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Introduction

Let us consider the following low-dimensional linear model

Y = Xβ * + ε, (1) 
where X is a n × p fixed design matrix with ker(X) = 0 (i.e. n ≥ p), β * ∈ R p is an unknown parameter and ε is a centered random vector with an invertible and known covariance matrix Γ. The Least Absolute Shrinkage and Selection Operator (LASSO) estimator and the Sorted L-One Penalized Estimation (SLOPE) estimator respectively introduced by Tibshirani [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] and Bogdan et al. [START_REF] Bogdan | Slope -adaptive variable selection via convex optimization[END_REF] are defined by βlasso := argmin

β∈R p 1 2 Y -Xβ 2 + λ β 1 and, (2) 
βslope := argmin

In the second expression, the tuning parameters (λ i ) 1≤i≤p satisfy λ 1 ≥ λ 2 ≥ • • • ≥ λ p ≥ 0. The brackets [ . ] denote a permutation of {1, . . . , p} such that

|β [1] | ≥ • • • ≥ |β [p] |.
It is well known that when the design X is orthogonal (i.e X X = Id p ), the LASSO estimator leads to the following soft-thresholded Ordinary Least Squares (OLS) estimator [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] βlasso = sign( βols 

Popularized by the pioneer work of Tibshirani, the orthogonal design became a case study [START_REF] Chzhen | On lasso refitting strategies[END_REF][START_REF] Duan | Generalized lasso with under-determined regularization matrices[END_REF][START_REF] Sell | Sequential selection procedures and false discovery rate control[END_REF][START_REF] Lockhart | A significance test for the lasso[END_REF][START_REF] Tian | Selective inference with unknown variance via the squareroot lasso[END_REF][START_REF] Wen | On sparse vector recovery performance in structurally orthogonal matrices via lasso[END_REF]. Furthermore some properties such as the irrepresentable condition [START_REF] Bühlmann | Statistics for high-dimensional data: Methods, theory and applications[END_REF][START_REF] Meinshausen | High-dimensional graphs and variable selection with the lasso[END_REF][START_REF] Zhao | On model selection consistency of lasso[END_REF][START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] hold when X is orthogonal. The orthogonal design is also a case study for the SLOPE estimator [START_REF] Bogdan | Slope -adaptive variable selection via convex optimization[END_REF][START_REF] Gossmann | Identification of significant genetic variants via slope, and its extension to group slope[END_REF][START_REF] Su | Slope is adaptive to unknown sparsity and asymptotically minimax[END_REF].

Whatever the considered estimator, the orthogonal design setting appears to be an ideal case. When we tried to generalize its properties to the non-orthogonal setting, we discovered a relevant orthogonalizing transformation U s := D(X Γ -1 X) -1 X Γ -1 , where s := (s 1 , . . . , s p ), s 1 > 0, . . . , s p > 0 and D := diag(1/ √ s 1 , . . . , 1/ √ s p ). Actually, if we consider the new model Ỹ = Xβ * + ε, where Ỹ = U s Y , X = U s X and ε = U s ε, the LASSO estimator βs after applying the transformation U s can simply be written as a function of the Best Linear Unbiased Estimator (BLUE) in the following way:

βs := argmin β∈R p 1 2 Ỹ -Xβ 2 + λ β 1 ⇔ βs = sign( βblue i )(| βblue i | -λs i ) + 1≤i≤p
.

(5) Similarly to the LASSO estimator, we also obtained a simple expression for the SLOPE estimator based on the BLUE. We can notice that, in low-dimension, the U s transformation giving [START_REF] Sell | Sequential selection procedures and false discovery rate control[END_REF] does not require X to be orthogonal or the components of ε to be independent; but ker(X) = 0 is necessary.

Notations

In this article, we denote J the SLOPE norm J : [START_REF] Bogdan | Slope -adaptive variable selection via convex optimization[END_REF] for the proof that J is a norm). The OLS and BLUE estimators of the model (1), denoted βols and βblue , are respectively equal to βols := (X X) -1 X Y and βblue :=

β ∈ R p → λ 1 |β [1] | + • • • + λ p |β [p] | where |β [1] | ≥ • • • ≥ |β [p] | and λ 1 ≥ • • • ≥ λ p (see for example
(X Γ -1 X) -1 X Γ -1 Y. ( 6 
)
Whatever t ∈ R, we set (t) + = max{t, 0} and sign(t) = 1 t>0 -1 t<0 . Given a subset A ⊂ R p , conv(A) is the smallest convex set containing A. Finally, the notation Id p represents the p × p identity matrix.

Orthogonalization of the design: simple form of the LASSO and SLOPE

When the design is orthogonal, some algorithms provide the SLOPE estimation [START_REF] Bogdan | Slope -adaptive variable selection via convex optimization[END_REF] but the estimator writing is not explicit. To our knowledge, there does not exist currently any explicit formula for the SLOPE. In the following theorem, we provide the explicit expression of the SLOPE when X is orthogonal. 

k s -k s-1 + , . . . , Ŝks -Ŝks-1 k s -k s-1 + ks -ks-1 components .
Let us notice that when βols has a continuous distribution over R p , the Cesàro sequence ( Ŝk /k) almost surely reaches its maximum at a unique point. In other terms, k 1 := argmax { Ŝk /k} is unique and the same argument applies for k 2 , . . . , k s . When As a consequence, when λ 1 = • • • = λ p = λ in the orthogonal setting, the formula of the SLOPE given in the theorem 2.1 coincides with the one of the LASSO given in (4).

λ 1 = • • • = λ p = λ,
Remark: When X is orthogonal, ε ∼ N (0, σ 2 Id n ) and λ i = σz(1 -iq/(2p)), i ∈ {1, . . . , p} (where q ∈ (0, 1) and z(η) is the η-quantile of the N (0, 1) distribution), the procedure rejecting the null hypothesis β * i = 0 when βslope i = 0 controls the FDR at level q [START_REF] Bogdan | Slope -adaptive variable selection via convex optimization[END_REF]. The explicit expression of the SLOPE shows that this procedure is close to the original Benjamini-Hochberg procedure [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] (actually, these procedures are equal when the sequence ( Ŝk /k) is decreasing) and this provides an intuitive explanation for the FDR control.

An illustration of the relationship between the OLS estimator and the SLOPE estimator when X is orthogonal is given by the figure 1 in the special case where p = 2, λ 1 = 2 and λ 2 = 1. This figure also illustrates the properties of the SLOPE: this estimator is sparse (i.e. some components are exactly equal to 0), and some components are equal in absolute value.

Remarks: Let us point out some relevant transformations allowing us to obtain simple expressions for the LASSO estimator and the SLOPE:

• Transformation which brings back to the orthogonal setting: When X is not orthogonal, applying the transformation U 1 := (X Γ -1 X) -1 X Γ -1 on each side of the model (1) brings back the orthogonal setting in which Ỹ := β * + ε, where Ỹ = U 1 Y and ε = U 1 ε. In this new model, the LASSO estimator has the expression described in [START_REF] Sell | Sequential selection procedures and false discovery rate control[END_REF] with s 1 = • • • = s p = 1 and the SLOPE has the expression described in the theorem 2.1 except that the OLS estimator is substituted by the more accurate BLUE estimator.

• Transformation which brings back the orthogonal columns setting:

When columns of X are not orthogonal (i.e. when X X is not diagonal), applying the transformation

U s := D(X Γ -1 X) -1 X Γ -1
, where s := (s 1 , . . . , s p ), s 1 > 0, . . . , s p > 0 and D := diag(1/ √ s 1 , . . . , 1/ √ s p ), on each side of the model (1) returns the orthogonal columns' setting. After applying this transformation, LASSO's expression is still explicit and its expression is described by formula (5).

To avoid confusion, we call soft-thresholded BLUE the LASSO-type estimator whose formula is given in [START_REF] Sell | Sequential selection procedures and false discovery rate control[END_REF] and LASSO the estimator solution of (2). The soft-thresholded BLUE is easier to compute than the LASSO estimator (because the LASSO estimator computation needs to solve numerically the optimization problem described in (2)) and the soft-thresholded BLUE estimator is also easier to interpret than the LASSO estimator (contrarily to the LASSO estimator, the relationship between BLUE and the soft-thresholded BLUE is explicit). Thus it is recommended that in low-dimension the soft-thresholded BLUE should be used instead of the LASSO estimator, except if there are particular reasons for using the latter. Finally, from procedures based on the LASSO estimator defined in (2) one can derive new procedures based on the softthresholded BLUE given in [START_REF] Sell | Sequential selection procedures and false discovery rate control[END_REF] as illustrated in the following remark. Remark: Janson and Su [START_REF] Janson | Familywise error rate control via knockoffs[END_REF] have developed a multiple testing procedure based on the knockoff-LASSO estimator defined as follows βkn-lasso := argmin

β∈R p 1 2 Y -X ko β 2 + λ β 1 .
Since the matrix X ko (defined in Barber and Candès [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF]) satisfies ker(X ko ) = 0, up to a transformation, the knockoff-LASSO is just a soft-thresholded BLUE (where the BLUE is (X ko Γ -1 X ko ) -1 X ko Γ -1 Y , with Γ = var(Y )). Therefore, from the procedure described in [START_REF] Janson | Familywise error rate control via knockoffs[END_REF] one can derive a new procedure based on the soft-thresholded BLUE.

Comparison between the LASSO estimator and the soft-thresholded BLUE

When we want to recover the non-null components of β * , the soft-thresholded BLUE outperforms the LASSO estimator, solution of (2), as evidenced hereafter.

Support recovery

Let ε be a Gaussian vector of R 2 having a N (0, Id 2 ) distribution, let β * = (t, 0) ∈ R 2 with t = 0, let X be the design matrix described hereafter and let Y = Xβ * + ε.

X = 1/2 1/2 1/2 1/2 0 1 1 1 1 1 and thus βblue ∼ N t 0 , 5 -2 -2 1 .
When u ∈ R p , let us set supp(u) := {i ∈ {1, . . . , p} | u i = 0}. Now let us denote respectively βlasso (λ) and βs (λ) the LASSO estimator and the soft-thresholded BLUE to stress that these estimators depend on λ. Whatever λ > 0, and even if |t| is infinitely large, the following inequality [START_REF] Wainwright | Sharp thresholds for high-dimensional and noisy sparsity recovery using l1 constrained quadratic programming (lasso)[END_REF][START_REF] Tardivel | On the sign recovery given by the thresholded lasso and thresholded basis pursuit[END_REF] holds

P supp( βlasso (λ)) = supp(β * ) ≤ 1/2.
This inequality is illustrated in Figure 2 when λ ∈ {1/2, 1}.

On the other hand, if we take s 1 = √ 5, s 2 = 1 and λ as the 1 -α quantile of a N (0, 1) distribution in (5), we have P(supp( βs (λ)) = supp(β * )) ≈ 1 -α when |t| is large. Consequently, by using the soft-thresholded BLUE, the probability to recover supp(β * ) can be arbitrarily close to 1 when holds: |t| is large and α is small.

Estimation of β *

When the covariance matrix Γ is not a scalar matrix then, usually, the LASSO estimator is computed after whitening the noise as follows: βlasso,w (λ) := argmin

β∈R p 1 2 Γ -1/2 Y -Γ -1/2 Xβ 2 + λ β 1 . (7) 
When λ = 0 the above estimator coincides with the BLUE and thus has a smaller L 2 risk than the LASSO estimator as computed in (2) which is equal to the OLS estimator. The estimator given in (8) also coincides with the BLUE when λ = 0. Let s := (s 1 , . . . , s p ) where s 1 , . . . , s p are standard errors of the BLUE (thus s 2 1 , . . . , s 2 p are the diagonal components of (X Γ -1 X) -1 ). The soft-thresholded BLUE is defined as Figure 2. These figures provide the relationship between βols and the set of non-null components of the LASSO estimator supp( βlasso (λ)) (as explained in [START_REF] Schneider | On the distribution and model selection properties of the lasso estimator in low and high dimensions[END_REF]) when λ = 0.5 (above) and λ = 1 (below). The xaxis and y-axis represent respectively the first and second component of the OLS estimator. One may notice that the estimator supp( βlasso (λ)) recovers the true set {1} when βols is in the red area. Because βols is in the red area, this implies that β ols follows βs (λ) := argmin

β∈R p 1 2 U s Y -U s Xβ 2 + λ β 1 ⇔ βs (λ) = sign( βblue i )(| βblue i | -λs i ) + 1≤i≤p . (8) 
Hereafter we compare estimators described in ( 7) and ( 8) with respect to the L 2 risk.

Let Y = Xβ * + ε where X = Id p , β * ∈ R p and ε is a Gaussian vector in R p having a N (0, Γ) distribution. The performance of the LASSO as well as the soft-thresholded BLUE depend on the design X and on Γ. By taking X = Id p , we only focus on the whitening preliminary step for the LASSO. In Figure 3, we compare the following functions

λ ≥ 0 → E( βlasso,w (λ) -β * 2 ) and λ ≥ 0 → E( βs (λ) -β * 2 ).
in the particular settings described hereafter:

• Equicorrelated case: Let Γ be a 10 × 10 matrix whose diagonal and nondiagonal coefficients are respectively equal to 1 and c where c ∈ {0.3, 0.9} and let β * = (1, . . . , 1) ∈ R 10 so that β * 2 = E( Y -β * 2 ). • Correlation exponentially decreasing: Let Γ be a 10 × 10 matrix where Γ ij = c |i-j| for 1 ≤ i, j ≤ 10 and c ∈ {0.7, 0.9} and let β * = (1, . . . , 1) ∈ R 10 .

Figure 3 illustrates that, when the tuning parameter is appropriately selected for both βlasso,w and βs , the L 2 risk of the soft-thresholded BLUE is approximately equal or smaller than the L 2 risk of the LASSO estimator. Correlation exponenentially decreasing: c=0.9

Tuning parameter L2 risk L2 risk of LASSO after whitening L2 risk of soft-thresholded BLUE Figure 3. The x-axis and y-axis of these curves represent respectively the tuning paramater λ ≥ 0 and the L 2 risk for both LASSO and soft-thresholded BLUE estimators. To obtain these curves we simulated 10000 the random vector Y and we computed the soft thresholded BLUE and LASSO estimator for λ ∈ {0, 0.02, 0.04, . . . , 3}. Computation of the LASSO estimator have been done with glmnet package [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]. In every cases, when λ = 0 these two functions are equal to E( Y -β * 2 ) and when λ is very large these two functions are approximately equal to β * 2 2 . One can notice that the function λ ≥ 0 → E( βs (λ) -β * 2 ) does not change in these four settings since, in each case, components of the BLUE have a N (1, 1) marginal distribution. The minimum is 7.01 and is reached at λ = 0.74. Depending on the setting, the minimum of the function λ ≥ 0 → E( βlasso,w (λ) -β * 2 ) is 8.30, 6.71, 7.76 and 7.25 is reached at λ = 0.24, λ = 0.10, λ = 0.24 and λ = 0.10. Overall, after choosing properly the tuning parameter, one may notice that the L 2 risk is approximately equal or slightly smaller for the soft-thresholded BLUE than for the LASSO estimator.

Conclusion

Up to a transformation, the LASSO and the SLOPE have simple and explicit writing. In addition, our results point out that methods using the LASSO or the SLOPE in lowdimension can be derived as methods which only use the BLUE. Then, comparisons with the LASSO estimator showed the benefits of the soft-thresolded BLUE.

Proof of the proposition A.1

First, let us notice that when X is orthogonal the following equivalence holds βslope := argmin

β∈R p 1 2 Y -Xβ 2 + J(β) ⇔ βslope := argmin β∈R p 1 2 βols -β 2 + J(β).
Consequently, to prove theorem 2.1, one only needs to provide an explicit expression of the minimizer of the function φ defined hereafter

∀x ∈ R p , φ(x) = 1 2 y -x 2 + J(x)
, where y ∈ R p is a fixed vector.

Let us notice that φ is a coercive and strictly convex function, thus whatever y ∈ R p , φ has a unique minimizer. As suggested by assumption 2.1 in the article of [START_REF] Bogdan | Slope -adaptive variable selection via convex optimization[END_REF], one can restrict the study of the function φ to y 1 ≥ y 2 ≥ • • • ≥ y p ≥ 0. Actually finding the minimizer in this particular case makes it possible to recover easily the minimizer of φ when y is an arbitrary vector of R p as explained in [START_REF] Bogdan | Slope -adaptive variable selection via convex optimization[END_REF]. Let us remind some basic notions of sub-differentiability. Let > 0, let f : R p → R be a convex function, the sub-differential of f at the point x ∈ R p denoted ∂f (x) is the convex set described hereafter.

s ∈ ∂f (x) if ∀h ∈ B(0, ), f (x + h) -f (x) ≥ s, h ⇔ s ∈ ∂f (x) if ∀h ∈ R p , f (x + h) -f (x) ≥ s, h .
The sub-differentiability makes it possible to characterise the minimizer of φ (see e.g [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms i: Fundamentals[END_REF] page 177). The point x * is a minimizer of φ if and only if 0 ∈ ∂φ(x * ).

Proposition A.1. Let φ : x ∈ R p → 1 2 y -x 2 + J(x) with y 1 ≥ • • • ≥ y p ≥ 0, let (S k ) 1≤i≤p be a sequence such that S k = k i=1 y i -λ i and let 1 ≤ k 1 ≤ • • • ≤ k s = p be a partition of {1, . . . , p} such that k 1 = max argmax k∈{1,...,p} S k k and ∀i ∈ {2, . . . , s}, k i = max argmax k>ki-1 S k -S ki-1 k -k i-1 .
Let c 1 = S k1 /k 1 and for all i ∈ {2, . . . , s}, c i = (S ki -S ki-1 )/(k i -k i-1 ) and let x * ∈ R p be a vector such that ).

Then the unique minimizer of φ is x * .

Hereafter the SLOPE norm J is also denoted J λ1,...,λp , the set of permutations of {1, . . . , p} is denoted S p and given u ∈ R p , the permutation [ . ] ∈ S p is such that |u

[1] | ≥ • • • ≥ |u [p] |.
Lemma A.2. Properties i) and ii) deal with the sub-differential of J and property iii) deals with the sub-differential of φ.

i) If x 1 = • • • = x p > 0, then conv (λ r(1) , . . . , λ r(p) ) r∈Sp ⊂ ∂J(x). ∂φ s (x ks-1+1 , . . . , x ks ) then u ∈ ∂φ(x). Indeed φ(x + h) -φ(x) is equal to s i=0 φ i+1 (x ki+1 + h ki+1 , . . . , x ki+1 + h ki+1 ) -φ i+1 (x ki+1 , . . . , x ki+1 ) ≥ s i=0 u ki+1 h ki+1 × . . . , u ki+1 h ki+1 = u, h .
Consequently, u ∈ ∂φ(x), which ensures that iii) holds.

Lemma A.3. Let us assume that ∀i ∈ {1, . . . , p}, S i ≤ 0, then the unique minimizer of φ : x ∈ R p → 1 2 y -x 2 + J(x) is x * = (0, . . . , 0). Proof: To prove that x * = (0, . . . , 0) is a minimizer of φ, it suffices to show that 0 ∈ ∂φ(x * ). Let us give the following equivalences 0 ∈ ∂φ(x * ) ⇔ 0 ∈ -y + x * + ∂J(x * ) ⇔ y ∈ ∂J(0). 

1 )(| βols 1 |

 11 -λ) + , . . . , sign( βols p )(| βols p | -λ) + .

  the Cesàro sequence is non-increasing and consequently the following equality holds ∀i ∈ {1, . . . , p}, βslope i = sign( βols i )(| βols i | -λ) + = βlasso i .

Figure 1 . 1 | = | βslope 2 | 1 || βslope 2 | 1 | 2 | > 0 and | βslope 1 |

 11212121 Figure 1. This figure illustrates the relationship between the OLS estimator and the SLOPE, the x-axis and y-axis represent respectively the first and second component of the OLS estimator. Let Ŝ1 , Ŝ2 be defined as in the theorem 2.1. When Ŝ1 ≤ 0 and Ŝ2 ≤ 0 then βols is on the black area and βslope = 0. When Ŝ1 ≤ Ŝ2 /2 and Ŝ2 /2 > 0 then βols is on the red area and | βslope 1 | = | βslope 2 | > 0. When Ŝ1 > Ŝ2 /2 with Ŝ1 > 0 and Ŝ2 -Ŝ1 < 0 then βols is on the grey area, βslope = 0 and | βslope 1 || βslope 2 | = 0. Otherwise βols is on the white area then | βslope 1 | > 0, | βslope 2 | > 0 and | βslope 1 | = | βslope 2 |.

1 β ols 2 ≤ 0 , and because P( βols 1 βols 2 ≤ 0 )

 20120 Figure2. These figures provide the relationship between βols and the set of non-null components of the LASSO estimator supp( βlasso (λ)) (as explained in[START_REF] Schneider | On the distribution and model selection properties of the lasso estimator in low and high dimensions[END_REF]) when λ = 0.5 (above) and λ = 1 (below). The xaxis and y-axis represent respectively the first and second component of the OLS estimator. One may notice that the estimator supp( βlasso (λ)) recovers the true set {1} when βols is in the red area. Because βols is in the red area, this implies that β ols 1 β ols 2 ≤ 0, and because P( βols 1 βols 2 ≤ 0) ≤ 1/2, one may deduce that

x * = ((c 1 )

 1 + , . . . , (c 1 ) + k1 components , (c 2 ) + , . . . , (c 2 ) + k2-k1 components , . . . , (c s ) + , . . . , (c s ) + ks-ks-1 components

By lemma 2 ,

 2 the sub-differential of φ at 0 contains the set C given hereafterC := conv   r∈Sp [-λ r(1) , λ r(1) ] × • • • × [-λ r(p) , λ r(p) ]   ⊂ ∂J(0).Let us remind that a closed convex set is the intersection of all closed half-spaces containing it. Let a 1 x 1 + • • • + a p x p ≥ b be an arbitrary closed half-space containing C. To prove that y ∈ C, we are going to show thata 1 y 1 + • • • + a p y p ≥ b. Let (.)be a permutation of {1, . . . , p} such that |a (1) | ≤ • • • ≤ |a (p) | and let us denote u i = |a (i+1) |-|a (i) | with i ∈ {1, . . . , p -1}. Because v := (-λ p sign(a (1) ), . . . , -λ 1 sign(a (p) )) ∈ C and because whatever r ∈ S p , (v r(1) , . . . , v r(p) ) ∈ C, one may deduce that a (1)v 1 + • • • + a (p) v p = -λ p |a (1) | -• • • -λ 1 |a (p) | ≥ b. The following implications show that a 1 y 1 + • • • + a p y p ≥ -λ p |a (1) | -• • • -λ 1 |a (p) | ≥ b.We deduce from this last inequality thata 1 y 1 + • • • + a p y p ≥ -λ p |a (1) | -• • • -λ 1 |a (p) |, ⇔ a (1) y (1) + λ p |a (1) | + • • • + a (p) y (p) + λ 1 |a (p) | ≥ 0, ⇔ |a (1) | sign(a (1) )y (1) + λ p + • • • + |a (p) | sign(a (p) )y (p) + λ 1 ≥ 0, comes from the identity |a (1) |b 1 + • • • + |a (p) |b p = |a (1) |(b 1 + • • • + b p ) + u 1 (b 2 + • • • + b p ) + • • • + u p-1 b p . Finally, because y 1 ≥ • • • ≥ y p ≥ 0 one may deduce
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Appendix A. Proof of the theorem 2.1

Sketch of proof

Theorem 2.1 is a straightforward consequence of proposition A.1. Our goal is thus to prove this proposition, which provides an explicit expression for the minimizer of x ∈ R p → 1 2 y -x 2 + J(x) (where y ∈ R p is a fixed vector such that y 1 ≥ y 2 ≥ • • • ≥ y p ≥ 0).

Looking at the output of the algorithm described in [START_REF] Bogdan | Slope -adaptive variable selection via convex optimization[END_REF] allowed us to conjecture the following two minor results:

1) The null vector is the unique minimizer of x ∈ R p → 1 2 y -x 2 + J(x) when (S k ) 1≤k≤p is negative.

2) The vector (S p /p, . . . , S p /p) is the unique minimizer of x ∈ R p → 1 2 y-x 2 +J(x) when the Cesàro sequence (S k /k) 1≤k≤p reaches its maximum at k = p and when S p > 0.

Statements 1) and 2) are proved respectively in lemma A.3 and in lemma A.4. These two lemmas are the keystones of the proof of proposition A.1.

In these lemmas we need to prove that an element u belongs to a closed convex set C. To prove this belonging, we use the fact that C is the intersection of all halfspaces that contain it (see [START_REF] Boyd | Convex optimization[END_REF] page 49). Consequently, if

|, and let r be an arbitrary permutation of {1, . . . , p}. One of the key inequalities in lemma A.2 is the following one

p be a partition of {1, . . . , p} such that

Let j ∈ {0, . . . , s} and let us define functions φ 1 , . . . , φ s+1 as follows

Then the sub-differential of φ satisfies

Proof: First, let us prove i). Because whatever r ∈ S p , the two following expressions hold

Consequently, whatever r ∈ S p we have (λ r(1) , . . . , λ r(p) ) ∈ ∂J(x). Furthermore, because ∂J(x) is a convex set, one may deduce result i). Now, let us prove ii), whatever s 1 ∈ [-1, 1], . . . , s p ∈ [-1, 1] whatever r ∈ S p , the following inequality holds

Finally, let us show iii). Let h ∈ R p be small enough so that whatever i ∈ {1, . . . , s}, the inequality x ki -h ∞ > x ki+1 + h ∞ occurs (such a small h ensures that the k th 1 largest components of x + h are x 1 + h 1 , . . . , x k1 + h k1 and so on). As a consequence, the SLOPE norm satisfies the following equality

When h is small enough, one may deduce that whatever u ∈ ∂φ 1 (x 1 , . . . , x k1 ) × • • • × the inequality given hereafter which ensures that a 1 y 1 + • • • + a p y p ≥ b. In other terms,

Consequently, y ∈ C and so x * = (0, . . . , 0) is the unique minimizer of φ.

Lemma A.4. Let us assume that ∀i ∈ {1, . . . , p}, S i /i ≤ S p /p and S p > 0, then the unique minimizer of φ : x ∈ R p → 1 2 y -x 2 + J(x) is x * = (S p /p, . . . , S p /p) . Proof: To prove that x * is a minimizer of φ, it suffices to show that 0 ∈ ∂φ(x * ). Let us gives the following equivalences

By the lemma A.2, conv (λ r(1) , . . . , λ r(p) ) r∈Sp ⊂ ∂J(x * ). Hereafter we are going to show -y + x * ∈ conv (λ r(1) , . . . , λ r(p) ) r∈Sp . Let us remind that a closed convex set is the intersection of all closed half-spaces containing it. Let a 1 x 1 + • • • + a p x p ≥ b be an arbitrary closed half-space containing conv (λ r(1) , . . . , λ r(p) ) r∈Sp . To prove that y -x * ∈ conv (λ r(1) , . . . , λ r(p) ) r∈Sp , it suffices to prove that a 1 (y 1 -x * 1 ) + • • • + a p (y p -x * p ) ≥ b. Let (.) be a permutation of {1, . . . , p} such that a (1) ≤ • • • ≤ a (p) and let us denote u i = a (i+1) -a (i) with i ∈ {1, . . . , p -1}. By definition of the half-space a 1 x 1 + • • • + a p x p ≥ b, an appropriate permutation r ∈ S p ensures that a [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] 

The last expression comes from the identity a

0 and because whatever i ∈ {1, . . . , p}, S i /i ≤ S p /p one may deduce the inequalities given hereafter which ensures that a 1 (-

Consequently, -y + x * ∈ conv (λ r(1) , . . . , λ r(p) ) r∈Sp thus x * = (S p /p, . . . , S p /p) is the unique minimizer of φ.

Proof of the proposition A.1: First, let us show that

thus let us show that whatever i ∈ {1, . . . , s -1}, the inequality c i+1 = c i cannot occur. Indeed, the following equality always holds

(by setting k 0 = 0 and S k0 = 0). ).

Lemma A.4 ensures that whatever i ∈ {1, . . . , s}, we have 0 ∈ ∂φ i (c i , . . . , c i ). Thus 0 ∈ ∂φ(x * ), which ensures that x * is a minimizer of φ. Now, if 0 ≥ c 1 > • • • > c s then the sequence (S i ) 1≤i≤p is negative, thus lemma A.3 ensures that x * = (0, . . . , 0) is a minimizer of φ. )∂ × φ i0+1 (0), with φ i0+1 as in lemma A.2. Lemma A.4 ensures that whatever i ∈ {1, . . . , i 0 }, we have 0 ∈ ∂φ i (c i , . . . , c i ). Furthermore, because ∀i > k i0 , (S i -S ki 0 ) ≤ 0, lemma A.3 ensures that 0 ∈ ∂φ i0+1 (0). Thus 0 ∈ ∂φ(x * ), which ensures that x * is a minimizer of φ.