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QUASI-OPTIMAL NONCONFORMING APPROXIMATION OF
ELLIPTIC PDES WITH CONTRASTED COEFFICIENTS AND
MINIMAL REGULARITY*

ALEXANDRE ERNT AND JEAN-LUC GUERMOND}

Abstract. In this paper we investigate the approximation of a diffusion model problem with
contrasted diffusivity and the error analysis of various nonconforming approximation methods. The
essential difficulty is that the Sobolev smoothness index of the exact solution may be just barely larger
than one. The lack of smoothness is handled by giving a weak meaning to the normal derivative of
the exact solution at the mesh faces. The error estimates are robust with respect to the diffusivity
contrast. We briefly show how the analysis can be extended to the Maxwell’s equations.

Key words. Finite elements, Nonconforming methods, Error estimates, Minimal regularity,
Nitsche method, Boundary penalty, Elliptic equations, Maxwell’s equations.

AMS subject classifications. 35J25, 656N15, 65N30
This article is dedicated to the memory of Christine Bernardi.

1. Introduction. The objective of the present paper is to revisit and unify
the error analysis of various nonconforming approximation techniques applied to a
diffusion model problem with contrasted diffusivity. We also briefly show how to
extend the analysis to Maxwell’s equations.

1.1. Content of the paper. The nonconforming techniques we have in mind
are Crouzeix—Raviart finite elements [14], Nitsche’s boundary penalty method [32],
the interior penalty discontinuous Galerkin (IPDG) method [2], and the hybrid high-
order (HHO) methods [16, 18] which are closely related to hybridizable discontinuous
Galerkin methods [13]. The main difficulty in the error analysis is that owing to
the contrast in the diffusivity, the Sobolev smoothness index of the exact solution
is barely larger than one. This makes the estimation of the consistency error in-
curred by nonconforming approximation techniques particularly challenging since the
normal derivative of the solution at the mesh faces is not integrable and it is thus
not straightforward to give a reasonable meaning to this quantity on each mesh face
independently.

The main goal of the present paper is to establish quasi-optimal error estimates by
using a mesh-dependent norm that remains bounded as long as the exact solution has
a Sobolev smoothness index strictly larger than one. By quasi-optimality, we mean
that the approximation error measured in the augmented norm is bounded, up to a
generic constant, by the best approximation error of the exact solution measured in
the same augmented norm by members of the discrete trial space. A key point in the
analysis is that the above generic constant is independent of the diffusivity contrast.
We emphasize that quasi-optimal error estimates are more informative than the more
traditional asymptotic error estimates, which bound the approximation error by terms
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2 A. ERN, J.-L. GUERMOND

that optimally decay with the mesh size. Indeed, the former estimates cover the whole
computational range whereas the latter estimates only cover the asymptotic range.
One key novelty herein is the introduction of a weighted bilinear form that accounts
for the default of consistency in all the cases (see (3.12)).

The paper is organized as follows. The model problem under consideration and
the discrete setting are introduced in §2. The weighted bilinear form mentioned above
which accounts for the consistency default at the mesh interfaces and boundary faces
is defined in §3. The key results in this section are Lemma 3.3 and Lemma 3.5. We
collect in §4 the error analyses of the approximation of the model problem with the
Crouzeix—Raviart approximation, Nitsche’s boundary penalty method, the IPDG ap-
proximation, and the HHO approximation. To avoid invoking Strang’s second Lemma,
we introduce in §4.1 a linear form J;, that measures consistency but does not need the
exact solution to be inserted into the arguments of the discrete bilinear form at hand.
The weighted bilinear form (3.12) turns out to an essential tool to deduce robust
estimates of the norm of the consistency form § for all the nonconforming methods
considered. One originality of this paper is that all the error estimates provided in §4
involve constants that are uniform with respect to the diffusivity contrast. Another
salient feature is that the source term is assumed to be only in L?(D), where ¢ is
such that L(D) is continuously embedded in H~1(D) := (H}(D))'; specifically, this
means that ¢ > 2, := % > 1 (here, d > 2 is the space dimension).

1.2. Literature overview. Let us put our work in perspective with the liter-
ature. Perhaps a bit surprisingly, error estimates for nonconforming approximation
methods are rarely presented in a quasi-optimal form in the literature. A key step to-
ward achieving quasi-optimal error estimates has been achieved in Veeser and Zanotti
[34, 35]. Therein, the approximation error and the best-approximation error are both
measured using the energy norm and the source term is assumed to be just in the
dual space H (D). However, at the time of this writing, this setting does not yet
cover robust estimates w.r.t. the diffusivity contrast. In the present work, we proceed
somewhat differently to obtain robust quasi-optimal error estimates. This is done at
the following price: (i) We invoke augmented norms, which are, however, compatible
with the elliptic regularity theory; (ii) We only consider source terms in the Lebesgue
spaces L1(D) with ¢ > 2, := ;ﬁ 7 = 1; notice though that this regularity is weaker
than assuming that source terms are in L?(D), as usually done in the literature.

The traditional approach to tackle the error analysis for nonconforming approxi-
mation techniques are Strang’s lemmas. However, an important shortcoming of this
approach whenever the Sobolev smoothness index of the exact solution is barely larger
than one, is that it is not possible to insert the exact solution in the first argument of
the discrete bilinear form. To do so, one needs to assume some additional regularity
on the exact solution which often goes beyond the regularity provided by the prob-
lem at hand. This approach has nevertheless been used by many authors to analyze
discontinuous Galerkin (dG) methods (see, e.g., [15, 21] and the references therein).
One way to overcome the limitations of Strang’s Second Lemma has been proposed
by Gudi [29]. The key idea consists of introducing a mapping that transforms the
discrete test functions into elements of the exact test space. An important property
of this operator is that its kernel is composed of discrete (test) functions that are
only needed to “stabilize” the discrete bilinear form, but do not contribute to the
interpolation properties of the approximation setting. We refer to this mapping as
trimming operator. The notion of trimming operator has ben used in Li and Mao
[31] to perform the analysis of the Crouzeix—Raviart approximation of the diffusion
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Contrasted diffusion 3

problem and source term in L?(D) (see e.g., the definitions (5)—(7) and the identity
(11) therein). The trimmed error estimate (which is sometimes referred to as “medius
analysis” in the literature) has been applied in Gudi [29] to the IPDG approximation
of the Laplace equation with a source term in L?(D) and to a fourth-order problem; it
has been applied to the Stokes equations in Badia et al. [3] and to the linear elasticity
equations in Carstensen and Schedensack [12]. One problem with methods using the
trimming operator, though, is that they require constructing H'-conforming discrete
quasi-approximation operators that do not account for the diffusivity contrast; this
entails error estimates with constants that depend on the diffusivity contrast, i.e.,
these error estimates are not robust.

It is shown in [25] in the case of Nitsche’s boundary penalty method that the
dependency of the constants with respect to the diffusivity contrast can be eliminated
by introducing an alternative technique based on mollification and an extension of
the notion of the normal derivative. The objective of the present paper is to revisit
and extend [25]. The analysis presented here is significantly simplified and modified
to include the Crouzeix—Raviart approximation, the IPDG approximation, and the
HHO approximation. One key novelty is the introduction of the weighted bilinear form
(3.12) that accounts for the consistency default in all the cases. The present analysis
hinges on two key ideas which are now part of the numerical analysis folklore. To
the best of our knowledge, these ideas have been introduced/used in Lemma 4.7 in
Amrouche et al. [1], Lemma 2.3 and Corollary 3.1 in Bernardi and Hecht [5] and
Lemma 8.2 in Buffa and Perugia [9]. However, we believe that detailed proofs are
seemingly missing in the literature, and another purpose of this paper is to fill this
gap.

The first key idea is a face-to-cell lifting operator. Such an operator is mentioned
in Lemma 4.7 in [1], and its construction is briefly discussed. The weights used in
the norms therein, though, cannot give estimates that are uniform with respect to
the mesh size. This operator is also mentioned in Lemma 2.3 in [5]. The authors
claim that the face-to-cell operator has been constructed in Bernardi and Girault [4,
Eq. (5.1)], which is unclear to us. A similar operator is invoked in Lemma 8.2 in
[9]. The operator therein is constructed on the reference element K and its stability
properties are proved in the Sobolev scale (H*® (I? ))se0,1)- The authors invoke also
the Sobolev scale (H*(K))sc(o,1) for arbitrary cells K in a mesh 7, belonging the
shape-regular sequence (7p,)pez. The norm equipping H*®(K) is not explicitly defined
therein, which leads to one statement that looks questionable (see e.g., Eq. (8.11)
therein; a fix has been proposed in [8, Lem. A.3]). In particular, it is unclear how
to keep track of constants that depend on K when one uses the real interpolation
method to define H*(K). In order to clarify the status of this face-to-cell operator,
which is essential for our analysis, and without claiming originality, we give (recall)
all the details of its construction in the proof of Lemma 3.1. As in [1, Lem. 4.7], we
use the Sobolev—Slobodeckij norm to equip the fractional-order Sobolev spaces; this
allows us to track all the constants easily.

The second key idea introduced in the above papers is that of extending the notion
of face integrals by using a duality argument together with the face-to-cell operator.
The argument is deployed in Corollary 3.3 in [5], but the sketch of the proof has typos
(e.g., an average has to be removed to make the inverse estimate in step (1) correct).
This corollary is quoted and invoked in Cai et al. [11, Lem. 2.1]; it is the cornerstone
of the argumentation therein. This argument is also deployed in Lemma 8.2 in [9].
A similar argument is invoked in [1, Lem. 4.7] in a slightly different context. In all
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4 A. ERN, J.-L. GUERMOND

the cases one must use a density argument to complete the proofs, but this argument
is omitted and implicitly assumed to hold true in all the above references. We fill
this gap in Lemma 3.3 and provide the full argumentation in the proof, including
the passage to the limit by density. The proof invokes mollifiers that commute with
differential operators and behave properly at the boundary of the domain; these tools
have been recently revisited in [22] elaborating on seminal ideas from Schoberl [33].

2. Preliminaries. In this section we introduce the model problem and the dis-
crete setting for the approximation.

2.1. Model problem. Let D be a Lipschitz domain in R?, which we assume for
simplicity to be a polyhedron. We consider the following scalar model problem:

(2.1) —V-(A\Vu)=f inD, v&(u) =g on 0D,

where 78 : HY(D) — Hz(dD) is the usual trace map (the superscript & refers to
the gradient), and g € H2(AD) is the Dirichlet boundary data. The scalar-valued
diffusion coefficient A € L>°(D) is assumed to be uniformly bounded from below away
from zero. For simplicity, we also assume that A is piecewise constant in D, i.e., there
is a partition of D into M disjoint Lipschitz polyhedra Dy,---, Dy s.t. Ajp, is a
positive real number for all i € {1: M}.

It is standard in the literature to assume that f € L?(D). We are going to relax
this hypothesis in this paper by only assuming that f € L9(D) with ¢ > 23_—%. Note
that ¢ > 1 since d > 2. Note also that LI(D) — H~1(D) since H} (D) < H? (D)
with the convention that + + % = 1. Since 22+—dd < 2, we are going to assume without
loss of generality that ¢ < 2.

In the case of the homogeneous Dirichlet condition (g = 0), the weak formulation
of the model problem (2.1) is as follows:

{ Find u € V := H}(D) such that

(22) a(u,w) =Ll(w), Yw eV,

with the bilinear and linear forms
(2.3) a(v,w) ::/ AVou-Vwdz, (w) ::/ fwdz.
D D

The bilinear form a is coercive in V' owing to the Poincaré—Steklov inequality, and it
is also bounded on V xV owing to the Cauchy—Schwarz inequality. The linear form /¢
is bounded on V since the Sobolev embedding theorem and Hélder’s inequality imply
that |[((w)| < |[fllzey @l g (py < el flaoylwllmr(py. Note that ¢ > 24 is the
minimal integrability requirement on f for this boundedness property to hold true.
The above coercivity and boundedness properties combined with the Lax—Milgram
Lemma imply that (2.2) is well-posed. For the non-homogeneous Dirichlet boundary
condition, one invokes the surjectivity of the trace map & to infer the existence of a
lifting of g, say uy, € H*(D) s.t. v8(u,) = ¢, and one decomposes the exact solution
as u = u, + ug where ug € H} (D) solves the weak problem (2.2) with ¢(w) replaced
by {4(w) = ¢(w) — a(ug, w). The weak formulation thus modified is well-posed since
{4 is bounded on H} (D).

The notion of diffusive flux, which is defined as follows, will play an important
role in the paper:

(2.4) o(v):= -AVov € L*(D),  VYve HY(D).

We use boldface notation to denote vector-valued functions and vectors in R¢.
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LeEMMA 2.1 (Exact solution). Assume that there exist 7 > 0 and q € (52%,2]

2+d>
such that the exact solution u is in H'T" (D) and the source term f is in LI(D), then
(2.5) u€Vs:={ve H}D)| o) e LP(D), V-a(v) € LY (D)},
for some real number p > 2. O

Proof. The Sobolev embedding theorem implies that there is p > 2 s.t. H"(D) —
L?(D). Indeed, if 2r < d, we have H"(D) — L*(D) for all s € [2, 724-] and we can

take p = dz%r > 2, whereas if 2r > d, we have H"(D) < H?%(D) — L*(D) for
all s € [2,00), and we can take any p > 2. The above argument implies that Vu €
LP(D), and since A is piecewise constant and o (u) = —AVu, we have o(u) € LP(D).

Moreover, since V-o(u) = f and f € LI(D), we have V-o(u) € L1(D). 0

The regularity assumption u € H*"(D), r > 0, is reasonable owing to the elliptic
regularity theory (see Theorem 3 in Jochmann [30], Lemma 3.2 in Bonito et al. [7] or
Bernardi and Verfiirth [6]). In general, one expects that r < % whenever u is supported
on at least two contiguous subdomains where A takes different values; otherwise the
normal derivative of u would be continuous across the interface separating the two
subdomains in question, and owing to the discontinuity of A, the normal component
of the diffusive flux o(u) would be discontinuous across the interface, which would
contradict the fact that o (u) has a weak divergence. It is however possible that r > %
when the exact solution is supported on one subdomain only. If » > 1, we notice that
one necessarily has f € L?(D) (since fip, = \p,(Au)p, for all i € {1:M}), i.e., it is
legitimate to assume that ¢ =2 if r > 1.

Remark 2.2 (Extensions). One could also consider lower-order terms in (2.1),
e.g., —V-(AVu)+B-Vutpu = f with 3 € W1>°(D) and p € L*(D) s.t. p—2V-3 >0
a.e. in D (for simplicity). The error analysis presented in this paper still applies pro-
vided the lower-order terms are not too large, e.g., A > max(h|| 8| L (q), B?||pl| L (D))
where h denotes the mesh-size. Standard stabilization techniques have to be invoked
if the lower-order terms are large when compared to the second-order diffusion op-
erator. Furthermore, the error analysis can be extended to account for a piecewise
constant tensor-valued diffusivity d; then, the various constants in the error estimate
depend on the square-root of the anisotropy ratios measuring the contrast between
the largest and the smallest eigenvalue of d in each subdomain D;. Finally, one can
consider that the diffusion tensor d is piecewise smooth instead of being piecewise
constant; a reasonable requirement is that d|p, is Lipschitz for all i € {1:M}. This
last extension is, however, less straightforward because the discrete diffusive flux is
no longer a piecewise polynomial function. U

2.2. Discrete setting. We introduce in this section the discrete setting that we
are going to use to approximate the solution to (2.2). Let 7, be a mesh from a shape-
regular sequence (7p,)nen. Here, H is a countable set with 0 as unique accumulation
point. A generic mesh cell is denoted K € 7T and is conventionally taken to be an
open set. We also assume that 7, covers each of the subdomains {D;};c(1: 1} exactly
so that A\g := Ak is constant for all K € Tp,. Let (I?,ﬁ, f) be the reference finite
element; we assume that Py 4 C Pc WkH’OO(IA() for some k > 1. Here, Py g is the
(real) vector space composed of the d-variate polynomials of degree at most k. For all
K eTp, let Tk : K — K be the geometric mapping and let 9% (v) = v o Tk be the
pullback by the geometric mapping. We introduce the broken finite element space

(2.6) PR(Th) = {vn € L®(D) | vy € Pk, VK € T},

This manuscript is for review purposes only.
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6 A. ERN, J.-L. GUERMOND

where Py := (¢%)~1(P) ¢ W*TL°°(K). For any function v, € PP(T;), we define
the broken diffusive flux o(vs) € L*(D) by setting o (vs) | := —Ax V(v i) for all
K € Tp. Upon introducing the notion of broken gradient Vj, : WIP(T,) = {v €
LP(D) | V(vk) € LP(K), VK € T} by setting (Vyv)|x = V(vik) for all K € Ty,
and all v € WHP(T,), we have o (v,) = —AVj,vp,.

For any cell K € T; we denote by ng the unit normal vector on K pointing
outward. We denote by F} the collection of the mesh interfaces and f,? the collection
of the mesh faces at the boundary of D. We assume that 7y, is oriented in a generation-
compatible way, and for each mesh face F € F; U ]-'f? , we denote by mp the unit
vector orienting F. For all F' € F;, we denote by K;, K, € T, the two cells s.t.
F = 0K; N 0K, and the unit normal vector ng orienting F' points from K; to K,
ie, np =ng, = —ng,. For all FF € F},, let Tr be the collection of the one or two
mesh cells sharing F'. For all K € Ty, let Fi be the collection of the faces of K and
let ex.p = np-ng = £1. The jump across F' € F;, of any function v € WEL(Ty,) is
defined by setting [v] () = v, (x) — vk, (x) for a.e. @ € F. If F € Ff, this jump is
conventionally defined as the trace on F, i.e., [v]r(x) = vk, (z) where ' = 0K;N0D.
We omit the subscript g in the jump whenever the context is unambiguous.

3. The bilinear form n;. In this section, we give a proper meaning to the
normal trace of the diffusive flux of the solution to (2.2) over each mesh face. The
material presented in §3.1 and §3.2 has been introduced in [25, §5.3] and is inspired
from Amrouche et al. [1, Lem. 4.7], Bernardi and Hecht [5, Cor 3.3], and Buffa and
Perugia [9, Lem. 8.2]; it is included here for the sake of completeness. The reader
familiar with these techniques is invited to jump to §3.3 where the weighted bilinear
form ny is introduced. This bilinear form is the main tool for the error analysis in §4.

3.1. Face-to-cell lifting operator. Let us first motivate our approach infor-
mally. Let K € T, be a mesh cell, let Fx be the collection of all the faces of K,
and let F € Fx be a face of K. Let v be a vector field defined on K. We are
looking for (mild) regularity requirements on the field v to give a meaning to the
quantity fF('vnK)d) ds, where ¢ is a given smooth function on F' (e.g., a polyno-
mial function). It is well established that it is possible to give a weak meaning in
H™z (0K) to the normal trace of v on K by means of an integration by parts for-
mula if v € H(div; K) := {v € L?*(K) | V-v € L?>(K)}. In this situation, one can
define the normal trace 73, (v) € H~2(K) by setting

(31) () honc = [ (V) + (Voyuw)) do

K

for all ¢ € Hz (DK), where w(¢) € H'(K) is a lifting of ¢, i.e., Vo (w(W)) =1, and
Vo HYK) — Hz(OK) is the trace map locally in K. Then, one has Y (v) =
v|gk MK Whenever v is smooth, e.g., if v € H(div; K) N C°(K). However, the above
meaning is too weak for our purpose because we need to localize the action of the
normal trace to functions ¢ only defined on a face F, i.e., ¢ may not be defined over
the whole boundary K. The key to achieve this is to extend ¢ by zero from F to
OK. This obliges us to change the functional setting since the extended function is
no longer in Hz(0K). In what follows, we are going to use the fact that the zero-
extension of a smooth function defined on a face F' of 0K is in W1~ +t(0K) if t < 2,
ie., t(l— %) < 1. Let us now present a rigorous construction.
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Let p, g be two real numbers such that

2d

2 2 —.
(3.2) p>2 ~ 944

Notice that ¢ > 1 since d > 2. Let p € (2,p] be such that ¢ > ~+d, this is indeed
2d zd

possible since p > 2, ¢ > 577, and the function z — - +4 Is increasing over R..
Lemma 3.1 shows that there exists a bounded lifting operator

(3.3) LE WP (F) — WP (K),

with conjugate number p’ s.t. %—i— % =1, so that for any ¢ € Wr? (F), LE(¢) is a
lifting of the zero-extension of ¢ to K, i.e.,

(3.4) Vor (L5 (9)jor\F =0, Vo i (LE(0)1F = 0.

Notice that the domain of LX is of the form W1~ #*(F) with t = J/ < 2, which is
consistent with the above observation regarding the zero-extension to 6[( of functions
defined on F'. We also observe that

(3.5) LE(¢) e W' (K)n L7 (K),

with conjugate numbers p’, ¢’ s.t. % + i =1, % + % = 1. Indeed, LE (¢) € W' (K)
just follows from p/ < P’ (i.e., p < p), whereas L¥(¢) € L7 (K) follows from

WP (K) — L9 (K) owing to the Sobolev Embedding Theorem (since ¢/ < d’%‘;,

as can be verified from d > 2 > p’ and I%—é:l—(%—l—%) Sl—%:%because
q> ppﬁ 7). We now state our main result on the lifting operator LE.

LEMMA 3.1 (Face-to-cell lifting). Let p and q satisfy (3.2). Let p € (2, p] be such

that q > %. Let K € Ty, be a mesh cell and let F € Fi be a face of K. There

exists a lifting operator L : W%’ﬁl(F) — WL (K) satisfying (3.4), and there exists
¢, uniform w.r.t. h € H, but depending on p and q, s.t. the following holds true:

-m\v—‘
z\:..

d —1+ 4
(3.6) hf<|L§(¢)|W1m’(K) + hK ! ||L§(¢)HL<I’(K) <c o H¢|| WP 7y

o 1

for all ¢ € WP (F) with the norm ||¢||W%’§,(F) = 9llz (r) + hf;'(blw%'ﬁ'(}?)' O
Proof. (1) The face-to-cell lifting operator LE is constructed from a lifting op-

erator L%{ on the reference cell. Let K be the reference cell and let F' be one of

its faces. Let us define the operator L;:( : W%’F(ﬁ) — WL (l?) For any func-

tion ¥ € W%’ﬁ/(ﬁL let {/; denote the zero-extension of v to oK. Owing to Gris-

vard [28, Thm. 1.4.2.4, Cor. 1.4.4.5], ¢ is in W7 (9K) since Z = =L <1 (ie,

p—1
p > 2), and we have ||¢)]] C1||¢H 17 5y with the norm H¢|| 5 o~ =

Wi (OR) = 57 (F)
1l o )+€” \1/1\ 27 where £z = 1is a length scale associated with K. Then we
use the surjectivity of the trace map fy% WP (K) = Wi (8K) (see Gagliardo [27

Thim. 1.1]) to define LE (1) € W7 (K) s.t. 74 (LK (1)) = ¢ and | LE (¢) ]| 100 ) <
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, with ¢ = ¢1¢3. By construc-

Bl 7 oy 10 1LE Dl iy <2, 1

1
tion, we have Vag(Lg(w))lﬁ =1 and 'yaK( ( ))|8K\F
(2) We define the lifting operator L% : WP (F (F) — WLo (K) by setting

(3.7) LE (@) (@) = LE(¢ 0 Ty 5)(Tc\(x), Ve € K, Yoe W (F),

where Ty : K — K is the geometric mapping and F = Tgl(F). By definition, if

x € F, then 7 := T ' (x )eFandTKlF( Z) = x, so that

Vi (LE6)(@) = 12 (LE (60 Ty 1)) (@) = 6(Ty (@) = d(a),

whereas if ¢ € 0K \ F, then @ € 0K \ F, so that 'yg (L ;:((gi)o K‘F))( z) = 0. The
above argument shows that (3.4) holds true.

(3) It remains to prove (3.6). Let us first bound |LE(¢)|y1.0 ()~ Notice that
the definition of L. is equivalent to LE(¢) o T (Z) = LK(gZ) o Ty 7)(@); that is,
V3 (LK (¢)) == L;:((z/)%(gzﬁ)), where % is the pullback by Tk, and 9% is the pullback
by TK| 7- Denoting by Jx the Jacobian of the geometric mapping Tk, we infer that

1

ILE @)l () < el el det (@)l [LE W5(0)) iy 7y
<d |‘JK1H€2|det(JK)|7/| §(¢F( ))|W1,ﬁ'(f<)

< I el det(Ti) | 195 ()] wh? (5

where the first inequality follows from the chain rule, the second is a consequence of
P > p' (since p < p), and the third follows from the stability of the reference lifting

operator L%f . Using now the chain rule and the shape-regularity of the mesh sequence,

we infer that ||[V%(¢)]| 1 5 ) < ¢ det(JF)\_T’ ||¢|| 7 (py’ where Jp is the Jacobian

— F. Combining these bounds, we obtain

'11) §\H

of the mapping TKlﬁ

L @)l () < c||J;1|\ez|det<JK>|?|det(JF>|‘?|\¢||W%,5I(F)

< hy” g

L
wi P (F)

where the second bound follows from the shape-regularity of the mesh sequence.
This proves the bound on |L§(¢)|W1,pl(K) in (3.6). The proof of the bound on
ILE (¢ O) L (i) uses similar arguments together with WP (K) — LY (K) owing to
the Sobolev Embedding Theorem and ¢’ < J ~/ (as already shown above). 0

3.2. Face localization of the normal diffusive flux. Let K € 7T, be a mesh
cell, F € Fk be a face of K, and consider the following functional space:

(3.8) SYK):={rc L’(K) | V-T € LY(K)},
equipped with the following dimensionally-consistent norm:

14d(2

(3.9) Illsagiey = Illoie) + b 77 197l ae)-
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With the lifting operator L in hand, we now define the normal trace on the face F' of
K of any field 7 € S4(K) to be the linear form in (W%’F (F))" denoted by (T-nk)|p

and whose action on any function ¢ € W%’F(F) is

(3.10) (T e = [ (FILE@®) + (VnLE©) do

K

Here, (-,-)r denotes the duality pairing between (W%’F (F)) and WP (F). Notice
that the right-hand side of (3.10) is well-defined owing to Hélder’s inequality and (3.6).
Owing to (3.4), we readily verify that we have indeed defined an extension of the
normal trace since we have ((7-nk)p,¢)r = [.(T-nK)¢ds whenever the field 7 is
smooth. Let us now derive an important bound on the linear form (7-ny)r when
acting on a function from the space Pgr, which we define to be composed of the

restrictions to F' of the functions in Pk . Note that Pr C W%’F(F).

LEMMA 3.2 (Bound on normal component). There exists a constant c, uniform
w.r.t. h € H, but depending on p and q, s.t. the following holds true:

d(z—3) _1
(3.11) ((Tnk)ip, on)rl < chp® "\ Tll sy hp? [|0nll L2 (r)s

for all T € SYK), all ¢, € Pp, all K €Ty, and all F € F. O
Proof. A direct consequence of (3.10), Holder’s inequality, and Lemma 3.1 is that

—Liq(i-
|<(T'nK)|Fa¢>F| SCth v

)

1
)
I7lls 16l o

1~ L

7P 1 ~ = 5 P 57
for all ¢ € WrP (F). Recalling that ”(;S”W%’P ") oo 7y + hF|¢>|W%,p ) the
shape-regularity of the mesh sequence implies that the following inverse inequality

—1)(i_1
||gz5h||W1 < ch;fl RiE ”)||¢h||L2(F) holds true for all ¢, € Pp (note that £ — 1 =

57 () = P

% — 2). The estimate (3.11) follows readily.

O

3.3. Definition of ny and key identities. Let us consider the functional space
Vs defined in (2.5). For all v € Vi, Lemma 2.1 shows that o(v);x € SY(K) for all
K € T, and Lemma 3.2 implies that it is possible to give a meaning by duality
to the normal component of o(v)|x on all the faces of K separately. Moreover,
since we have set o (vy)|x = —AxV(vp k) for all v, € PP(Ty), and since we have
Px C WktLeo(K) with k > 1, we infer that o(vy)x € SY(K) as well. Thus,
o(v)x € SYK) for all v € (Vs + PP(Ty)). Let us now introduce the bilinear form
ng : (Vs + PP(Th)) x PP(Th) — R defined as follows:

(3.12) ng(v,wp) =YY ek plr p{(0®)xnK) P, [wal)F,

FeFn, KeETr
where the weights 0k 7 are still unspecified but are assumed to satisfy
(313) 0K17F,9KT7FE [0, 1} and 0K,,F+0KT,F:17 VFE./_'.}CL),

whereas for all F' € .7-",? with F' = 0K; N 0D, we set 0k, r =1, 0. p =1 0. We
will see in (3.19) below how these weights must depend on the diffusion coefficient to
get a robust boundedness estimate on ny. The definition (3.12) is meaningful since
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[wp]F € Pr for all w, € PP(T,). The factor ex p in (3.12) handles the relative
orientation of nx and np. For all v € WH1(T,), we define weighted averages as
follows for a.e. ¢ € ' € Fy:

(3.14a) {v}po(z) := Ok, FV|K, (x) + Ok, FUK, (),
(3.14b) {U}F,é(l‘) =0k, . FV|k, (T) + Ok, FV K, (T).
Whenever 0k, r = 0k, r = 5, these two definitions coincide with the usual arithmetic

average. On boundary faces F € F{, we have {v} g o(x) = v/, (), and {v}pg(x) =0
for a.e. * € F. We omit the subscript p whenever the context is unambiguous. The
following identity will be useful:

(3.15) [vw] = {v}o[w] + [v[{w}s.

The following lemma is fundamental to understand the role that the bilinear form
ny will play in the next section in the analysis of various nonconforming approximation
methods.

LEMMA 3.3 (Identities for ny). The following holds true for any choice of weights
{0k FYrer, Kew and for all wy, € PP(Ty), all vy, € PP(Ty), and all v € Va:

(3.16a) ng(vp, w {o(v)}ompws] ds
1 (Vn, wh) Fefh/ h)ro-TE [Wh
(3.16b) (v, wp) Z / v)-Vwp g + (V-o(v ))wh‘K) dz. O
KeTh

Proof. (1) Proof of (3.16a). Let vy, wy, € PP(Tp). Since the restriction of o (vy,)
to each mesh cell is smooth, and since the restriction of L¥ ([wy]) to K is nonzero
only on the face F' € Fi where it coincides with [wy,], we have

(o (vn) e msc) s [eon e = /K (o) s VLE (Lwnl) + (V-0 (on) ) LE ([wn]) ) do
:/ U(’Uh)|K‘nKL§([[whﬂ)d8:/ O'(Uh)|K~TLK[[wthS
oK F

where we used the divergence formula in K. Therefore, after using the definitions of
ex,r and of Ok r, we obtain

ng(vn, wp) = Z Z 6KF(‘)KF/ o(vn)|x nk[wp] ds

FeFn KeTr

= Z /{0’ Vh }gnp wh]]ds

FreFn

(2) Proof of (3.16b). Let v € Vs and wy, € PP(Ts). Let K : L' (D) — C*°(D) and
K2 : LY(D) — C*>(D) be the mollification operators 1ntr0duced in [22, §3.2]. These
two operators satisfy the following key commuting property:

(3.17) V-(K§ (1)) = KZ(V-T),

for all 7 € LY(D) s.t. V-7 € L*(D). Tt is important to realize that this property can
be applied to o(v) for all v € Vg since V-a(v) € L'(D) by definition of V. (Note
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Contrasted diffusion 11

that this property cannot be applied to o (vj,) with v, € PP(Ty), since the normal
component of o(vy,) is in general discontinuous across the mesh interfaces, i.e., o(vp,)
does not have a weak divergence.) Let us consider the mollified bilinear form

ngs (v, wp) Z Z ex, FOr. F((K§(a(v) g i) r, [wh]) F-

FeFn, KETr

Owing to the commuting property (3.17), we infer that
(K5 (o () n) s [wn]) r =
/K (K8 (@ (@) LE (Lwn]) + K5 (V-0 (o) LE ([wn]) ) da.

Then Theorem 3.3 from [22] implies that

lim [ (K (o(0)-LE([wn]) + K (V-0 (0) L (wn]) ) do =

0—0 J i
/K (@) LE([wn]) + (V-0 @) LE (lwn]) ) dz = (@) cmic) s [wn]) -
Summing over the mesh faces and the associated mesh cells, we infer that

%lir(l) ngs (v, wp) = ny(v, wy).

Moreover, since the mollified function K§(o(v)) is smooth, by repeating the calcula-
tion done in Step (1), we also have

ngs (v, wp) {/C v))}o-nr[ws] ds
§6 h FEF/ 5( 9" MF|Wh

Using the identity (3.15) with [K$(o(v))]'nr = 0 for all F € Fy, recalling that
[wi K (o (v))] = whK§ (o (v))F for all F € F7, and using the divergence formula in
K and the commuting property (3.17), we obtain

ngs (v, wp) Z /{]Cd N}onpwy]ds + Z / [KY (o (v)]-np{w,}sds

FeFy, FEFy

= Z /[wthg(a( Jmpds = Z (v)) ngwp k ds
FeFy, KET,
KeT

Invoking again Theorem 3.3 from [22] leads to the assertion since

hm nﬁ(; v, W) Z / th|K + (V-o(v ))wh|K> dz.
KeTh 0

Remark 3.4 (Identity (3.16b)). The identity (3.16b) is the key tool to assert in

a weak sense that o (v)-n is continuous across the mesh interfaces without the need
to assume that v is smooth, say v € H*"(D) with r > 1. O
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12 A. ERN, J.-L. GUERMOND

We now establish an important boundedness estimate on the bilinear form n;.
Since o(v)|x € SY(K) for all K € T, and all v € Vs + PP(Ty), we can equip the space
Vs + PP(Ty) with the seminorm

2d( -4 2d(3E-1)
(318) o2, == 3 A (b Vo @)k liao + i 7 IV-o @)kl )-
KeTy

We notice that this seminorm is dimensionally-consistent with the classical energy-
norm deﬁned as Y rer, )\K||VU|KH%2(K). Straightforward algebra shows that |v|y <

1
cA, (g na ||0'( v)||Lr Dy +€p A 7")||V~0'(v)| La(p)), for all v € Vg; here £p denotes
a Characterlstlc length of D. (Recall that ||al|¢=(z) < ||la|l¢+(z) for any finite sequence
(ai)ier if 0 <t < s, and we assumed that ¢ < 2.)

In order to get robust error estimates with respect to A, it is important to avoid
any dependency on the ratio of the values taken by A in two adjacent subdomains;
otherwise, the error estimates become meaningless when the diffusion coefficient A is
highly contrasted. To avoid such dependencies, we introduce the following diffusion-
dependent weights for all F' € F;, with F' = 0K; N 0K,

MK, AK,

3.19 O, pim —Ke g = LK
(3.19) Ko Ak, + Ak, o Ak, + Ak,

We also define
20K, Ak,
Ak, + Ak

r

(3.20) Ap = if FeF7 and \p:=\g, if F e FP.

The two properties we are going to use are that |Tp|Ax0k r = Ap, for all K € Tp,
and \p < minge7, Ax. (Here |Tr| denotes the cardinality of Tp.)

LEMMA 3.5 (Boundedness of ny).  With the weights defined in (3.19) and Ap
defined in (3.20) for all F € Fy,, there is ¢, uniform w.r.t. h € H and X\, but depending
on p and q, s.t. the following holds true for allv € Vs + PP(Ty) and all wy, € PP(Ty):

1
2
(3:21) g0, wn)| < c|v|nﬁ( 3 Athl[[whﬂniz(F)) | O

FeFy,

Proof. Let v € Vs + PP(Ty,) and wy, € PP(Ty). Owing to the definition (3.12) of
ny and the estimate (3.11) from Lemma 3.2, we infer that

ack 1
ng(v,wp)| <> Y Ororhi” HU( V)ixllsar)lp® [[wn]ll 2wy

FeF, KeTr
-1 dl l 101 1
—C( 2 Ak & lo(0) ik llLe ) [ Tel ™2 Aphp® [ Twn]ll L2 cr)
FeFn KeTr
2+d_1) _1 1 1
+ 3 S B IV )i o 1T QA%hFQH[[wh]]HLz(F)),

FeFn, KETr

1
where we used that 0 r < 07 1. (since O, r < 1), |Tr|Ak 0K F = Ar, the definition of
|-l se¢xy, and 1—|—d(% — %) = d(% — %) Owing to the Cauchy—Schwarz inequality, we

infer that > Jpcz D e ag|Tr| " 2bp < O keT, |}"K|a%<)%(ZFeﬂ b2z, for all real
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Contrasted diffusion 13

numbers {ax}xeT,, {br}rer,, where we used Y pcr Yxer. = YokeT, 2orers

for the term involving the ag’s. Since |Fk| is uniformly bounded (|Fx| = d+ 1
for simplicial meshes), applying this bound to the two terms composing the above
estimate on |ng(v, wp)| leads to (3.21). 0

Remark 3.6 (Literature). Diffusion-dependent averages have been introduced in
Dryja [19] for discontinuous Galerkin methods and have been analyzed, e.g., in Bur-
man and Zunino [10], Dryja et al. [20], Di Pietro et al. [17], Ern et al. [26]. O

4. Applications. The goal of this section is to perform a unified error analysis
for the approximation of the model problem (2.1) with various nonconforming meth-
ods: Crouzeix—Raviart finite elements, Nitsche’s boundary penalty, interior penalty
discontinuous Galerkin, and hybrid high-order methods. We assume that the exact
solution is in the functional space Vi defined in (2.5) with real numbers p, ¢ satisfy-
ing (3.2). Our unified analysis hinges on the dimensionally-consistent seminorm

(4.1) 0 g = INVR0l3o 0y + W2, Vo€ Vi+ PR(Th),

with |-|,, defined in (3.18). Since X is piecewise constant, we have

2d(5—13)
W= D A (1o ey + R © 2 Il

KeTy
2d(5F—7)
(4.2) 4 ||AU|K||%(,(K)).

Invoking inverse inequalities shows that there is ¢, uniform w.r.t. h € H, but depending
on p and ¢, s.t.

(4.3) [onlrpg < N2 VorlLapy,  Vou € PE(Th).

4.1. Abstract approximation result. We start by recalling a general approx-
imation result established in [25, Lem. 4.4]. Let V and W be two real Banach spaces.
Let a(-,-) be a bounded bilinear form on V' xW, and let £(-) be a bounded linear form
on W, ie., £ € W'. We consider the following abstract model problem:

{ Find u € V such that

(44) a(u,w) = l(w), YweW,

which we assume to be well-posed in the sense of Hadamard; that is to say, there is a
unique solution and this solution depends continuously on the data.

We now formulate a discrete version of the problem (4.4) by using the Galerkin
method. We replace the infinite-dimensional spaces V' and W by finite-dimensional
spaces V;, and W}, that are members of sequences of spaces (Vi)new, (Wh)nen en-
dowed with some approximation properties as h — 0. The norms in V;, and W}, are
denoted by ||-||v;, and ||-||w, , respectively. The discrete version of (4.4) is formulated
as follows:

(4.5) { Find uj € V}, such that

ah(u;“wh) = éh(wh), Ywy, € Wh,

where a,(+, ) is a bounded bilinear form on Vj, x W), and ¢5,(-) is a bounded linear form
on Wy; note that ap(-, ) and ¢5(-) possibly differ from a(-,-) and £(-), respectively.
We henceforth assume that dim(V},) = dim(W},) and that

(4.6) inf sup _lan(on, wn)| =:ap >0, Yh > 0,

0#£0n Vi 0wy, W, [0 [V, [[wrllw,
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14 A. ERN, J.-L. GUERMOND

so that the discrete problem (4.5) is well-posed.

We formalize the fact that the error analysis requires the solution to (4.4) to be
slightly more regular than just being a member of V' by introducing a functional space
Vs such that uw € Vg C V. Our setting for the error analysis is therefore as follows:

(4.7) ueVyCV, u—up € Vg :i= Vs + V,
with the norm in Vj denoted by [|-[|v;. Since V}, is finite-dimensional, we have

lvnllv,

(4.8) Cgp =
0#vp €V ”Uh”Vh

We now introduce the consistency error mapping 0y, : Vi, — W, = L(Wj;R)
defined for all v, € V}, and all wy, € W), by setting

(4.9) (6n(vn), wa)wy w, = €n(wn) — an (v, wp) = an(un — v, wp).

We further assume that

6 v /
(4'10) Wip = SUp M
ueVs vy evi\{u} [[& = vallv,

Ezample 4.1 (Conforming setting). Assume conformity, a, = a, and ¢, = /.
Take Vi := V, so that V; = V, and take |||y, := ||-|lv. The consistency error (4.9) is
such that

(n(vn), wn)wy wy, = Lwn) — a(vp, wp) = a(u — vh, wp),
where we used that {(wy,) = a(u,wp) (i-e., the Galerkin orthogonality property). Since
a is bounded on V' xW, (4.10) holds true with wy, = ||a||; moreover, ¢, = 1. O
The main result we are going to invoke later is the following.
LEMMA 4.2 (Quasi-optimal error estimate). If u € Vg, then

w .
(4.11) |lu —un|lv, < (1+Cuhﬁh) inf |lu—wp|lv,. O
Qap ) vh€Vh

Proof. The proof is classical; we sketch it for completeness. For all v, € V3, we
have

Cih ap(Up — Vp, Wh
Jun = onllv, < can llun — onllv;, < 2 lan o, = on, w)|
Xh 0w, W), l|lwn llw,
_ Cih CEhWih
= [6n (vi)llw; < an [u = vn|lv;-

We conclude by using the triangle inequality and taking the infimum over v, € V},. 0

When the constants cy, and wy, can be bounded from above uniformly w.r.t.
h € H, we denote by c; and wy any constant such that c; > sup;cq cyn and wy >

Suphe% Wih -
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Contrasted diffusion 15

4.2. Crouzeix—Raviart approximation. We consider in this section the ap-
proximation of the model problem (2.2) with a homogeneous Dirichlet condition (for
simplicity) using the Crouzeix—Raviart finite element space

(4.12) PSS (Th) = {on € PY(Th) | /F[[vh]]pds —0,VF € Fi}.

The discrete problem (4.5) is formulated with Vj, := Py§(7x) and the following forms:
(4.13) ah(vh,wh) Z:/ )\thh'vh’wh dx, Eh(wh) :/ fwh dx.
D D

We equip V}, with the norm ||vp ||y, == ||A%thh||L2(D). The following result is stan-
dard.

LEMMA 4.3 (Coercivity, well-posedness). The bilinear form ay, is coercive on Vj,
with coercivity constant o = 1, and the discrete problem (4.5) is well-posed. O

Let V; := V5 +Vj, be equipped with the norm [|v[|y, := [v]x p,q With |v]) p 4 defined
in (4.2) (this is indeed a norm on Vj since |v|xpq = 0 implies that v is piecewise
constant and hence vanishes identically owing to the definition of V). Owing to (4.3),
there is ¢y, uniform w.r.t. h € H, but depending on p and ¢, s.t. |lvn|lv, < ellvnllv,,
for all vy, € V4.

LEMMA 4.4 (Consistency/boundedness). There is wy, uniform w.r.t. h € H, A,
and u € Vg, but depending on p and q, s.t. ||6p(vn)llv; < wyllu — vnlly,, for all
vp € Vi O

Proof. Let vy, wp, € Vy. Since Vj, C P}j(ﬁl), the identity (3.16a) implies that

ng(on ) = 3 /F{O'(vh)}g-np[[wh]]ds:o,

FeFy

because {o(vh)}o-nF is constant over F'. Moreover, invoking the identity (3.16b) with
v = u and since f = V-o(u), we have

Ln(wr) = ny(u, wp) — /D o(u)-Vywy de.

Combining the two above identities and letting 7 := u — vy, we obtain
(0 (vp), wh>v,{,vh = ny(u, wp) + / AV pn-Vywy dz = ng(n, wy) +/ AV pn-Vawy de.
D D

The first term on the right-hand side is estimated by invoking the boundedness of
ny (Lemma 3.5), the inequality Ap < minge7, Ax (see (3.20)), and the bound
drer, )\Fh}1|\[[wh]]||%2(F) < c|jwy|f},, which is standard for Crouzeix-Raviart el-
ements. The second term is estimated by using the Cauchy—Schwarz inequality. O

THEOREM 4.5 (Error estimate). Let u solve (2.2) and uyp, solve (4.5) with ay,
and 0y, defined in (4.13). Assume that there is r > 0 s.t. u € H'™"(D). There is
¢, uniform w.r.t. h € H, X\, and u € H*"(D), but depending on r, s.t. the following
quasi-optimal error estimate holds true:

4.14 — <c inf — .
(414) lu—unlly, <c inf flu— vy
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16 A. ERN, J.-L. GUERMOND

Moreover, letting t := min(1,r), where 1 = k is the degree of the Crouzeiz—Raviart
finite element, we have

1
_1, 2052 1) 2
(4.15) ||u—uhw<c< > Akhitulde g + Agth Iflliq<K>) . g
KeTy,

Proof. The error estimate (4.14) follows from Lemma 4.2 combined with stability
(Lemma 4.3) and consistency/boundedness (Lemma 4.4). We now bound the infimum
in (4.14) by considering 1 := u — Zp®(u), where Z;® is the Crouzeix-Raviart interpo-
lation operator using averages over the faces as degrees of freedom. It is a standard
approximation result that there is ¢, uniform w.r.t. u € H***(K), ¢t > 0, and h € H,
st Vo kllp2 () < chiglul mive iy for all K € Tp,. Moreover, invoking the embedding

~ ~

H'(K) — LP(K) and classical results on the transformation of Sobolev norms by the
geometric mapping, we obtain the bound

A1)
(4.16) hi® " NIVmkllLey < ¢ (IVnkllz2 () + b IVl i) -

Observing that |V |g:(x) = |ulgi+ex) since Z;%(u) is affine on K and using

, . d(i-1
again the approximation properties of Z;*, we infer that hK(2 p)||Vm rlloer) <

chiy|ul grive (). Finally, we have Anx = )\;{lf in K. 0

Remark 4.6 (Convergence). The rightmost term in (4.15) converges as O(h)
when ¢ = 2. Moreover, convergence is lost when ¢ < %, which is somewhat natural
since in this case the linear form w — [, fwda is no longer bounded on HY(D). O

Remark 4.7 (Weights). Although the weights introduced in (3.19) are not ex-
plicitly used in the Crouzeix—Raviart discretization, they play a role in the error
analysis. More precisely, we used the boundedness of the bilinear form ny together
with A\p < minge7,. Ax in the proof of Lemma 4.4. The present approach is some-
what more general than that in Li and Mao [31] since it delivers error estimates that
are robust with respect to the diffusivity contrast. The trimming operator invoked in
[31, Eq. (5)—(7)] cannot account for the diffusivity contrast. O

4.3. Nitsche’s boundary penalty method. We consider in this section the
approximation of the model problem (2.1) by means of Nitsche’s boundary penalty
method. Now we set

(4.17) Vi, i= PE(Th) = {vn € P2(Th) | [on]r =0, VF € Fy}, E>1,

ie., Vj is H'-conforming The discrete problem (4.5) is formulated with V}, := PE(7y)
and the following forms:

A
(4.18a) ap (v, wr) := a(vy, wp) + Z / (U(vh)n + wthlvh) wy, ds,
Ferp F
A
(4.18b) Lp(wp) == C(wp) + Z woﬁ/ qwy, ds,
o hp Jr
FeF?

where the exact forms a and ¢ are defined in (2.3), K is the unique mesh cell s.t.
F = 0K;NdD, and the user-specified penalty parameter wog is yet to be chosen large
enough. It is possible to add a symmetrizing term to the discrete bilinear form ay,.
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Contrasted diffusion 17

We equip Vj, with the norm [jv,[|}, = ||/\%VvhHi2(D) + |vpl3 with |u,|3 =

ZFG]_-}Q Ah—l;’thH%Q(F). Owing to the shape-regularity of the mesh sequence, there
is ¢y, uniform w.r.t. h € H s.t.

_1
(4.19) lonllzz(ry < crhp® |vnllL2 (k)

for all v, € Vj, and all F € ]-'}‘? . Let ny denote the maximum number of boundary
faces that a mesh cell can have (ny < d for simplicial meshes). The proof of the
following result uses standard arguments.

LEMMA 4.8 (Coercivity, well-posedness).  Assume that the penalty parameter

1 2
wo— 3 NHCT

satisfies wy > inac%. Then, ap, is coercive on Vi, with constant o := Ty 0,
and the discrete problem (4.5) is well-posed.
Let Vj := Vi + V. We equip the space V4 with the norm HU||%,ﬁ = o3, V3

with

Wpa = D Al Voirlza

KeTs,
2d(1—1) 2d(5E2-1)
(4.20) + 3 (i IV + R 1Al )
KeT?

=0
where 7T, is the collection of the mesh cells having at least one boundary face, and
A . . . .
lv]3 = ZFE}'E %HUHQLQ(F). Owing to (4.3), there is ¢4, uniform w.r.t. h € H, but
depending on p and g, s.t. |lvn|lv, < cillvnllv,, for all vy, € V.

LEMMA 4.9 (Consistency/boundedness). There is wy, uniform w.r.t. h € H, A,
and u € Vs, but depending on p and q, s.t. |[0n(vi)llv; < wpllu — vnllv,, for all
vp € V. O

Proof. Let vy, wp € Vj. Using the identity (3.16a) for ng, [wp]p = 0 for all
F € F}, (since Vj, is H'-conforming), and the definition of the weights at the bound-
ary faces, we infer that ng(vs, ws) = EFG}-}a fF o (vp)-nwy, ds. Hence, ap (v, wp) =
a(vp, wp) + ng(vp, wp) + ZFG}‘S wo% fF vpwy ds.  Therefore, invoking the iden-
tity (3.16b) for the exact solution u and observing that f = V-o(u), we infer the
important identity [,, fwy dz = a(u,wp) +ng(u, wy). Then, recalling that 78(u) = g,
and letting 7 := u — vy, we obtain

A
(On(vn), wa)vy vi, = ng(n, wa) + a(n, wn) + Z WOTKL /anh ds.

We conclude by using the boundedness of ny from Lemma, 3.5 and the Cauchy—Schwarz
inequality. ]

THEOREM 4.10 (Error estimate). Letu solve (2.1) and uyp, solve (4.5) with ap, and
Ly, defined in (4.18) and penalty parameter wy > %nac%, Assume that there is r > 0
s.t. u € HY"(D). There is ¢, uniform with respect to h € H, A, and v € H**" (D),
but depending on r, s.t. the following quasi-optimal error estimate holds true:

4.21 — < inf — .
(.21) lu—unll, <c inf flu— vy

This manuscript is for review purposes only.
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18 A. ERN, J.-L. GUERMOND
Moreover, letting t := min(r, k), x¢ =1 if t <1 and x; =0 if t > 1, we have

Xt ,2d(5F—1) :
(422) ||U — Uh”w S C ( Z )\Kh%|u|?{1+,(7’—}<) + EhK 2d ||f||%q([{) ,
KeTh
where Ty is the collection of the mesh cells having at least a common vertex with K.
The broken Sobolev norm |-| g1+t (7, can be replaced by |-|gi+e(ry if 1+1 > 4 O

Proof. The error estimate (4.21) follows from Lemma 4.2 combined with stabil-
ity (Lemma 4.8) and consistency/boundedness (Lemma 4.9). We now bound the
infimum in (4.21) by using 7 := v — Z;"*"(u), where Z}"* is the quasi-interpolation
operator introduced in [23, §5]. We take the polynomial degree of Z3"™ to be £ := [t],
where [t] denotes the smallest integer n € N s.t. n > t. Notice that ¢ > 1 be-
cause 7 > 0 and k > 1, and ¢ < k because ¢t < k; hence, Z;™ (u) € V,. We
need to bound all the terms composing the norm ||n[ly,. Owing to [23, Thm. 5.2
with m = 1, we have ||Vnl2x) < chiclulgires,y for all K € T,. Moreover,

_1
we have hp Il pzr) < ch%l|u|H1+t(TKl) for all F € F?. It remains to estimate

d(z3- o) 70 Usi
hy ||V17‘K||Lp (k) and h A k| Lk for all K € T,,. Using (4.16), the

above bound on ||V7| L2 k), and IVnlae (k) = [Vulge (k) = [ulgie k) since £ < 1+,
d(i -1

we infer that hK(2 p)HVnHLp(K) < chle|u| grse 4,y Moreover, if ¢ < 1, we have £ = 1

so that ||AnkllLex) = [[Aullpex) = At £l La(x). Instead, if ¢ > 1, we infer that

r > 1 so that we can set ¢ = 2 (recall that f|p, = A|p,(Au)p, for all i € {1: M}, and
u € H*(D) if r > 1), and we estimate || A7k r2(x) using [23, Thm. 5.2] with m = 2.

Finally, if 1 +¢ > %, we can use the canonical Lagrange interpolation operator Zj
instead of Z;»"", and this allows us to replace ||+, BY |'[mi+e(x) in (4.22). O

4.4. Discontinuous Galerkin. We consider in this section the approximation
of the model problem (2.1) by means of the symmetric interior penalty discontinuous
Galerkin method. The discrete problem (4.5) is formulated with V, := PP(T3), k > 1,
the bilinear forms

ap(vp,wy) == / AV o -Viywy, dz + Z /{o’ (vn) }o-npws] ds

FeFy

(4.23a) + Z / vp{o(wp)}o-npds + Z woy / [or]wr] ds

FeFy, FeFy

(4.23b)  Lp(wp) = L(wp,) + /gwhds,

where ¢ is defined in (2.3), Ag in (3.20), and the user-specified penalty parame-
ter wp is yet to be chosen large enough. We equip V} with the norm ||vh||%/h

FeF?

||A%thh||iz(D) + |vnl3 with [va]3 == > pe 7, 2—?”[[7};1]]”%2(1,). Recall the discrete trace
inequality (4.19) and recall that ny denotes the maximum number of faces that a
mesh cell can have (ng < d + 1 for simplicial meshes). The proof of the following
result uses standard arguments.

LEMMA 4.11 (Coercivity, well-posedness). Assume that the penalty parameter

satisfies wgy > nacﬁ. Then, ay, is coercive on Vy, with constant o := % > 0, and

the discrete problem (4.5) is well-posed. O
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Let V; := V5 + Vj,. We equip the space V; with the norm [[v[|§, = [v[% , , + [v]3
with [v]) 4 defined in (4.2) and [v]] == > e 7, 2—?||[[U]]||2LZ(F) Owing to (4.3), there
is ¢y, uniform w.r.t. h € H, but depending on p and g, s.t. [[va|lv, < cyflvp]
vy € V.

v, , for all

LEMMA 4.12 (Consistency/boundedness).  There is wy, uniform w.r.t. h € H,
A, and u € Vs, but depending on p and q, s.t. ||6n(vn)llv; < wpllu = vnlly,, for all
vp € Vi O

Proof. Let vy, wp, € V3. Owing to (3.16b) and since f = V-o(u), we infer that
Ip fwnde = 3 g ax (u,wn) + ny(u, wp) with ag (u, wp) == —(o(u), Vawn) L2 (k)-
Using the identity (3.16a), we obtain

A
O (wp) :nﬂ(mwh)—/ o(u)-Vywy, de + Z wo—F/ gwy, ds,
D hr Jr

FeF?

ah(vh,wh): / —U(Uh)'vhwhd$+Nﬁ(Uh,wh)
D

-y / onl{o(wn)onpds+ ) w0y / [on][wn] ds

FeFy FeFy

Then setting 1 := u — vy, and using that [u]z = 0 for all F' € F¢ and [u]r = g for all
F € F?, we obtain the following representation of the consistency linear form 6y, (vp,):

(6 (on), v vi = g (s wn) + / AV da

_ Z / [nl{o(wp)}e-npds + ZWO*/M [wr] ds.

FeFn FeFy

Bounding the second, third and fourth terms uses standard arguments (see, e.g., [15]),
whereas we invoke the boundedness estimate on ny from Lemma 3.5 for the first term.0

THEOREM 4.13 (Error estimate). Let u solve (2.1) and uy, solve (4.5) with ap,
and £y, defined in (4.23) and penalty parameter wqo > nac?. Assume that there ism > 0
s.t. u € HY"(D). There is ¢, uniform with respect to h € H, A, and v € H**" (D),
but depending on r, s.t. the following quasi-optimal error estimate holds true:

4.24 — <c¢ inf - .
(4.24) lu —unlly; < inf flu—wvally,
Moreover, letting t := min(r, k), x¢ =1 if t <1 and x; =0 if t > 1, we have

1
Xt o 2d(%5F ~3) 2
(4.25) ||u—uh||vnSc(ZAKh lpoecr + bt N ) O
KeTy

Proof. We proceed as in the proof of Theorem 4.10, where we now use the L'-
stable interpolation operator Iﬁ : LY(D) — PP(Ty) from [23, §3] to estimate the best
approximation error. 0

4.5. Hybrid high-order methods. We consider in this section the approxi-
mation of the model problem (2.1) with a homogeneous Dirichlet condition (for sim-
plicity) by means of the hybrid high-order (HHO) method introduced in [16, 18]. We

This manuscript is for review purposes only.
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20 A. ERN, J.-L. GUERMOND

consider the discrete product space V}f’o =V x VE with k > 0, where

(4.26a) VI = {vy, € L*(D) | vk = vp,x € V&, VK € Tp},
(4.26b) V£ = {vg, € L*(Fn) | vor = vr, ok € Vox, VK € Th; vg, 70 = 0},

with V£ := P4 and V5 == {0 € L*(0K) |0 o Tyir-t(r) € Pra-1, VF € Fr}

Thus, for any pair o), := (v7,,vE,) € f/}ﬁo, v, a collection of cell polynomials of
degree at most k, and vz, is a collection of face polynomials of degree at most k
which are single-valued at the mesh interfaces and vanish at the boundary faces (so
as to enforce strongly the homogeneous Dirichlet condition). We use the notation
Uk = (K, VoK) € V}@ = V}g X VakK for all K € T,. We equip the local space V}@
with the H!-like seminorm

1 N
(4.27) [ox[3e = IVorllTagr) + o (v = vor) [ T20k), VoK = (vr,vax) € Vi,
and the global space V}ﬁo with the norm
(4.28) lonllEe = > Axloxlp-

’ KeTh

We introduce locally in each mesh cell K € T} a reconstruction operator and a
stabilization operator. The reconstruction operator R’;{H : V;@ — Piy1,q is defined
such that, for any pair 9 = (vk,vax) € VE, the polynomial function R’;(H(@K) €
Pj41,4 solves

(4.29) (VR (0k), Va) 2 (k) = — (v, AQ) 2 (i) + (Vorc, V@) 12(01¢),

for all ¢ € Py41,4, with the mean-value condition fK(R’;(H(ﬁK) —vg)dx = 0. This
local Neumann problem makes sense since the right-hand side of Q4.29) vanishes when
the test function ¢ is constant. The stabilization operator S’g K V;§ — VakK is defined

s.t. for any pair 9 = (vK, VoK) € V]?,
(4.30) Sk () == g (vcjore — vor + (I = M )R (0k))joxc )

where [ is the identity, H’gK : L2(0K) — VakK is the L2-orthogonal projection onto
Vhe and TI%. : L?(K) — V£ is the L?-orthogonal projection onto V. Elementary
algebra shows that the stabilization operator can be rewritten as

(4.31) Shi (b)) = i (Sor — (I — I )RET(0, 60k )) 1ok ) »

with dpx 1= vk|ox — vor is a measure of the discrepancy between the trace of the
cell unknown and the face unknown. . .
We now introduce the local bilinear form ax on VE x Vi s.t.

(4.32) &K(ﬁK,wK) = (VR}?—l(@K),VRI;;_I(UA)K))LQ(D)
+ (hyShx (1), Shic (i) 120k

where hg is the piecewise constant function on K s.t. hog|r := hp for all F' € Fik.
Then we set

(4.33) an(On,p) = > Aga (g, ), Cu(dn) =Y (fiwk)re(x).
KeTy, KeTh
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Contrasted diffusion 21

The discrete problem is finally formulated as follows: Find uj € V}f,o s.t.
(4.34) dh(ﬁh,’lf)h) = éh(ﬁ}h), Yy, € fo,o

Notice that HHO methods are somewhat simpler than dG methods when it comes
to solving problems with contrasted coefficients. For HHO methods, one assembles
cellwise the local bilinear forms ax weighted by the local diffusion coefficient Ag,
whereas, for dG methods one has to invoke interface-based values of the diffusion
coefficient to construct the penalty term.

The following result is proved in [16, 18].

LEMMA 4.14 (Stability, boundedness, well-posedness). There are 0 < a < w,
uniform w.r.t. h € H, such that

_1 . . . . .
a ik %/IE < IVRE (0r) |32 10y + 1o Shx (0) 72 (01) = i (0, 0xc) < W|”K|%/}1§a

for all i € Vi and all K € Ty, and the discrete problem (4.34) is well-posed. O

The two key tools in the error analysis of HHO methods are a local reduction
operator and the local elliptic projection. For all K € 7Ty, the local reduction operator
It HY(K) — VE is defined by Zk(v) = (I (v), 5, (15, (v)) € VE, for all
v € H'(K). The local elliptic projection £ : HY(K) — Pry1.q4 is s.t. (V(ERT (v) —
v),Vq)r2(x) = 0, for all ¢ € Py1,4, and (5}?‘1(1;) —v,1)12(x) = 0. The following
result is established in [16, 18].

LEMMA 4.15 (Polynomial invariance). The following holds true:

(4.35a) REFL o T8 = ghtl)
(4.35D) Sk oZh = (Vg ol —TEx 0nBy) o (I — EFT).
In particular, RETY(TE(p) = p and S5 (Z5-(p)) = 0 for all p € Pyyy.a. O

Recalling the duality pairing (-, )r defined in (3.10), the generalization of the
bilinear form ny in the context of HHO methods is the bilinear form defined on
(Vs + P21 (Th)) x V¥, that acts as follows:

(4.36) ng (v, W) = Z Z ((e(v)nK)p, (Wk —woK)|F)F-
KeTn, FEFK

LEMMA 4.16 (Identities and boundedness for ng). The following holds true for
all Wy, € ViFq, all v, € PP, (Th) and all v € Vy:

(437&) Tln(l}h,ﬁ)h) = Z / /\vah\K'v(Rl;(—i_l(wK) — ’LUK) dz,
KeT, K
(4.37D) ny (v, ) :K;h /K <0'(v)-VwK + (V~U(v))wK> dz.

Moreover, there is ¢, uniform w.r.t. h € H and A, but depending on p and g, s.t. the
following holds true for all v € Vg + P,?+1(771) and all Wy, € V}f,o-’

1

2

(4.38) g (v, @p)| < C|U|nﬁ< > Axhitlwi —waKH%z(aK)) ;
KeTy

with the |-|,,-seminorm defined in (3.18). O
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22 A. ERN, J.-L. GUERMOND
Proof. (i) We first prove (4.37a). Let v, € Pk+1(77z) and Wy, € Vh o- Since the
restriction of o (vy) to each mesh cell is smooth and since the trace on K of the
face-to-cell lifting operator L is nonzero only on F, for all F € Fi, we have
((o(vn)nK)F, (WK — WoK)|F)F
= / o (vn) |k VLE (Wi — wor ) |p) + (V-0 (vn) ) L (Wi — waK)|F)) dz
K
= / a(vh)‘K-nKLfg((wK — wak )|r)ds = / o(vn)| kN (Wi —war ) ds,
oK F

where we used the divergence formula in K. Therefore, we obtain

ny(vn, dn) = Y / o(vn) |k k(WK — wok)ds

KeTy,

_ Z >\K/ V”UMK nK(wK waK)d

KeTh

> A [ (Fone T RE (i) = i) do

KeTn

where we used the definition (4.29) of the local reconstruction operator R’?‘l with the
test function vy € Pr,g C Pry1,4-

(ii) Let us now prove (4.37b). Let v € V5 and 1wy, € V,ﬁo. We are going to proceed as in
the proof of (3.16b). We consider the mollification operators K¢ : L'(D) — C*°(D)
and K : LY(D) — C°°(D) introduced in [22, §3.2]. Let us consider the mollified
bilinear form

ngs (v, W) Z Z IC5 ) nK)|p, (WK — Wok)|F)F-

KeT, FEFK

By using (3.10) and invoking the approximation properties of the mollification opera-
tors and the commuting property (3.17), we infer that lims_.o nys(v, Wn) = ng(v, wp).
Since the restriction of K¢(o(v)) to each mesh cell is smooth and since K§(o(v)) €
C°(D), we infer that

nys (v, Wp) = Z Ké(o(v))nix(wg —war)ds = Z K$(o(v))-nrwg ds

KeT, 9K KeT;, 79K
= Z / Kd(o(v))-Vwg + K5(V-o(v ))wg ) d,
KeTh

where we used the divergence formula and the commuting property (3.17) in the last
line. Letting § — 0, we conclude that nys(v, W) also tends to the right-hand side
of (4.37b) as § — 0. Hence, (4.37b) holds true.

(iii) The proof of (4.38) uses the same arguments as the proof of Lemma 3.5. 0

Remark 4.17 ((4.37b)). The right-hand side of (4.37b) does not depend on the
face-based functions wyk . This identity will replaces the argument in [16, 18] invoking
the continuity of the normal component of o(u) at the mesh interfaces, which makes
sense only when the exact solution is smooth enough, say o(u) € H"(D) with r > %.D
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Let Vi := Vi + PP, (Th) be equipped with the seminorm |[v[|y, := |v| p,q defined
in (4.2). Notice that [[vy, = 0 implies that v = 0 if v has zero mean-value in each
mesh cell K € 7y,; this is the case for instance if one takes v = u— &£ (u). We define
the consistency error 6y, : th,o — (Vh’fo)’ by setting, for all Wy, € V,{fo,

(4.39) <5h<ﬁh>’wh>(‘7io)ﬂ‘7d"o = gh(ﬁ}h) — dh(ﬁh,ﬁ)h).

We define global counterparts of the local operators R’;(+17 fﬁ, and Ef(“, namely
Ry« Vit = PRoa(Ta), Zf « HY(D) = Vifo, and &1+ H'(D) — PRy(Th), by
setting RZHA@h)IK = REFL (0, ZF(v) |k = L} (v)k), and E}If“(v)m = 5§(+1(1)|K),
for all o, € V), all v € H'(D), and all K € Ty,

LEMMA 4.18 (Consistency/boundedness). There is wy, uniform w.r.t. h € H, A,
and u € Vg, but depending on p and q, s.t.

(4.40) 16n (L5 ()l gy < ws [l = €57 ()l - =

Proof. Since o(u) = —A\Vu, V-o(u) = f, and u € Vg, the identity (4.37b) yields
Ch(n) =D geer (L)L) = D ke, ax (U, W) +ny(u, wy), where ag (u, wi) =
Jx —o(u)-Vwg dz. Using the definition of aj in (4.33), then the identity REFLoTE =
ERFL (see (4.35a)), and finally (4.37a) with v, = EFT!(u), we obtain

an(Zf (u), o) = Y ag (7 (u), wie) + ng (€ (u), dn)
KeTy

+ > Ak (B SEr (Zh (), Sh e (k) L2(ox) -
KeTh

Subtracting these two identities and using the definition of Elk("’l (u), which implies that
ax (u—EET (u), wi) = 0, for all K € Ty, leads to (6, (ZF (u)), ﬁ/h>(‘7}50)/7vhko =T +%
with Y ’

Tyi=ng(u—EFT (), ), Tai=— Y Axl(hykShr(Th (), Shr (0K 12 (oK) -
K€7—h

We invoke (4.38) to bound T; and observe that Mcht | wie — w3K||%2(3K) <

||1I)h||%/}50 owing to (4.28). For the bound on Ta, we proceed as in [16, 18]. 0

THEOREM 4.19 (Error estimate). Let u solve (2.1) and 4y, solve (4.34) with ay,
and Uy, defined in (4.33). Assume that there is r > 0 s.t. w € H'"(D). There is
¢, uniform w.r.t. h € H, X\, and u € HT"(D), but depending on r, s.t. the following
holds true:

(4.41) IN2 V(= RE (@)l 22 (p) < e flu— EFF ()l -

Moreover, letting t := min(r,k+ 1), xs =1 if t <1 and x; =0 if t > 1, we have

(4.42)  IA2V5(u— REM ()|l L2 ()

1

Xt , 2d(5E-1) 2
<o S rlulin + 20 F ) - O
KeT, K
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24 A. ERN, J.-L. GUERMOND

Proof. (i) We adapt the proof of Lemma 4.2 to exploit the convergence order of the
reconstruction operator. Let us set (f := ZF (u)— 1y, € V}«ﬁo so that (k. = ff{(u‘K)—ﬁK
for all K € T,. The coercivity property from Lemma 4.14 and the definition of the
consistency error imply that

a IAFVARET (I () W” ORI DIz
h

< (dh(éﬁ,@g))? B <5h(Iff(u)),<ﬁ>?V’f Yk

o ta)) _ R i () By
G 1% [feo = o
h,0 h,0

Then, lemma 4.18 yields ||/\%VR’,§+1(§A}3)||L2(D) < c|u— E;f“(u)HVu. Moreover, since
REFL(TE (u)) = EEFY(u) for all K € Ty, see (4.35a), we have

— Ry () = u — &7 (w) + RyTHCH):

The estimate (4.41) is now a consequence of the triangle inequality.
(ii) We now prove (4.42). Let us set n**! := u — &' (u). We need to bound

. . a(3-1)
||77k+1|| : = [n**1|\ p.g 1€, We must estimate ||V77k+1||Lz(K), hy® * HVﬁkHHLp(K),
d(%E

_1
“)HAnk“HLq(K) (see (4.2)). Owing to the optimality property of the
H/[C(Jrl

and hy

elliptic projection and the approximation properties of , we have

V0 L2y < IV (u = T ()| 2y < € bl e ey -

for ¢ = min(r, k 4+ 1). Let us now consider the other two terms. Let ¢ := [¢], so that
t < ¢ <1+t Notice also that £ < k+ 1, and £ > 1 since we assumed that » > 0.
Let us set n° := u — &} (u), then |[Vn’| p2(x) < chl|ulgire(x). Invoking the triangle
inequality, an inverse inequality, and the triangle inequality again, we infer that

a(3—

1
1-1)
hy HVnk“HLp(K) <1V o) + ¢ (197 20 + 1190 200 )

and the two terms between the parentheses are bounded by chb,|u| mi+t(K)- Moreover,
invoking (4.16), we obtain

1

d(i-1)
th ||V77 HLP(K) <c (||V77 ||L2 )+h3<|V772|Ht(K))
= c (IVn*llpacry + Riclulmivery) < ¢ hiclulmise sy,
since t < £. Similarly, we have

ACGE =) | Akt A5 =3 Al k41 ¢
hy A7 [ La(ry < by 1AD | Lacxy + ¢ (IVD | L2 xey + 1V L2y -

d+2 1
It remains to estimate h 4050 ) |AR|| acx). We proceed as in the end of the proof
of Theorem 4.10. If t < 1 (so that x; = 1), we have £ = 1, and we infer that

d(d+2_1 d(dez_é)l

by * ||A77 la(x) = A h | fllLa(k)-

Otherwise, we have ¢ > 1 (so that y; = 0) and ¢ > 2, and we take ¢ = 2. Then,
using the triangle inequality, an inverse inequality, and the triangle inequality again,
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we obtain

hic| AN Nl Lo iy < hcl|A(uw — T (u) | pacre)
+c(IV(u— I (W)l L2y + IV0 | L2(0))

where Hﬁ( is the L%-orthogonal projection onto Py 4. We conclude by invoking the

approximation properties of I1%, recalling that HVT]ZHLz(K) < chlelulgive k- d

Remark 4.20 (Supercloseness). Step (i) in the above proof actually shows that

||§}’f||%. < cHu—é’}]fH(u)Hvﬁ. Since ¢F = ¥ (u) —ug for all K € T, this implies the
,0

supercloseness bound (3 jeeq Ak ||V (I (u) — uK)HQLQ(K))% <cllu— Efﬂ(u)ﬂw.

5. Extensions to Maxwell’s equations. The various techniques presented in
this paper can be extended to the context of Maxwell’s equations, since arguments
similar to those exposed in §3 can be deployed to define the tangential trace of vectors
fields on a face of K. Without going into the details, we show in this section how that
can be done.

5.1. Lifting and tangential trace. Let p, ¢ be real numbers satisfying (3.2),
and let p € (2,p] be such that ¢ > ;Tdd- Let K be a cell in Ty, and let F' € Fi be a
face of K. Following [25], we introduce the space

(5.1) YO(F) = {¢ € WP (F) | pnp =0},

1
which we equip with the norm |@lly<(r) == (@l L7 (p) + h;|¢|W%‘5/(F)' Then the
following result can be established by proceeding as in the proof of Lemma 3.1.

LEMMA 5.1 (Face-to-cell Lifting). There exist a constant c, uniform w.r.t. h, but
depending on p and q, and a lifting operator EEX : Y¢(F) — Wl’p,(K) such that the
following holds true for any ¢ € Y°(F): E§(¢)|3K\F =0, E{f(d))‘p = ¢, and

—lHd(G ) —$+d(3—4)
(52) B (D)lwrw i)+ hi 1EE (@)l pe k) < chy @llyer. O
With this lifting operator in hand, we can define an extension to the notion of
the tangential trace on F' of a vector field. To this end, we introduce the functional
space

e
B

(5.3) S°(K) := {1 € L(K) | VxT € LI(K)},

where the superscript © refers to the fact that the tangential trace is related to the
curl operator. We equip S°(K) with the following dimensionally-consistent norm:
d(+

14+d(£-1)
(5.4) |7 llsex) = [Tl ey + g IV XTI La(x)-

We now define the tangential trace of any field 7 in S¢(K) on the face F' of K to be
the linear form (7xng)p € Y°(F)' such that

(5.5) () s B = /

K

(rvxEE©) - (vxr1EE(9)) an

for all ¢ € Y°(F), where (-,-)r now denotes the duality pairing between Y °(F)’
and Y°¢(F). Note that the right-hand side of (5.5) is well-defined owing to Holder’s
inequality and (5.2).
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The discretization now involves the vector-valued broken finite element space
(5.6) Py (Ty) = {vp € L®(D) | vy i € Py, VK € Tp},

where Py := () "H(P) ¢ WktL2(K), (K, P,X) is the reference element, and ¢
is an appropriate transformation. For instance, one can take ¢k (v) = ¥% (v) := voTk
for continuous Lagrange elements or for dG approximation; one can also take ¢k (v) =
P$(v) == Jk (v o Tk) for edge elements (1% is covariant Piola transformation and
Jx the Jacobian of the geometric mapping). For any face F' € Fk, we denote by Pg
the trace of Px on F. The following result is the counterpart of Lemma 3.2.

LEMMA 5.2 (Bound on tangential component). There ezxists a constant ¢, uni-
form w.r.t. h, but depending on p and q, so that the following estimate holds true for
allv e S°(K),

G 3)

(5.7) [(wxng)pllyery < chg” vl se(x)-

Moreover, we have

a(-1) -3
(5-8) ((oxng)p, @n)l < chy® P lvllse)hp® [|@nllL2 ),

for all ¢, € Pr s.t. pnp =0, all K € Ty, and all F € Fig. O

Lemma 5.2 is essential for the error analysis of nonconforming approximation
techniques of Maxwell’s equations. It is a generalization of Bonito et al. [8, Lem. A3]
and Buffa and Perugia [9, Lem. 8.2].

5.2. Definition of nj and key identities. The consistency analysis of Nitsche’s
boundary penalty method and of the dG approximation applied to Maxwel’s equations
can be done by introducing a bilinear form ny as in §3. We henceforth assume that
the space dimension is either d =2 or d = 3.

We define the notion of diffusive flux by introducing o : H(curl; D) — L?(D)
such that o(v) := AVxw, for any v € H(curl; D). Here, the diffusivity A is either
the reciprocal of the magnetic permeability or the reciprocal of electrical conductiv-
ity, depending whether one works with the electric field or the magnetic field. The
diffusivity is assumed to satisfy the hypotheses introduced in Section 2. We further
define

(5.9) Vs:={v € H(curl; D) | o(v) € LP(D), Vxo(v) € LI(D)},

and set V; := Vs + PP(Ty).
We adopt the same notation as in §3. Recall that for any K € T, and any F' € Fp,

we have defined ex p = np-ng = +1. We consider arbitrary weights 0k r satisfying
(3.13). We introduce the bilinear form n : (Vs + P(T5)) x P (Tn) — R defined as
follows:

(5.10) ng(v,wh) = Z Z ex, FOr F((0(V)|xxnK)|F, [[1F(wh)]) F,
FeF, KETr

where IIr is the ¢2-orthogonal projection onto the hyperplane tangent to F, i.e.,
Ip(by) := by — (byng)nkg = ngX(bpxng). Notice that (5.10) is meaningful since
Hr(by)r is in Wo? (F) and g (by)np = 0, ie., Ip(by) € YO(F) for any F € Fp.
The following result is the counterpart of Lemma 3.3.
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LEMMA 5.3 (Identities for nﬁ) The following holds true for any choice of weights
{0k r}rer, ketr and for all wy, € P,?(’ﬁl), all vy, € P,E(’ﬁl), and all v € Vi:

(5.11a) ng(vp, wp) = Y / ({o(vn)}oxnp)-[r(wh)] ds

FeFy,

(5.11b) (v, wp) Z / v)-Vxwy g — (Vxo(v ))~wh‘K) dz. O
KeTn

Proof. The proof is similar to that of Lemma 3.3. The proof of (5.11a) is quasi-
identical to that of (3.16a). For the proof of (5.11b), one invokes the mollifying
operators K§ : L'(D) — C°°(D) and K¢ : L'(D) — C°°(D) introduced in [22, §3.2].
These two operators satisfy the following key commuting property:

(5.12) Vx(KS(T)) = K$(VxT),

for all 7 € L*(D) s.t. VxT € LY(D). Then one uses the identities [vxIIp(w)] =
{v}ox[Up(w)] + [v]x{Ur(w)}s, nkxLp(w,) = ngxwy, and V-(w,xo(v)) =
o(v)(Vxwy) — wp(Vxo(v)). |

We now establish the boundedness of the bilinear form ng. Since o(v)x € S¢(K)

for all K € Tj, and all v € Vi + PP(Ty,), we equip the space Vi + PP(T;,) with the
seminorm

2d( -5
(5:13) ol == > AR (e * " lo@)ilEage
Ke7—h
2d( 32— 1)

i V%o @) kel )

LEMMA 5.4 (Boundedness of ng). With the weights defined in (3.19) and Ar de-
fined in (3.20) for all F' € Fy, there is ¢, uniform w.r.t. h € H and X, but depending
onp and q, s.t. the following holds true for allv € Vs+ PP(Ty,) and all wy, € PP(Ty):

1
2
(5.14) o, wn)| < clolg (3 et I ace) ) u
FeF,

With the above tools in hand, one can revisit Buffa and Perugia [9] and greatly
simplify the analysis of the dG approximation of Maxwell’s equations. One can also
extend the work in [24] and analyze Nitsche’s boundary penalty technique with edge
elements; one can also revisit Bonito et al. [7], where Nitsche’s boundary penalty
technique has been used in conjunction with Lagrange elements. In all the cases one
then obtains error estimates that are robust with respect to the diffusivity contrast.
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