Parametric inference for hypoelliptic ergodic diffusions with full observations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Parametric inference for hypoelliptic ergodic diffusions with full observations

Résumé

Multidimensional hypoelliptic diffusions arise naturally in different fields, for example to model neuronal activity. Estimation in those models is complex because of the degenerate structure of the diffusion coefficient. We build a consistent estimator of the drift and variance parameters with the help of a discretized log-likelihood of the continuous process when discrete time observations of both coordinates are available on an interval $T = n\Delta_n$, with $\Delta_n$ the time step between the observations. We discuss the difficulties generated by the hypoellipticity and provide a proof of the consistency and the asymptotic normality of the estimator in the asymptotic setting $T\to\infty$ as $\Delta_n\to 0$. We test our approach numerically on the hypoelliptic FitzHugh-Nagumo model, which describes the firing mechanism of a neuron.
Fichier principal
Vignette du fichier
Contrast_HAL_V3.pdf (711.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01704010 , version 1 (08-02-2018)
hal-01704010 , version 2 (11-01-2019)
hal-01704010 , version 3 (24-06-2020)
hal-01704010 , version 4 (15-07-2020)

Identifiants

Citer

Anna Melnykova. Parametric inference for hypoelliptic ergodic diffusions with full observations. 2020. ⟨hal-01704010v3⟩
437 Consultations
369 Téléchargements

Altmetric

Partager

More