uniform w.r.t. h ∈ H and λ, but depending462

on p and q, s.t. the following holds true for all v ∈ VS +P b
k (Th) and all wh ∈ P b

k (Th):463

(3.21) �|n](v, wh)| ≤ c |v|n]

( ∑
F∈Fh

λFh
−1
F ‖[[wh]]‖2L2(F )

) 1
2

.464

Proof. Let v ∈ VS + P b
k (Th) and wh ∈ P b

k (Th). Owing to the definition (3.12) of465

n] and the estimate (3.11) from Lemma 3.2, we infer that466

|n](v, wh)| ≤ c
∑
F∈Fh

∑
K∈TF

θK,Fh
d( 1

2−
1
p )

K ‖σ(v)|K‖Sd(K)h
− 1

2

F ‖[[wh]]‖L2(F )467

≤ c
( ∑
F∈Fh

∑
K∈TF

λ
− 1

2

K h
d( 1

2−
1
p )

K ‖σ(v)|K‖Lp(K)|TF |−
1
2λ

1
2

Fh
− 1

2

F ‖[[wh]]‖L2(F )468

+
∑
F∈Fh

∑
K∈TF

λ
− 1

2

K h
d( 2+d

2d −
1
q )

K ‖∇·σ(v)|K‖Lq(K)|TF |−
1
2λ

1
2

Fh
− 1

2

F ‖[[wh]]‖L2(F )

)
,469

470

where we used that θK,F ≤ θ
1
2

K,F (since θK,F ≤ 1), |TF |λKθK,F = λF , the definition of471

‖·‖Sd(K), and 1+d( 1
2−

1
q ) = d( 2+d

2d −
1
q ). Owing to the Cauchy–Schwarz inequality, we472

infer that
∑
F∈Fh

∑
K∈TF aK |TF |

− 1
2 bF ≤ (

∑
K∈Th |FK |a

2
K)

1
2 (
∑
F∈Fh

b2F )
1
2 , for all real473
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numbers {aK}K∈Th , {bF }F∈Fh
, where we used

∑
F∈Fh

∑
K∈TF =

∑
K∈Th

∑
F∈FK

474

for the term involving the aK ’s. Since |FK | is uniformly bounded (|FK | = d + 1475

for simplicial meshes), applying this bound to the two terms composing the above476

estimate on |n](v, wh)| leads to (3.21).477

Remark 3.6 (Literature). Diffusion-dependent averages have been introduced in478

Dryja [19] for discontinuous Galerkin methods and have been analyzed, e.g., in Bur-479

man and Zunino [10], Dryja et al. [20], Di Pietro et al. [17], Ern et al. [26]. �480

4. Applications. The goal of this section is to perform a unified error analysis481

for the approximation of the model problem (2.1) with various nonconforming meth-482

ods: Crouzeix–Raviart finite elements, Nitsche’s boundary penalty, interior penalty483

discontinuous Galerkin, and hybrid high-order methods. We assume that the exact484

solution is in the functional space VS defined in (2.5) with real numbers p, q satisfy-485

ing (3.2). Our unified analysis hinges on the dimensionally-consistent seminorm486

(4.1) |v|2λ,p,q := ‖λ 1
2∇hv‖2L2(D) + |v|2n]

, ∀v ∈ VS + P b
k (Th),487

with |·|n]
defined in (3.18). Since λ is piecewise constant, we have488

|v|2λ,p,q :=
∑
K∈Th

λK

(
‖∇v|K‖2L2(K) + h

2d( 1
2−

1
p )

K ‖∇v|K‖2Lp(K)489

+ h
2d( d+2

2d −
1
q )

K ‖∆v|K‖2Lq(K)

)
.(4.2)490

491

Invoking inverse inequalities shows that there is c, uniform w.r.t. h ∈ H, but depending492

on p and q, s.t.493

(4.3) |vh|λ,p,q ≤ c ‖λ
1
2∇vh‖L2(D), ∀vh ∈ P b

k (Th).494

4.1. Abstract approximation result. We start by recalling a general approx-495

imation result established in [25, Lem. 4.4]. Let V and W be two real Banach spaces.496

Let a(·, ·) be a bounded bilinear form on V×W , and let `(·) be a bounded linear form497

on W , i.e., ` ∈W ′. We consider the following abstract model problem:498

(4.4)

{
Find u ∈ V such that

a(u,w) = `(w), ∀w ∈W,
499

which we assume to be well-posed in the sense of Hadamard; that is to say, there is a500

unique solution and this solution depends continuously on the data.501

We now formulate a discrete version of the problem (4.4) by using the Galerkin502

method. We replace the infinite-dimensional spaces V and W by finite-dimensional503

spaces Vh and Wh that are members of sequences of spaces (Vh)h∈H, (Wh)h∈H en-504

dowed with some approximation properties as h → 0. The norms in Vh and Wh are505

denoted by ‖·‖Vh
and ‖·‖Wh

, respectively. The discrete version of (4.4) is formulated506

as follows:507

(4.5)

{
Find uh ∈ Vh such that

ah(uh, wh) = `h(wh), ∀wh ∈Wh,
508

where ah(·, ·) is a bounded bilinear form on Vh×Wh and `h(·) is a bounded linear form509

on Wh; note that ah(·, ·) and `h(·) possibly differ from a(·, ·) and `(·), respectively.510

We henceforth assume that dim(Vh) = dim(Wh) and that511

(4.6) inf
06=vh∈Vh

sup
06=wh∈Wh

|ah(vh, wh)|
‖vh‖Vh

‖wh‖Wh

=: αh > 0, ∀h > 0,512
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14 A. ERN, J.-L. GUERMOND

so that the discrete problem (4.5) is well-posed.513

We formalize the fact that the error analysis requires the solution to (4.4) to be514

slightly more regular than just being a member of V by introducing a functional space515

VS such that u ∈ VS ( V . Our setting for the error analysis is therefore as follows:516

(4.7) u ∈ VS ( V, u− uh ∈ V] := VS + Vh,517

with the norm in V] denoted by ‖·‖V]
. Since Vh is finite-dimensional, we have518

(4.8) c]h := sup
06=vh∈Vh

‖vh‖V]

‖vh‖Vh

<∞.519

We now introduce the consistency error mapping δh : Vh → W ′h := L(Wh;R)520

defined for all vh ∈ Vh and all wh ∈Wh by setting521

(4.9) 〈δh(vh), wh〉W ′h,Wh
:= `h(wh)− ah(vh, wh) = ah(uh − vh, wh).522

We further assume that523

(4.10) ω]h := sup
u∈VS

sup
vh∈Vh\{u}

‖δh(vh)‖W ′h
‖u− vh‖V]

<∞.524

Example 4.1 (Conforming setting). Assume conformity, ah = a, and `h = `.525

Take VS := V , so that V] = V , and take ‖·‖V]
:= ‖·‖V . The consistency error (4.9) is526

such that527

〈δh(vh), wh〉W ′h,Wh
= `(wh)− a(vh, wh) = a(u− vh, wh),528

where we used that `(wh) = a(u,wh) (i.e., the Galerkin orthogonality property). Since529

a is bounded on V×W , (4.10) holds true with ω]h = ‖a‖; moreover, c]h = 1. �530

The main result we are going to invoke later is the following.531

Lemma 4.2 (Quasi-optimal error estimate). If u ∈ VS, then532

(4.11) �‖u− uh‖V]
≤
(

1 + c]h
ω]h
αh

)
inf

vh∈Vh

‖u− vh‖V]
.533

Proof. The proof is classical; we sketch it for completeness. For all vh ∈ Vh, we534

have535

‖uh − vh‖V]
≤ c]h ‖uh − vh‖Vh

≤ c]h
αh

sup
06=wh∈Wh

|ah(uh − vh, wh)|
‖wh‖Wh

536

=
c]h
αh
‖δh(vh)‖W ′h ≤

c]hω]h
αh

‖u− vh‖V]
.537

538

We conclude by using the triangle inequality and taking the infimum over vh ∈ Vh.539

When the constants c]h and ω]h can be bounded from above uniformly w.r.t.540

h ∈ H, we denote by c] and ω] any constant such that c] ≥ suph∈H c]h and ω] ≥541

suph∈H ω]h.542
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4.2. Crouzeix–Raviart approximation. We consider in this section the ap-543

proximation of the model problem (2.2) with a homogeneous Dirichlet condition (for544

simplicity) using the Crouzeix–Raviart finite element space545

(4.12) P cr
1,0(Th) := {vh ∈ P b

1 (Th) |
∫
F

[[vh]]F ds = 0, ∀F ∈ Fh}.546

The discrete problem (4.5) is formulated with Vh := P cr
1,0(Th) and the following forms:547

(4.13) ah(vh, wh) :=

∫
D

λ∇hvh·∇hwh dx, `h(wh) =

∫
D

fwh dx.548

We equip Vh with the norm ‖vh‖Vh
:= ‖λ 1

2∇hvh‖L2(D). The following result is stan-549

dard.550

Lemma 4.3 (Coercivity, well-posedness). The bilinear form ah is coercive on Vh551

with coercivity constant α = 1, and the discrete problem (4.5) is well-posed. �552

Let V] := VS +Vh be equipped with the norm ‖v‖V]
:= |v|λ,p,q with |v|λ,p,q defined553

in (4.2) (this is indeed a norm on V] since |v|λ,p,q = 0 implies that v is piecewise554

constant and hence vanishes identically owing to the definition of Vh). Owing to (4.3),555

there is c], uniform w.r.t. h ∈ H, but depending on p and q, s.t. ‖vh‖V]
≤ c]‖vh‖Vh

,556

for all vh ∈ Vh.557

Lemma 4.4 (Consistency/boundedness). There is ω], uniform w.r.t. h ∈ H, λ,558

and u ∈ VS, but depending on p and q, s.t. ‖δh(vh)‖V ′h ≤ ω]‖u − vh‖V]
, for all559

vh ∈ Vh. �560

Proof. Let vh, wh ∈ Vh. Since Vh ⊂ P b
k (Th), the identity (3.16a) implies that561

n](vh, wh) =
∑
F∈Fh

∫
F

{σ(vh)}θ·nF [[wh]] ds = 0,562

because {σ(vh)}θ·nF is constant over F . Moreover, invoking the identity (3.16b) with563

v = u and since f = ∇·σ(u), we have564

`h(wh) = n](u,wh)−
∫
D

σ(u)·∇hwh dx.565

Combining the two above identities and letting η := u− vh, we obtain566

〈δh(vh), wh〉V ′h,Vh
= n](u,wh) +

∫
D

λ∇hη·∇hwh dx = n](η, wh) +

∫
D

λ∇hη·∇hwh dx.567
568

The first term on the right-hand side is estimated by invoking the boundedness of569

n] (Lemma 3.5), the inequality λF ≤ minK∈TF λK (see (3.20)), and the bound570 ∑
F∈Fh

λFh
−1
F ‖[[wh]]‖2L2(F ) ≤ c‖wh‖2Vh

, which is standard for Crouzeix–Raviart el-571

ements. The second term is estimated by using the Cauchy–Schwarz inequality.572

Theorem 4.5 (Error estimate). Let u solve (2.2) and uh solve (4.5) with ah573

and `h defined in (4.13). Assume that there is r > 0 s.t. u ∈ H1+r(D). There is574

c, uniform w.r.t. h ∈ H, λ, and u ∈ H1+r(D), but depending on r, s.t. the following575

quasi-optimal error estimate holds true:576

(4.14) ‖u− uh‖V]
≤ c inf

vh∈Vh

‖u− vh‖V]
.577
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16 A. ERN, J.-L. GUERMOND

Moreover, letting t := min(1, r), where 1 = k is the degree of the Crouzeix–Raviart578

finite element, we have579

(4.15) �‖u− uh‖V]
≤ c

( ∑
K∈Th

λKh
2t
K |u|2H1+t(K) + λ−1

K h
2d( d+2

2d −
1
q )

K ‖f‖2Lq(K)

) 1
2

.580

Proof. The error estimate (4.14) follows from Lemma 4.2 combined with stability581

(Lemma 4.3) and consistency/boundedness (Lemma 4.4). We now bound the infimum582

in (4.14) by considering η := u− Icrh (u), where Icrh is the Crouzeix–Raviart interpo-583

lation operator using averages over the faces as degrees of freedom. It is a standard584

approximation result that there is c, uniform w.r.t. u ∈ H1+t(K), t ≥ 0, and h ∈ H,585

s.t. ‖∇η|K‖L2(K) ≤ chtK |u|H1+t(K) for all K ∈ Th. Moreover, invoking the embedding586

Ht(K̂) ↪→ Lp(K̂) and classical results on the transformation of Sobolev norms by the587

geometric mapping, we obtain the bound588

(4.16) h
d( 1

2−
1
p )

K ‖∇η|K‖Lp(K) ≤ c
(
‖∇η|K‖L2(K) + htK |∇η|K |Ht(K)

)
.589

Observing that |∇η|K |Ht(K) = |u|H1+t(K) since Icrh (u) is affine on K and using590

again the approximation properties of Icrh , we infer that h
d( 1

2−
1
p )

K ‖∇η|K‖Lp(K) ≤591

c htK |u|H1+t(K). Finally, we have ∆η|K = λ−1
K f in K.592

Remark 4.6 (Convergence). The rightmost term in (4.15) converges as O(h)593

when q = 2. Moreover, convergence is lost when q ≤ 2d
d+2 , which is somewhat natural594

since in this case the linear form w 7→
∫
D
fw dx is no longer bounded on H1(D). �595

Remark 4.7 (Weights). Although the weights introduced in (3.19) are not ex-596

plicitly used in the Crouzeix–Raviart discretization, they play a role in the error597

analysis. More precisely, we used the boundedness of the bilinear form n] together598

with λF ≤ minK∈TF λK in the proof of Lemma 4.4. The present approach is some-599

what more general than that in Li and Mao [31] since it delivers error estimates that600

are robust with respect to the diffusivity contrast. The trimming operator invoked in601

[31, Eq. (5)–(7)] cannot account for the diffusivity contrast. �602

4.3. Nitsche’s boundary penalty method. We consider in this section the603

approximation of the model problem (2.1) by means of Nitsche’s boundary penalty604

method. Now we set605

(4.17) Vh := P g
k (Th) := {vh ∈ P b

k (Th) | [[vh]]F = 0, ∀F ∈ F◦h}, k ≥ 1,606

i.e., Vh is H1-conforming The discrete problem (4.5) is formulated with Vh := P g
k (Th)607

and the following forms:608

ah(vh, wh) := a(vh, wh) +
∑
F∈F∂

h

∫
F

(
σ(vh)·n+$0

λKl

hF
vh

)
wh ds,(4.18a)609

`h(wh) := `(wh) +
∑
F∈F∂

h

$0
λKl

hF

∫
F

gwh ds,(4.18b)610

611

where the exact forms a and ` are defined in (2.3), Kl is the unique mesh cell s.t.612

F = ∂Kl ∩ ∂D, and the user-specified penalty parameter $0 is yet to be chosen large613

enough. It is possible to add a symmetrizing term to the discrete bilinear form ah.614
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We equip Vh with the norm ‖vh‖2Vh
:= ‖λ 1

2∇vh‖2L2(D) + |vh|2∂ with |vh|2∂ :=615 ∑
F∈F∂

h

λKl

hF
‖vh‖2L2(F ). Owing to the shape-regularity of the mesh sequence, there616

is cI , uniform w.r.t. h ∈ H s.t.617

(4.19) ‖vh‖L2(F ) ≤ cIh
− 1

2

F ‖vh‖L2(Kl),618

for all vh ∈ Vh and all F ∈ F∂h . Let n∂ denote the maximum number of boundary619

faces that a mesh cell can have (n∂ ≤ d for simplicial meshes). The proof of the620

following result uses standard arguments.621

Lemma 4.8 (Coercivity, well-posedness). Assume that the penalty parameter622

satisfies $0 >
1
4n∂c

2
I . Then, ah is coercive on Vh with constant α :=

$0− 1
4n∂c

2
I

1+$0
> 0,623

and the discrete problem (4.5) is well-posed. �624

Let V] := VS + Vh. We equip the space V] with the norm ‖v‖2V]
:= |v|2λ,p,q + |v|2∂625

with626

|v|2λ,p,q :=
∑
K∈Th

λK‖∇v|K‖2L2(K)627

+
∑
K∈T ∂

h

λK

(
h

2d( 1
2−

1
p )

K ‖∇v|K‖2Lp(K) + h
2d( d+2

2d −
1
q )

K ‖∆v|K‖2Lq(K)

)
,(4.20)628

629

where T ∂h is the collection of the mesh cells having at least one boundary face, and630

|v|2∂ =
∑
F∈F∂

h

λKl

hF
‖v‖2L2(F ). Owing to (4.3), there is c], uniform w.r.t. h ∈ H, but631

depending on p and q, s.t. ‖vh‖V]
≤ c]‖vh‖Vh

, for all vh ∈ Vh.632

Lemma 4.9 (Consistency/boundedness). There is ω], uniform w.r.t. h ∈ H, λ,633

and u ∈ VS, but depending on p and q, s.t. ‖δh(vh)‖V ′h ≤ ω]‖u − vh‖V]
, for all634

vh ∈ Vh. �635

Proof. Let vh, wh ∈ Vh. Using the identity (3.16a) for n], [[wh]]F = 0 for all636

F ∈ F◦h (since Vh is H1-conforming), and the definition of the weights at the bound-637

ary faces, we infer that n](vh, wh) =
∑
F∈F∂

h

∫
F
σ(vh)·nwh ds. Hence, ah(vh, wh) =638

a(vh, wh) + n](vh, wh) +
∑
F∈F∂

h
$0

λKl

hF

∫
F
vhwh ds. Therefore, invoking the iden-639

tity (3.16b) for the exact solution u and observing that f = ∇·σ(u), we infer the640

important identity
∫
D
fwh dx = a(u,wh) +n](u,wh). Then, recalling that γg(u) = g,641

and letting η := u− vh, we obtain642

〈δh(vh), wh〉V ′h,Vh
= n](η, wh) + a(η, wh) +

∑
F∈F∂

h

$0
λKl

hF

∫
F

ηwh ds.643

We conclude by using the boundedness of n] from Lemma 3.5 and the Cauchy–Schwarz644

inequality.645

Theorem 4.10 (Error estimate). Let u solve (2.1) and uh solve (4.5) with ah and646

`h defined in (4.18) and penalty parameter $0 >
1
4n∂c

2
I . Assume that there is r > 0647

s.t. u ∈ H1+r(D). There is c, uniform with respect to h ∈ H, λ, and u ∈ H1+r(D),648

but depending on r, s.t. the following quasi-optimal error estimate holds true:649

(4.21) ‖u− uh‖V]
≤ c inf

vh∈Vh

‖u− vh‖V]
.650
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18 A. ERN, J.-L. GUERMOND

Moreover, letting t := min(r, k), χt = 1 if t ≤ 1 and χt = 0 if t > 1, we have651

(4.22) ‖u− uh‖V]
≤ c

( ∑
K∈Th

λKh
2t
K |u|2H1+t(ŤK)

+
χt
λK

h
2d( d+2

2d −
1
q )

K ‖f‖2Lq(K)

) 1
2

,652

where ŤK is the collection of the mesh cells having at least a common vertex with K.653

The broken Sobolev norm |·|H1+t(ŤK) can be replaced by |·|H1+t(K) if 1 + t > d
2 . �654

Proof. The error estimate (4.21) follows from Lemma 4.2 combined with stabil-655

ity (Lemma 4.8) and consistency/boundedness (Lemma 4.9). We now bound the656

infimum in (4.21) by using η := u − Ig,av
h (u), where Ig,av

h is the quasi-interpolation657

operator introduced in [23, §5]. We take the polynomial degree of Ig,av
h to be ` := dte,658

where dte denotes the smallest integer n ∈ N s.t. n ≥ t. Notice that ` ≥ 1 be-659

cause r > 0 and k ≥ 1, and ` ≤ k because t ≤ k; hence, Ig,av
h (u) ∈ Vh. We660

need to bound all the terms composing the norm ‖η‖V]
. Owing to [23, Thm. 5.2]661

with m = 1, we have ‖∇η‖L2(K) ≤ chtK |u|H1+t(ŤK) for all K ∈ Th. Moreover,662

we have h
− 1

2

F ‖η‖L2(F ) ≤ chtKl
|u|H1+t(ŤKl

) for all F ∈ F∂h . It remains to estimate663

h
d( 1

2−
1
p )

K ‖∇η|K‖Lp(K) and h
d( d+2

2d −
1
q )

K ‖∆η|K‖Lq(K) for all K ∈ T ∂h. Using (4.16), the664

above bound on ‖∇η‖L2(K), and |∇η|Ht(K) = |∇u|Ht(K) = |u|H1+t(K) since ` < 1+ t,665

we infer that h
d( 1

2−
1
p )

K ‖∇η‖Lp(K) ≤ c htK |u|H1+t(ŤK). Moreover, if t ≤ 1, we have ` = 1666

so that ‖∆η|K‖Lq(K) = ‖∆u‖Lq(K) = λ−1
K ‖f‖Lq(K). Instead, if t > 1, we infer that667

r > 1 so that we can set q = 2 (recall that f|Di
= λ|Di

(∆u)Di
for all i ∈ {1:M}, and668

u ∈ H2(D) if r ≥ 1), and we estimate ‖∆η|K‖L2(K) using [23, Thm. 5.2] with m = 2.669

Finally, if 1 + t > d
2 , we can use the canonical Lagrange interpolation operator Ig

h670

instead of Ig,av
h , and this allows us to replace |·|H1+t(ŤK) by |·|H1+t(K) in (4.22).671

4.4. Discontinuous Galerkin. We consider in this section the approximation672

of the model problem (2.1) by means of the symmetric interior penalty discontinuous673

Galerkin method. The discrete problem (4.5) is formulated with Vh := P b
k (Th), k ≥ 1,674

the bilinear forms675

ah(vh, wh) :=

∫
D

λ∇hvh·∇hwh dx+
∑
F∈Fh

∫
F

{σ(vh)}θ·nF [[wh]] ds676

+
∑
F∈Fh

∫
F

[[vh]]{σ(wh)}θ·nF ds+
∑
F∈Fh

$0
λF
hF

∫
F

[[vh]][[wh]] ds,(4.23a)677

`h(wh) := `(wh) +
∑
F∈F∂

h

$0
λKl

hF

∫
F

gwh ds,(4.23b)678

679

where ` is defined in (2.3), λF in (3.20), and the user-specified penalty parame-680

ter $0 is yet to be chosen large enough. We equip Vh with the norm ‖vh‖2Vh
:=681

‖λ 1
2∇hvh‖2L2(D) + |vh|2J with |vh|2J :=

∑
F∈Fh

λF

hF
‖[[vh]]‖2L2(F ). Recall the discrete trace682

inequality (4.19) and recall that n∂ denotes the maximum number of faces that a683

mesh cell can have (n∂ ≤ d + 1 for simplicial meshes). The proof of the following684

result uses standard arguments.685

Lemma 4.11 (Coercivity, well-posedness). Assume that the penalty parameter686

satisfies $0 > n∂c
2
I . Then, ah is coercive on Vh with constant α :=

$0−n∂c
2
I

1+$0
> 0, and687

the discrete problem (4.5) is well-posed. �688
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Let V] := VS + Vh. We equip the space V] with the norm ‖v‖2V]
:= |v|2λ,p,q + |v|2J689

with |v|λ,p,q defined in (4.2) and |v|2J :=
∑
F∈Fh

λF

hF
‖[[v]]‖2L2(F ). Owing to (4.3), there690

is c], uniform w.r.t. h ∈ H, but depending on p and q, s.t. ‖vh‖V]
≤ c]‖vh‖Vh

, for all691

vh ∈ Vh.692

Lemma 4.12 (Consistency/boundedness). There is ω], uniform w.r.t. h ∈ H,693

λ, and u ∈ VS, but depending on p and q, s.t. ‖δh(vh)‖V ′h ≤ ω]‖u − vh‖V]
, for all694

vh ∈ Vh. �695

Proof. Let vh, wh ∈ Vh. Owing to (3.16b) and since f = ∇·σ(u), we infer that696 ∫
D
fwh dx =

∑
K∈Th aK(u,wh) + n](u,wh) with aK(u,wh) := −(σ(u),∇hwh)L2(K).697

Using the identity (3.16a), we obtain698

`h(wh) = n](u,wh)−
∫
D

σ(u)·∇hwh dx+
∑
F∈F∂

h

$0
λF
hF

∫
F

gwh ds,699

ah(vh, wh) =

∫
D

−σ(vh)·∇hwh dx+ n](vh, wh)700

−
∑
F∈Fh

∫
F

[[vh]]{σ(wh)}θ·nF ds+
∑
F∈Fh

$0
λF
hF

∫
F

[[vh]][[wh]] ds.701

702

Then setting η := u− vh and using that [[u]]F = 0 for all F ∈ F◦h and [[u]]F = g for all703

F ∈ F∂h , we obtain the following representation of the consistency linear form δh(vh):704

〈δh(vh), wh〉V ′h,Vh
= n](η, wh) +

∫
D

λ∇η·∇hwh dx705

−
∑
F∈Fh

∫
F

[[η]]{σ(wh)}θ·nF ds+
∑
F∈Fh

$0
λF
hF

∫
F

[[η]][[wh]] ds.706

707

Bounding the second, third and fourth terms uses standard arguments (see, e.g., [15]),708

whereas we invoke the boundedness estimate on n] from Lemma 3.5 for the first term.709

Theorem 4.13 (Error estimate). Let u solve (2.1) and uh solve (4.5) with ah710

and `h defined in (4.23) and penalty parameter $0 > n∂c
2
I . Assume that there is r > 0711

s.t. u ∈ H1+r(D). There is c, uniform with respect to h ∈ H, λ, and u ∈ H1+r(D),712

but depending on r, s.t. the following quasi-optimal error estimate holds true:713

(4.24) ‖u− uh‖V]
≤ c inf

vh∈Vh

‖u− vh‖V]
.714

Moreover, letting t := min(r, k), χt = 1 if t ≤ 1 and χt = 0 if t > 1, we have715

(4.25) �‖u− uh‖V]
≤ c

( ∑
K∈Th

λKh
2t
K |u|2H1+t(K) +

χt
λK

h
2d( d+2

2d −
1
q )

K ‖f‖2Lq(K)

) 1
2

.716

Proof. We proceed as in the proof of Theorem 4.10, where we now use the L1-717

stable interpolation operator I]h : L1(D)→ P b
k (Th) from [23, §3] to estimate the best718

approximation error.719

4.5. Hybrid high-order methods. We consider in this section the approxi-720

mation of the model problem (2.1) with a homogeneous Dirichlet condition (for sim-721

plicity) by means of the hybrid high-order (HHO) method introduced in [16, 18]. We722
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20 A. ERN, J.-L. GUERMOND

consider the discrete product space V̂ kh,0 := V kTh × V
k
Fh

with k ≥ 0, where723

V kTh := {vTh ∈ L2(D) | vK := vTh|K ∈ V
k
K , ∀K ∈ Th},(4.26a)724

V kFh
:= {vFh

∈ L2(Fh) | v∂K := vFh|∂K ∈ V
k
∂K , ∀K ∈ Th; vFh|F∂

h
= 0},(4.26b)725

726

with V kK := Pk,d and V k∂K := {θ ∈ L2(∂K) | θ ◦ TK|T−1
K (F ) ∈ Pk,d−1, ∀F ∈ FK}.727

Thus, for any pair v̂h := (vTh , vFh
) ∈ V̂ kh,0, vTh a collection of cell polynomials of728

degree at most k, and vFh
is a collection of face polynomials of degree at most k729

which are single-valued at the mesh interfaces and vanish at the boundary faces (so730

as to enforce strongly the homogeneous Dirichlet condition). We use the notation731

v̂K := (vK , v∂K) ∈ V̂ kK := V kK × V k∂K for all K ∈ Th. We equip the local space V̂ kK732

with the H1-like seminorm733

(4.27) |v̂K |2V̂ k
K

:= ‖∇vK‖2L2(K) + ‖h−
1
2

∂K(vK − v∂K)‖2L2(∂K), ∀v̂K = (vK , v∂K) ∈ V̂ kK ,734

and the global space V̂ kh,0 with the norm735

(4.28) ‖v̂h‖2V̂ k
h,0

:=
∑
K∈Th

λK |v̂K |2V̂ k
K

.736

We introduce locally in each mesh cell K ∈ Th a reconstruction operator and a737

stabilization operator. The reconstruction operator Rk+1
K : V̂ kK → Pk+1,d is defined738

such that, for any pair v̂K = (vK , v∂K) ∈ V̂ kK , the polynomial function Rk+1
K (v̂K) ∈739

Pk+1,d solves740

(∇Rk+1
K (v̂K),∇q)L2(K) := −(vK ,∆q)L2(K) + (v∂K ,nK ·∇q)L2(∂K),(4.29)741742

for all q ∈ Pk+1,d, with the mean-value condition
∫
K

(Rk+1
K (v̂K) − vK) dx = 0. This743

local Neumann problem makes sense since the right-hand side of (4.29) vanishes when744

the test function q is constant. The stabilization operator Sk∂K : V̂ kK → V k∂K is defined745

s.t. for any pair v̂K = (vK , v∂K) ∈ V̂ kK ,746

(4.30) Sk∂K(v̂K) := Πk
∂K

(
vK|∂K − v∂K + ((I −Πk

K)Rk+1
K (v̂K))|∂K

)
,747

where I is the identity, Πk
∂K : L2(∂K) → V k∂K is the L2-orthogonal projection onto748

V k∂K and Πk
K : L2(K) → V kK is the L2-orthogonal projection onto V kK . Elementary749

algebra shows that the stabilization operator can be rewritten as750

(4.31) Sk∂K(v̂K) = Πk
∂K

(
δ∂K − ((I −Πk

K)Rk+1
K (0, δ∂K))|∂K

)
,751

with δ∂K := vK|∂K − v∂K is a measure of the discrepancy between the trace of the752

cell unknown and the face unknown.753

We now introduce the local bilinear form âK on V̂ kK × V̂ kK s.t.754

755

(4.32) âK(v̂K , ŵK) := (∇Rk+1
K (v̂K),∇Rk+1

K (ŵK))L2(D)756

+ (h−1
∂KSk∂K(v̂K),Sk∂K(ŵK))L2(∂K),757758

where h∂K is the piecewise constant function on ∂K s.t. h∂K|F := hF for all F ∈ FK .759

Then we set760

(4.33) âh(v̂h, ŵh) :=
∑
K∈Th

λK âK(v̂K , ŵK), ˆ̀
h(ŵh) :=

∑
K∈Th

(f, wK)L2(K).761

This manuscript is for review purposes only.



Contrasted diffusion 21

The discrete problem is finally formulated as follows: Find ûh ∈ V̂ kh,0 s.t.762

(4.34) âh(ûh, ŵh) = ˆ̀
h(ŵh), ∀ŵh ∈ V̂ kh,0.763

Notice that HHO methods are somewhat simpler than dG methods when it comes764

to solving problems with contrasted coefficients. For HHO methods, one assembles765

cellwise the local bilinear forms âK weighted by the local diffusion coefficient λK ,766

whereas, for dG methods one has to invoke interface-based values of the diffusion767

coefficient to construct the penalty term.768

The following result is proved in [16, 18].769

Lemma 4.14 (Stability, boundedness, well-posedness). There are 0 < α ≤ ω,770

uniform w.r.t. h ∈ H, such that771

α |v̂K |2V̂ k
K

≤ ‖∇Rk+1
K (v̂K)‖2L2(K) + ‖h−

1
2

∂KSk∂K(v̂K)‖2L2(∂K) = âK(v̂K , v̂K) ≤ ω |v̂K |2V̂ k
K

,772

for all v̂K ∈ V̂K and all K ∈ Th, and the discrete problem (4.34) is well-posed. �773

The two key tools in the error analysis of HHO methods are a local reduction774

operator and the local elliptic projection. For all K ∈ Th, the local reduction operator775

ÎkK : H1(K) → V̂ kK is defined by ÎkK(v) := (Πk
K(v),Πk

∂K(γg
∂K(v))) ∈ V̂ kK , for all776

v ∈ H1(K). The local elliptic projection Ek+1
K : H1(K)→ Pk+1,d is s.t. (∇(Ek+1

K (v)−777

v),∇q)L2(K) = 0, for all q ∈ Pk+1,d, and (Ek+1
K (v) − v, 1)L2(K) = 0. The following778

result is established in [16, 18].779

Lemma 4.15 (Polynomial invariance). The following holds true:780

Rk+1
K ◦ ÎkK = Ek+1

K ,(4.35a)781

Sk∂K ◦ ÎkK = (γg
∂K ◦Πk

K −Πk
∂K ◦ γ

g
∂K) ◦ (I − Ek+1

K ).(4.35b)782783

In particular, Rk+1
K (ÎkK(p)) = p and Sk∂K(ÎkK(p)) = 0 for all p ∈ Pk+1,d. �784

Recalling the duality pairing 〈·, ·〉F defined in (3.10), the generalization of the785

bilinear form n] in the context of HHO methods is the bilinear form defined on786

(VS + P b
k+1(Th))× V̂ kh,0 that acts as follows:787

(4.36) n](v, ŵh) :=
∑
K∈Th

∑
F∈FK

〈(σ(v)·nK)|F , (wK − w∂K)|F 〉F .788

Lemma 4.16 (Identities and boundedness for n]). The following holds true for789

all ŵh ∈ V̂ kh,0, all vh ∈ P b
k+1(Th) and all v ∈ VS:790

n](vh, ŵh) =
∑
K∈Th

∫
K

λK∇vh|K ·∇(Rk+1
K (ŵK)− wK) dx,(4.37a)791

n](v, ŵh) =
∑
K∈Th

∫
K

(
σ(v)·∇wK + (∇·σ(v))wK

)
dx.(4.37b)792

793

Moreover, there is c, uniform w.r.t. h ∈ H and λ, but depending on p and q, s.t. the794

following holds true for all v ∈ VS + P b
k+1(Th) and all ŵh ∈ V̂ kh,0:795

(4.38) |n](v, ŵh)| ≤ c |v|n]

( ∑
K∈Th

λKh
−1
K ‖wK − w∂K‖

2
L2(∂K)

) 1
2

,796

with the |·|n]
-seminorm defined in (3.18). �797
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22 A. ERN, J.-L. GUERMOND

Proof. (i) We first prove (4.37a). Let vh ∈ P b
k+1(Th) and ŵh ∈ V̂ kh,0. Since the798

restriction of σ(vh) to each mesh cell is smooth and since the trace on ∂K of the799

face-to-cell lifting operator LKF is nonzero only on F , for all F ∈ FK , we have800

〈(σ(vh)·nK)|F , (wK − w∂K)|F 〉F801

=

∫
K

σ(vh)|K ·∇LKF ((wK − w∂K)|F ) + (∇·σ(vh)|K)LKF ((wK − w∂K)|F )
)

dx802

=

∫
∂K

σ(vh)|K ·nKLKF ((wK − w∂K)|F ) ds =

∫
F

σ(vh)|K ·nK(wK − w∂K) ds,803
804

where we used the divergence formula in K. Therefore, we obtain805

n](vh, ŵh)) =
∑
K∈Th

∫
∂K

σ(vh)|K ·nK(wK − w∂K) ds806

= −
∑
K∈Th

λK

∫
∂K

∇vh|K ·nK(wK − w∂K) ds807

=
∑
K∈Th

λK

∫
K

(
∇vh|K ·∇(Rk+1

K (ŵK)− wK)
)

dx,808

809

where we used the definition (4.29) of the local reconstruction operator Rk+1
K with the810

test function vh|K ∈ Pk,d ⊂ Pk+1,d.811

(ii) Let us now prove (4.37b). Let v ∈ VS and ŵh ∈ V̂ kh,0. We are going to proceed as in812

the proof of (3.16b). We consider the mollification operators Kd
δ : L1(D) → C∞(D)813

and Kb
δ : L1(D) → C∞(D) introduced in [22, §3.2]. Let us consider the mollified814

bilinear form815

n]δ(v, ŵh) :=
∑
K∈Th

∑
F∈FK

〈(Kd
δ (σ(v))·nK)|F , (wK − w∂K)|F 〉F .816

By using (3.10) and invoking the approximation properties of the mollification opera-817

tors and the commuting property (3.17), we infer that limδ→0 n]δ(v, ŵh) = n](v, ŵh).818

Since the restriction of Kd
δ (σ(v)) to each mesh cell is smooth and since Kd

δ (σ(v)) ∈819

C0(D), we infer that820

n]δ(v, ŵh) =
∑
K∈Th

∫
∂K

Kd
δ (σ(v))·nK(wK − w∂K) ds =

∑
K∈Th

∫
∂K

Kd
δ (σ(v))·nKwK ds821

=
∑
K∈Th

∫
K

(
Kd
δ (σ(v))·∇wK +Kb

δ (∇·σ(v))wK
)

dx,822

823

where we used the divergence formula and the commuting property (3.17) in the last824

line. Letting δ → 0, we conclude that n]δ(v, ŵh) also tends to the right-hand side825

of (4.37b) as δ → 0. Hence, (4.37b) holds true.826

(iii) The proof of (4.38) uses the same arguments as the proof of Lemma 3.5.827

Remark 4.17 ((4.37b)). The right-hand side of (4.37b) does not depend on the828

face-based functions w∂K . This identity will replaces the argument in [16, 18] invoking829

the continuity of the normal component of σ(u) at the mesh interfaces, which makes830

sense only when the exact solution is smooth enough, say σ(u) ∈Hr(D) with r > 1
2 .�831
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Let V] := VS +P b
k+1(Th) be equipped with the seminorm ‖v‖V]

:= |v|λ,p,q defined832

in (4.2). Notice that ‖v‖V]
= 0 implies that v = 0 if v has zero mean-value in each833

mesh cell K ∈ Th; this is the case for instance if one takes v = u−Ek+1
h (u). We define834

the consistency error δh : V̂ kh,0 → (V̂ kh,0)′ by setting, for all ŵh ∈ V kh,0,835

(4.39) 〈δh(v̂h), ŵh〉(V̂ k
h,0)′,V̂ k

h,0
:= ˆ̀

h(ŵh)− âh(v̂h, ŵh).836

We define global counterparts of the local operators Rk+1
K , ÎkK , and Ek+1

K , namely837

Rk+1
h : V̂ kh,0 → P b

k+1(Th), Îkh : H1(D) → V̂ kh,0, and Ek+1
h : H1(D) → P b

k+1(Th), by838

setting Rk+1
h (v̂h)|K := Rk+1

K (v̂K), Îkh(v)|K := ÎkK(v|K), and Ek+1
h (v)|K := Ek+1

K (v|K),839

for all v̂h ∈ V̂ kh,0, all v ∈ H1(D), and all K ∈ Th.840

Lemma 4.18 (Consistency/boundedness). There is ω], uniform w.r.t. h ∈ H, λ,841

and u ∈ VS, but depending on p and q, s.t.842

(4.40) �‖δh(Îkh(u))‖(V̂ k
h,0)′ ≤ ω] ‖u− E

k+1
h (u)‖V]

.843

Proof. Since σ(u) = −λ∇u, ∇·σ(u) = f , and u ∈ VS, the identity (4.37b) yields844

ˆ̀
h(ŵh) =

∑
K∈Th(f, wK)L2(K) =

∑
K∈Th aK(u,wK) + n](u, ŵh), where aK(u,wK) :=845 ∫

K
−σ(u)·∇wK dx. Using the definition of âh in (4.33), then the identity Rk+1

K ◦ÎkK =846

Ek+1
K (see (4.35a)), and finally (4.37a) with vh = Ek+1

h (u), we obtain847

âh(Îkh(u), ŵh) =
∑
K∈Th

aK(Ek+1
K (u), wK) + n](Ek+1

h (u), ŵh)848

+
∑
K∈Th

λK(h−1
∂KSk∂K(ÎkK(u)),Sk∂K(ŵK))L2(∂K).849

850

Subtracting these two identities and using the definition of Ek+1
K (u), which implies that851

aK(u−Ek+1
K (u), wK) = 0, for all K ∈ Th, leads to 〈δh(Îkh(u)), ŵh〉(V̂ k

h,0)′,V̂ k
h,0

= T1 +T2852

with853

T1 := n](u− Ek+1
h (u), ŵh), T2 := −

∑
K∈Th

λK(h−1
∂KSk∂K(ÎkK(u)),Sk∂K(ŵK)L2(∂K).854

855

We invoke (4.38) to bound T1 and observe that
∑
K∈Th λKh

−1
K ‖wK −w∂K‖2L2(∂K) ≤856

‖ŵh‖2V̂ k
h,0

owing to (4.28). For the bound on T2, we proceed as in [16, 18].857

Theorem 4.19 (Error estimate). Let u solve (2.1) and ûh solve (4.34) with âh858

and ˆ̀
h defined in (4.33). Assume that there is r > 0 s.t. u ∈ H1+r(D). There is859

c, uniform w.r.t. h ∈ H, λ, and u ∈ H1+r(D), but depending on r, s.t. the following860

holds true:861

(4.41) ‖λ 1
2∇h(u− Rk+1

h (ûh))‖L2(D) ≤ c ‖u− Ek+1
h (u)‖V]

.862

Moreover, letting t := min(r, k + 1), χt = 1 if t ≤ 1 and χt = 0 if t > 1, we have863

864

(4.42) ‖λ 1
2∇h(u− Rk+1

h (ûh))‖L2(D)865

≤ c
( ∑
K∈Th

λKh
2t
K |u|2H1+t(K) +

χt
λK

h
2d( d+2

2d −
1
q )

K ‖f‖2Lq(K)

) 1
2

. �866

867
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Proof. (i) We adapt the proof of Lemma 4.2 to exploit the convergence order of the868

reconstruction operator. Let us set ζ̂kh := Îkh(u)−ûh ∈ V̂ kh,0 so that ζ̂kK = ÎkK(u|K)−ûK869

for all K ∈ Th. The coercivity property from Lemma 4.14 and the definition of the870

consistency error imply that871

α ‖λ 1
2∇hRk+1

h (ζ̂kh)‖2L2(D) ≤
âh(ζ̂kh , ζ̂

k
h)

‖ζ̂kh‖2V̂ k
h,0

‖λ 1
2∇hRk+1

h (ζ̂kh)‖2L2(D)872

≤
(
âh(ζ̂kh , ζ̂

k
h)
)2

‖ζ̂kh‖2V̂ k
h,0

=
〈δh(Îkh(u)), ζ̂kh〉2(V̂ k

h,0)′,V̂ k
h,0

‖ζ̂kh‖2V̂ k
h,0

≤ ‖δh(Îkh(u))‖2
(V̂ k

h,0)′
.873

874

Then, lemma 4.18 yields ‖λ 1
2∇Rk+1

h (ζ̂kh)‖L2(D) ≤ c‖u − Ek+1
h (u)‖V]

. Moreover, since875

Rk+1
K (ÎkK(u)) = Ek+1

K (u) for all K ∈ Th, see (4.35a), we have876

u− Rk+1
h (ûh) = u− Ek+1

h (u) + Rk+1
h (ζ̂kh).877

The estimate (4.41) is now a consequence of the triangle inequality.878

(ii) We now prove (4.42). Let us set ηk+1 := u − Ek+1
h (u). We need to bound879

‖ηk+1‖V]
= |ηk+1|λ,p,q, i.e., we must estimate ‖∇ηk+1‖L2(K), h

d( 1
2−

1
p )

K ‖∇ηk+1‖Lp(K),880

and h
d( d+2

2d −
1
q )

K ‖∆ηk+1‖Lq(K) (see (4.2)). Owing to the optimality property of the881

elliptic projection and the approximation properties of Πk+1
K , we have882

‖∇ηk+1‖L2(K) ≤ ‖∇(u−Πk+1
K (u))‖L2(K) ≤ c htK |u|H1+t(K).883

for t = min(r, k + 1). Let us now consider the other two terms. Let ` := dte, so that884

t ≤ ` ≤ 1 + t. Notice also that ` ≤ k + 1, and ` ≥ 1 since we assumed that r > 0.885

Let us set η` := u− E`h(u), then ‖∇η`‖L2(K) ≤ chtK |u|H1+t(K). Invoking the triangle886

inequality, an inverse inequality, and the triangle inequality again, we infer that887

h
d( 1

2−
1
p )

K ‖∇ηk+1‖Lp(K) ≤ h
d( 1

2−
1
p )

K ‖∇η`‖Lp(K) + c
(
‖∇ηk+1‖L2(K) + ‖∇η`‖L2(K)

)
,888889

and the two terms between the parentheses are bounded by chtK |u|H1+t(K). Moreover,890

invoking (4.16), we obtain891

h
d( 1

2−
1
p )

K ‖∇η`‖Lp(K) ≤ c
(
‖∇η`‖L2(K) + htK |∇η`|Ht(K)

)
892

= c
(
‖∇η`‖L2(K) + htK |u|H1+t(K)

)
≤ c′ htK |u|H1+t(K),893894

since t ≤ `. Similarly, we have895

h
d( d+2

2d −
1
q )

K ‖∆ηk+1‖Lq(K) ≤ h
d( d+2

2d −
1
q )

K ‖∆η`‖Lq(K) + c
(
‖∇ηk+1‖L2(K) + ‖∇η`‖L2(K)

)
.896897

It remains to estimate h
d( d+2

2d −
1
q )

K ‖∆η`‖Lq(K). We proceed as in the end of the proof898

of Theorem 4.10. If t ≤ 1 (so that χt = 1), we have ` = 1, and we infer that899

h
d( d+2

2d −
1
q )

K ‖∆η`‖Lq(K) = λ−1
K h

d( d+2
2d −

1
q )

K ‖f‖Lq(K).900

Otherwise, we have t > 1 (so that χt = 0) and ` ≥ 2, and we take q = 2. Then,901

using the triangle inequality, an inverse inequality, and the triangle inequality again,902
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we obtain903

hK‖∆η`‖Lq(K) ≤ hK‖∆(u−Π`
K(u)‖Lq(K)904

+ c
(
‖∇(u−Π`

K(u))‖L2(K) + ‖∇η`‖L2(K)

)
,905906

where Π`
K is the L2-orthogonal projection onto P`,d. We conclude by invoking the907

approximation properties of Π`
K , recalling that ‖∇η`‖L2(K) ≤ chtK |u|H1+t(K).908

Remark 4.20 (Supercloseness). Step (i) in the above proof actually shows that909

‖ζ̂kh‖V̂ k
h,0
≤ c‖u−Ek+1

h (u)‖V]
. Since ζkK = Πk

K(u)−uK for all K ∈ Th, this implies the910

supercloseness bound (
∑
K∈Th λK‖∇(Πk

K(u)− uK)‖2L2(K))
1
2 ≤ c‖u− Ek+1

h (u)‖V]
.911

5. Extensions to Maxwell’s equations. The various techniques presented in912

this paper can be extended to the context of Maxwell’s equations, since arguments913

similar to those exposed in §3 can be deployed to define the tangential trace of vectors914

fields on a face of K. Without going into the details, we show in this section how that915

can be done.916

5.1. Lifting and tangential trace. Let p, q be real numbers satisfying (3.2),917

and let p̃ ∈ (2, p] be such that q ≥ p̃d
p̃+d . Let K be a cell in Th, and let F ∈ FK be a918

face of K. Following [25], we introduce the space919

Y c(F ) := {φ ∈W
1
p̃ ,p̃
′
(F ) | φ·nF = 0},(5.1)920921

which we equip with the norm ‖φ‖Y c(F ) := ‖φ‖Lp̃′ (F ) + h
1
p̃

F |φ|W 1
p̃
,p̃′

(F )
. Then the922

following result can be established by proceeding as in the proof of Lemma 3.1.923

Lemma 5.1 (Face-to-cell Lifting). There exist a constant c, uniform w.r.t. h, but924

depending on p and q, and a lifting operator EKF : Y c(F )→W 1,p̃′(K) such that the925

following holds true for any φ ∈ Y c(F ): EKF (φ)|∂K\F = 0, EKF (φ)|F = φ, and926

(5.2) �|EKF (φ)|W 1,p′ (K) + h
−1+d( 1

q−
1
p )

K ‖EKF (φ)‖Lq′ (K) ≤ c h
− 1

p̃ +d( 1
p̃−

1
p )

K ‖φ‖Y c(F ).927

With this lifting operator in hand, we can define an extension to the notion of928

the tangential trace on F of a vector field. To this end, we introduce the functional929

space930

Sc(K) := {τ ∈ Lp(K) | ∇×τ ∈ Lq(K)},(5.3)931932

where the superscript c refers to the fact that the tangential trace is related to the933

curl operator. We equip Sc(K) with the following dimensionally-consistent norm:934

(5.4) ‖τ‖Sc(K) := ‖τ‖Lp(K) + h
1+d( 1

p−
1
q )

K ‖∇×τ‖Lq(K).935

We now define the tangential trace of any field τ in Sc(K) on the face F of K to be936

the linear form (τ×nK)|F ∈ Y c(F )′ such that937

(5.5) 〈(τ×nK)|F ,φ〉F :=

∫
K

(
τ ·∇×EKF (φ)− (∇×τ )·EKF (φ)

)
dx,938

for all φ ∈ Y c(F ), where 〈·, ·〉F now denotes the duality pairing between Y c(F )′939

and Y c(F ). Note that the right-hand side of (5.5) is well-defined owing to Hölder’s940

inequality and (5.2).941
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The discretization now involves the vector-valued broken finite element space942

(5.6) P b
k (Th) = {vh ∈ L∞(D) | vh|K ∈ PK , ∀K ∈ Th},943

where PK := (ψK)−1(P̂ ) ⊂W k+1,∞(K), (K̂, P̂ , Σ̂) is the reference element, and ψK944

is an appropriate transformation. For instance, one can take ψK(v) = ψg
K(v) := v◦TK945

for continuous Lagrange elements or for dG approximation; one can also take ψK(v) =946

ψc
K(v) := JTK(v ◦ TK) for edge elements (ψc

K is covariant Piola transformation and947

JK the Jacobian of the geometric mapping). For any face F ∈ FK , we denote by PF948

the trace of PK on F . The following result is the counterpart of Lemma 3.2.949

Lemma 5.2 (Bound on tangential component). There exists a constant c, uni-950

form w.r.t. h, but depending on p and q, so that the following estimate holds true for951

all v ∈ Sc(K),952

(5.7) ‖(v×nK)|F ‖Y c(F )′ ≤ c h
− 1

p̃ +d( 1
p̃−

1
p )

K ‖v‖Sc(K).953

Moreover, we have954

(5.8) |〈(v×nK)|F ,φh〉| ≤ c h
d( 1

2−
1
p )

K ‖v‖Sc(K)h
− 1

2

F ‖φh‖L2(F ),955

for all φh ∈ PF s.t. φ·nF = 0, all K ∈ Th, and all F ∈ FK . �956

Lemma 5.2 is essential for the error analysis of nonconforming approximation957

techniques of Maxwell’s equations. It is a generalization of Bonito et al. [8, Lem. A3]958

and Buffa and Perugia [9, Lem. 8.2].959

5.2. Definition of nc
] and key identities. The consistency analysis of Nitsche’s960

boundary penalty method and of the dG approximation applied to Maxwel’s equations961

can be done by introducing a bilinear form n] as in §3. We henceforth assume that962

the space dimension is either d = 2 or d = 3.963

We define the notion of diffusive flux by introducing σ : H(curl;D) → L2(D)964

such that σ(v) := λ∇×v, for any v ∈ H(curl;D). Here, the diffusivity λ is either965

the reciprocal of the magnetic permeability or the reciprocal of electrical conductiv-966

ity, depending whether one works with the electric field or the magnetic field. The967

diffusivity is assumed to satisfy the hypotheses introduced in Section 2. We further968

define969

(5.9) VS := {v ∈H(curl;D) | σ(v) ∈ Lp(D), ∇×σ(v) ∈ Lq(D)},970

and set V] := VS + P b
k (Th).971

We adopt the same notation as in §3. Recall that for any K ∈ Th and any F ∈ FK ,972

we have defined εK,F = nF ·nK = ±1. We consider arbitrary weights θK,F satisfying973

(3.13). We introduce the bilinear form nc
] : (VS + P b

k (Th)) × P b
k (Th) → R defined as974

follows:975

nc
](v,wh) :=

∑
F∈Fh

∑
K∈TF

εK,F θK,F 〈(σ(v)|K×nK)|F , [[ΠF (wh)]]〉F ,(5.10)976

977

where ΠF is the `2-orthogonal projection onto the hyperplane tangent to F , i.e.,978

ΠF (bh) := bh − (bh·nK)nK = nK×(bh×nK). Notice that (5.10) is meaningful since979

ΠF (bh)|F is in W
1
p̃ ,p̃
′
(F ) and ΠF (bh)·nF = 0, i.e., ΠF (bh) ∈ Y c(F ) for any F ∈ Fh.980

The following result is the counterpart of Lemma 3.3.981
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Lemma 5.3 (Identities for nc
]). The following holds true for any choice of weights982

{θK,F }F∈Fh,K∈TF and for all wh ∈ P b
k (Th), all vh ∈ P b

k (Th), and all v ∈ VS:983

nc
](vh,wh) =

∑
F∈Fh

∫
F

({σ(vh)}θ×nF )·[[ΠF (wh)]] ds,(5.11a)984

nc
](v,wh) =

∑
K∈Th

∫
K

(
σ(v)·∇×wh|K − (∇×σ(v))·wh|K

)
dx.(5.11b) �985

986

Proof. The proof is similar to that of Lemma 3.3. The proof of (5.11a) is quasi-987

identical to that of (3.16a). For the proof of (5.11b), one invokes the mollifying988

operators Kc
δ : L1(D)→ C∞(D) and Kd

δ : L1(D)→ C∞(D) introduced in [22, §3.2].989

These two operators satisfy the following key commuting property:990

(5.12) ∇×(Kc
δ(τ )) = Kd

δ (∇×τ ),991

for all τ ∈ L1(D) s.t. ∇×τ ∈ L1(D). Then one uses the identities [[v×ΠF (w)]] =992

{v}θ×[[ΠF (w)]] + [[v]]×{ΠF (w)}θ̄, nK×ΠF (wh) = nK×wh, and ∇·(wh×σ(v)) =993

σ(v)·(∇×wh)−wh·(∇×σ(v)).994

We now establish the boundedness of the bilinear form nc
]. Since σ(v)|K ∈ Sc(K)995

for all K ∈ Th and all v ∈ VS + P b
k (Th), we equip the space VS + P b

k (Th) with the996

seminorm997
998

(5.13) |v|2nc
]

:=
∑
K∈Th

λ−1
K

(
h

2d( 1
2−

1
p )

K ‖σ(v)|K‖2Lp(K)999

+ h
2d( 2+d

2d −
1
q )

K ‖∇×σ(v)|K‖2Lq(K)

)
.1000

1001

Lemma 5.4 (Boundedness of nc
]). With the weights defined in (3.19) and λF de-1002

fined in (3.20) for all F ∈ Fh, there is c, uniform w.r.t. h ∈ H and λ, but depending1003

on p and q, s.t. the following holds true for all v ∈ VS +P b
k (Th) and all wh ∈ P b

k (Th):1004

(5.14) �|nc
](v,wh)| ≤ c |v|nc

]

( ∑
F∈Fh

λFh
−1
F ‖[[ΠF (wh)]]‖2L2(F )

) 1
2

.1005

With the above tools in hand, one can revisit Buffa and Perugia [9] and greatly1006

simplify the analysis of the dG approximation of Maxwell’s equations. One can also1007

extend the work in [24] and analyze Nitsche’s boundary penalty technique with edge1008

elements; one can also revisit Bonito et al. [7], where Nitsche’s boundary penalty1009

technique has been used in conjunction with Lagrange elements. In all the cases one1010

then obtains error estimates that are robust with respect to the diffusivity contrast.1011
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