ASR performance prediction on unseen broadcast programs using convolutional neurol networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

ASR performance prediction on unseen broadcast programs using convolutional neurol networks

Résumé

In this paper, we address a relatively new task: prediction of ASR performance on unseen broadcast programs. We first propose an heterogenous French corpus dedicated to this task. Two prediction approaches are compared: a state-of-the-art performance prediction based on regression (engineered features) and a new strategy based on convolutional neural networks (learnt features). We particularly focus on the combination of both textual (ASR transcription) and signal inputs. While the joint use of textual and signal features did not work for the regression baseline, the combination of inputs for CNNs leads to the best WER prediction performance. We also show that our CNN prediction remarkably predicts the WER distribution on a collection of speech recordings.
Fichier principal
Vignette du fichier
20180214040820_904429_2819.pdf (346.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01709779 , version 1 (15-02-2018)

Identifiants

  • HAL Id : hal-01709779 , version 1

Citer

Zied Elloumi, Laurent Besacier, Olivier Galibert, Juliette Kahn, Benjamin Lecouteux. ASR performance prediction on unseen broadcast programs using convolutional neurol networks. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2018, Calgary, Alberta, Canada. ⟨hal-01709779⟩
394 Consultations
298 Téléchargements

Partager

More