Simple expressions of the LASSO and SLOPE estimators in low-dimension - Archive ouverte HAL
Article Dans Une Revue Statistics Année : 2020

Simple expressions of the LASSO and SLOPE estimators in low-dimension

Résumé

We study the LASSO and SLOPE estimators when the design X satisfies ker(X)=0. Similarly to the LASSO, the SLOPE estimator has an explicit expression when the design matrix X is orthogonal which is reported in the main theorem of this article. We state that, even if the design is not orthogonal, even if residuals are correlated, up to a transformation, the LASSO and SLOPE estimators have a simple expression based on the Best Linear Unbiased Estimator (BLUE). Comparisons with the LASSO estimator show the benefits of the soft-thresholded BLUE.
Fichier principal
Vignette du fichier
simple_form_LASSO_SLOPE_HAL.pdf (522.79 Ko) Télécharger le fichier
video_simple_expressions (1).wmv (14.4 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01755076 , version 1 (30-03-2018)
hal-01755076 , version 2 (30-01-2019)
hal-01755076 , version 3 (19-12-2019)

Identifiants

Citer

Patrick J C Tardivel, Rémi Servien, Didier Concordet. Simple expressions of the LASSO and SLOPE estimators in low-dimension. Statistics, 2020, ⟨10.1080/02331888.2020.1720019⟩. ⟨hal-01755076v3⟩
385 Consultations
734 Téléchargements

Altmetric

Partager

More