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ABSTRACT
In this paper, we address a relatively new task: prediction
of ASR performance on unseen broadcast programs. We first
propose an heterogenous French corpus dedicated to this task.
Two prediction approaches are compared: a state-of-the-art
performance prediction based on regression (engineered fea-
tures) and a new strategy based on convolutional neural net-
works (learnt features). We particularly focus on the com-
bination of both textual (ASR transcription) and signal in-
puts. While the joint use of textual and signal features did not
work for the regression baseline, the combination of inputs
for CNNs leads to the best WER prediction performance. We
also show that our CNN prediction remarkably predicts the
WER distribution on a collection of speech recordings.

Index Terms— Performance Prediction, Large Vocabu-
lary Continuous Speech Recognition, Convolutional Neural
Networks.

1. INTRODUCTION

Predicting automatic speech recognition (ASR) performance
on unseen speech recordings is an important Grail of speech
research. From a research point of view, such a task helps
understanding automatic (but also human) transcription per-
formance variation and its conditioning factors. From a tech-
nical point of view, predicting the ASR difficulty is useful
in applicative workflows where transcription systems have to
be quickly built (or adapted) to new document types (predict-
ing learning curves, estimating the amount of adaptation data
needed to reach an acceptable performance, etc.).

ASR performance prediction from unseen documents dif-
fers from confidence estimation (CE). While CE systems al-
low detecting correct parts as well as errors in an ASR out-
put, they are generally trained for a particular system and for
known document types. On the other hand, performance pre-
diction focuses on unseen document types and the diagnostic
may be provided at broader granularity, at document level for
instance1. Moreover, in performance prediction, we may not
have access to the ASR system investigated (no lattices nor
N-best hypotheses, no internals of the ASR decoding) which
will be considered as a black-box in this study.

1Nevertheless this paper will analyze performance prediction at different
granularities, from fine to broad grain: utterance, collection.

Contribution This paper proposes to investigate a new
task: prediction of ASR performance on unseen broadcast
programs. Our first contribution is methodological: we gather
a large and heterogenous French corpus (containing non spon-
taneous and spontaneous speech) dedicated to this task and
propose an evaluation protocol. Our second contribution is an
objective comparison between a state-of-the-art performance
prediction based on regression (engineered features) and a
new strategy based on convolutional neural networks (learnt
features). Several approaches to encode the speech signal are
investigated and it is shown that both (textual) transcription
and signal encoded in a CNN lead to the best performance.

Outline The paper is organized as follows. Section 2 is
a brief overview of related works. Section 3 details our eval-
uation protocol (methodology, dataset, metrics). Section 4
presents our ASR performance prediction methods and 5 the
experimental results. Finally section 6 concludes this work.

2. RELATED WORKS

Several works tried to propose effective confidence measures
to detect errors in ASR outputs. Confidence measures were
introduced for OOV detection by [1] and extended by [2] who
used word posterior probability (WPP) as confidence measure
for ASR. While most approaches for confidence measure es-
timation use side-information extracted from the recognizer
[3], methods that do not depend on the knowledge of the ASR
system internals were also introduced [4].

As far as the WER prediction is concerned, [5] proposed
an open-source tool named TranscRater based on feature ex-
traction (lexical, syntactic, signal and language model fea-
tures) and regression. Evaluation was performed on CHiME-
3 data and interestingly it was shown that signal features did
not help the WER prediction.

One contribution of our paper is to encode signal infor-
mation in a CNN for WER prediction. Encoding signal in a
CNN has been done in several speech processing front-ends
[6, 7, 8]. Some recent works directly used the raw signal for
speech recognition [7, 9] or for sound classification [10].

3. EVALUATION FRAMEWORK

We focus on ASR performance prediction on unseen speech
data. Our hypothesis is that performance prediction systems



should only use the ASR transcripts (and the signal) as in-
put in order to predict the corresponding transcription quality.
Obviously, reference (human) transcriptions are only avail-
able during training of the prediction system. A Trainpred cor-
pus contains many pairs fASR output, Performanceg (more
than 75k ASR turns in this work), a Testpred corpus only con-
tains ASR outputs (more than 6.8k turns in this work) and we
try to predict the associated transcription performance. Refer-
ence (human) transcriptions on Testpred are used to evaluate
the quality of the prediction.

3.1. French Broadcast Programs Corpus

The data used in our protocol comes from different broadcast
collections in French:

� Subset of Quaero2 data which contains 41h of broad-
cast speech from different French radio and television
programs on various subjects.

� Data from ETAPE [11] project which includes 37h
of radio and television programs (mainly spontaneous
speech with overlapping speakers).

� Data from ESTER 1 & ESTER 2 [12] containing 111h
of transcribed audio, mainly from French and African
radio programs (mix of prepared and more spontaneous
speech: anchor speech, interviews, reports).

� Data from REPERE [13]: 54 hours of transcribed
shows (spontaneous, such as debates) and TV news.

As described in Table 1, the full data contains non spon-
taneous speech (NS) and spontaneous speech (S). The data
used to train our ASR system (TrainAcoustic) is selected from
the non-spontaneous speech style that corresponds mainly to
broadcast news. The data used for performance prediction
(Trainpred and Testpred) is a mix of both speech styles (S and
NS). It is important to mention that shows in TestPred data set
were unseen in the TrainPred and vice versa. Moreover, more
challenging (high WERs) shows were selected for TestPred.

TrainAcoustic TrainPred TestPred
NS 100h51 30h27 04h17
S - 59h25 04h42
Duration 100h51 89h52 08h59
WER - 22.29 31.20

Table 1. Distribution of our data set between non spontaneous
(NS) and spontaneous (S) styles

Our shows with spontaneous speech logically have a
higher WER (from 28.74% to 45.15% according to the pro-
gram) compared to the shows with non-spontaneous speech
(from 12.21% to 25.41% according to the broadcast pro-
gram)3. This S/NS division will allow us to compare our

2http://www.quaero.org
3Detailed results per broadcast programs not shown here due to space

constraints

performance prediction systems on different types of docu-
ments with non spontaneous and spontaneous speech.

3.2. ASR system used

To obtain speech transcripts (ASR outputs) for the predic-
tion model, we built our own French ASR system based
on the KALDI toolkit [14] (following a standard Kaldi
recipe). A hybrid HMM-DNN system was trained us-
ing TrainAcoustic (100 hours of broadcast news from ES-
TER, REPERE, ETAPE and Quaero). A 5-gram language
model was trained from several French corpora (3323M
words in total - from EUbookshop, TED2013, Wit3, Glob-
alVoices, Gigaword, Europarl-v7, MultiUN, OpenSubti-
tles2016, DGT, News Commentary, News WMT, LeMonde,
Trames, Wikipedia and transcriptions of our TrainAcoustic
dataset) using SRILM toolkit [15]. For the pronunciation
model, we used lexical resource BDLEX [16] as well as au-
tomatic grapheme-to-phoneme (G2P)4 transcription to find
pronunciation variants of our vocabulary (limited to 80k).

3.3. Evaluation

The LNE-Tools [17] are used to evaluate the ASR perfor-
mance. Overlapped speech and empty utterances are re-
moved. We obtain 22.29% WER on Trainpred and 31.20% on
Testpred (see Table 1). In order to evaluate WER prediction
task, we use Mean Absolute Error (MAE) metric defined as:

MAE =

PN
i=1 jWERi

Ref �WERi
Predj

N
(1)

where N is the number of units (utterances or files).
We also use Kendall’s rank correlation coefficient � be-

tween real and predicted WERs, at the utterance level.

4. ASR PERFORMANCE PREDICTION

4.1. Regression Baseline

An open-source tool for automatic speech recognition quality
estimation, TranscRater [5], is used for the baseline regres-
sion approach. It requires engineered features to predict the
WER performance. These features are extracted for each ut-
terance and are of several types: Part-of-speech (POS) fea-
tures capture the plausibility of the transcription from a syn-
tactic point of view5; Language model (LM) features capture
the plausibility of the transcription according to a N-gram
model (fluency)6; Lexicon-based (LEX) features are extracted
from the ASR lexicon7; Signal (SIG) features capture the dif-
ficulty of transcribing the input signal (general recording con-
ditions, speaker-specific accents)8.

4http://lia.univ-avignon.fr/chercheurs/bechet/
download/lia_phon.v1.2.jul06.tar.gz

5Treetagger [18] is used for POS extraction in this study
6We train a 5-gram LM on 3323M words text already mentioned
7A feature vector containing the frequency of phoneme categories in its

prononciation is defined for each input word
8For feature extraction, TranscRater computes 13 MFCC (using Opens-

mile[19]), their delta, acceleration and log-energy, F0, voicing probability,

http://lia.univ-avignon.fr/chercheurs/bechet/download/lia_phon.v1.2.jul06.tar.gz
http://lia.univ-avignon.fr/chercheurs/bechet/download/lia_phon.v1.2.jul06.tar.gz


This approach, based on engineered features, can be con-
sidered as our baseline. One drawback is that its application
to new languages requires to find adequate resources, dic-
tionaries and tools which makes the prediction method less
flexible. The next sub-section proposes a new (resource-free)
prediction approach based on convolutional neural networks
(CNNs) where features are learnt during training.

4.2. Convolutional Neural Networks (CNNs)

For WER prediction, we built our model using both Keras
[20] and Tensorflow9.

For pure textual input, we propose an architecture in-
spired from [21] (green in Figure 1). Input is an utterance
padded to N words (N is set as the length of the longest sen-
tence in our full corpus) presented as a matrix EMBED of size
NxM (M is embedding size - our embeddings are obtained
with Word2Vec [22]). The convolution operation involves a
filter w which is applied to a segment of h words to produce
a new feature. For example, feature ci is generated from the
words xi:i+h�1 as:

ci = f(w:xi:i+h�1 + b) (2)

Where b is a bias term and f is a non-linear function. This
filter is applied to each word segment in the utterance to pro-
duce a feature map c = [c1, c2. . . cn�h+1]. Max-pooling [23]
then takes the 4 largest values of c, which are then averaged.
W filters provide a W-sized input to two fully-connected hid-
den layers (256 and 128) followed respectively by dropout
regularization (0.2 and 0.6) before WER prediction.

For signal input, we use the best architecture (m18) pro-
posed in [10] (colored in red in Figure 1). This is a deep CNN
with 17 conv+max-pooling layers followed by global average
pooling and three hidden layers (512, 256 and 128 dimen-
sions). A dropout regularization of 0.2 is added between the
last two layers (256 and 128). We investigate several inputs
to the CNN using Librosa [24]: raw signal, mel-spectrogram
or MFCCs.

In order to predict the WER using CNN, we propose two
different approaches:

� CNNSoftmax: we use Softmax probabilities and
an external fixed WERV ector to compute WERPred.
WERV ector and Softmax output must have the same
dimension. WERPred is then defined as (expectation):

WERPred =

NCX

C=1

PSoftmax(C) �WERV ector(C)

(3)
With NC as total number of classes. In our experiment,
we use 6 classes with WERV ector=[0%, 25%, 50%,
75%, 100%, 150%],

� CNNReLU : after the last FC layer, a ReLU function
returning a float value between 0 and +1 estimates
directly WERPred.

loudness contours and pitch for each frame. The SIG feature vector for the
entire input signal is obtained by averaging the values of each frame

9https://www.tensorflow.org

For joint use of both speech and text, we merge the
last hidden layers of both CNN EMBED and CNN RAW-SIG
(or MEL-SPEC or MFCC) by concatenating and passing
them through a new hidden layer before CNNSoftmax or
CNNReLU (see dotted lines in the Figure 1) and we train the
full network similarly.

Fig. 1. Architecture of our CNN with text (green) and signal
(red) inputs - dotted lines correspond to joint text+signal case

5. EXPERIMENTS AND RESULTS

In this section, Regression and CNN approaches are compared
for ASR performance prediction. The Regression uses sev-
eral engineered features extracted from the ASR output (POS,
LEX, LM, SIG) while the CNN is based on features learnt
from the ASR output and from the signal only. For the CNN,
we randomly select 10% of the TrainPred data as a Dev set.
10 different model trainings (cross-validation) with 50 epochs
are performed. Training is done with the Adadelta update
rule [25] over shuffled mini-batches. We use MAE as both
loss function and evaluation metric. After training, we take
the model (among 10) that led to the best MAE on Dev set
and report its performance on TestPred. We investigate sev-
eral inputs to the CNN:

� Textual (ASR transcripts) only (EMBED): input ma-
trix has dimension 296x100 (296 is length of longest
ASR hypothesis in our corpus ; 100 is dimension of
word embeddings pre-trained on our large text corpus
of 3.3G words)10,

� Raw signal only (RAW-SIG): models are trained on
six-second speech turns and sampled at 8khz (to avoid
memory issues). Short speech turns (< 6s) are padded
with zeros. Our input has dimension 48000 x 111,

� Spectrogram only (MEL-SPEC): we use same config-
uration as for raw signal ; we have 96-dimensional vec-
tors (each dimension corresponds to a particular mel-
frequency range) extracted every 10ms (analysis win-
dow is 25ms). Our input has a dimension 601x9612,

� MFCC features only: we compute 13 MFCCs every
10ms to provide the CNN network with an input of di-
mension 601x13,

10We use filter window sizes h of [1, 3, 5, 7, 9] with 256 filters per size
11The detailed parameters of the filters are given in Figure 1
12The detailed parameters of the filters are given in Figure 1



� Joint (textual and signal) inputs (EMBED+RAW-
SIG13): in that case, we concatenate last hidden layers
of both textual and signal inputs (dotted lines of Fig-
ure 1).

5.1. Regression (baseline) and CNN performances

The lines Regression of table 2 show results obtained with
combined features14. We can observe that the best perfor-
mance is obtained with POS+LEX+LM features (MAE of
22.01%) while adding the SIG does not really improve the
model (MAE of 21.99%). This inefficiency of SIG features in
regression models was also observed in [5].

Model Input MAE �
Textual features

Regression POS+LEX+LM 22.01 44.16
CNNSoftmax EMBED 21.48 38.91
CNNReLU EMBED 22.30 38.13

Signal features
Regression SIG 25.86 23.36
CNNSoftmax RAW-SIG 25.97 23.61
CNNReLU RAW-SIG 26.90 21.26
CNNSoftmax MEL-SPEC 29.11 19.76
CNNReLU MEL-SPEC 26.07 24.29
CNNSoftmax MFCC 25.52 26.63
CNNReLU MFCC 26.17 25.41

Textual and Signal features
Regression POS+LEX+LM+SIG 21.99 45.82
CNNSoftmax EMBED+RAW-SIG 19.24 46.83
CNNReLU EMBED+RAW-SIG 20.56 45.01
CNNSoftmax EMBED+MEL-SPEC 20.93 40.96
CNNReLU EMBED+MEL-SPEC 20.93 44.38
CNNSoftmax EMBED+MFCC 19.97 44.71
CNNReLU EMBED+MFCC 20.32 45.52

Table 2. Regression vs CNNSoftmax vs CNNReLU evaluated
at utterance level with MAE or � on Testpred

As for the use of textual features only, CNNSoftmax and
CNNReLU are equivalent (better MAE but lower � ) than the
regression model that uses engineered features. CNNSoftmax

shows better performance than CNNReLU . Concerning sig-
nal features only, ASR performance prediction is a difficult
task with all MAE above 25%. However, among the differ-
ent signal inputs to the CNN, simple MFCCs lead to the best
performance both for MAE and � . While the joint use of tex-
tual and signal features did not work for the regression base-
line, the combination of inputs for CNNs lead to improved
results. The best performance is obtained with CNNSoftmax

(EMBED + RAW-SIG) which outperforms a strong regres-
sion baseline (MAE is reduced from 21.99% to 19.24%, while
� is improved from 45.82% to 46.83%), Wilcoxon Signed-

13or EMBED+MEL-SPEC or EMBED+MFCC
14MAE using single POS, LEX, LM and SIG features is respectively

25.95%, 25.78%, 24.19% and 25.86%

rank Test15 confirms that the difference is significant with p-
value of 4e-08.

5.2. Analysis of predicted WERs

Table 3 shows the predicted WERs (at collection level) for
both regression and (best) CNN approaches for different
speaking styles (spontaneous and non spontaneous). Overall,
the predicted WER on non spontaneous (NS) and spontaneous
(S) speech is very good for the CNN approach. WERPred

is at -2.54% on non-spontaneous speech and at -4.84% on
spontaneous speech. On the other hand, while efficient on
non-spontaneous speech, regression fails to predict perfor-
mance (-10,11%) on spontaneous speech.

NS S NS + S
WERREF 21.47 38.83 31.20
WERPred Regression 22.08 28.72 25.82
WERPred CNNSoftmax 18.93 33.99 27.37
#Utterances 3,1k 3,7k 6,8k
#WordsREF 49.8k 63.3k 113,1k

Table 3. Regression vs CNNSoftmax predicted WERs (aver-
aged over all utt.) per speaking style (NS/S) on Testpred

Figure 2 analyzes WER prediction at utterance level16 .
It shows the distribution of speech turns according to their
real or predicted WER. It is clear that CNN prediction allows
to approximate the true WER distribution on Testpred while
regression seems to build a gaussian distribution around the
mean WER observed on training data. It is also remarkable
that the two peaks at WER=0% and WER=100% can be pre-
dicted correctly by our CNN model.

(a) REF (c) Best REG (b) Best CNN

Fig. 2. Distribution of speech turns according to their WER:
(a) real (b) predicted by regression (c) predicted by CNN

6. CONCLUSIONS
This paper presented an evaluation framework for evaluating
ASR performance prediction on unseen broadcast programs.
CNNs were very efficient encoding both textual (ASR tran-
script) and signal to predict WER. Future work will be dedi-
cated to the analysis of signal and text embeddings learnt by
the CNN and their relation to conditioning factors such as
speech style, dialect or noise level.

15http://www.r-tutor.com/elementary-statistics/
non-parametric-methods/wilcoxon-signed-rank-test

16Model outputs available on http://www.lne.fr/
LNE-LIG-WER-Prediction-Corpus

http://www.r-tutor.com/elementary-statistics/non-parametric-methods/wilcoxon-signed-rank-test
http://www.r-tutor.com/elementary-statistics/non-parametric-methods/wilcoxon-signed-rank-test
http://www.lne.fr/LNE-LIG-WER-Prediction-Corpus
http://www.lne.fr/LNE-LIG-WER-Prediction-Corpus
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