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Abstract

Multidimensional hypoelliptic diffusions arise naturally in different fields, for ex-
ample to model neuronal activity. Estimation in those models is complex because of
the degenerate structure of the diffusion coefficient. We build a consistent estimator
of the drift and variance parameters with the help of a discretized log-likelihood of the
continuous process when discrete time observations of both coordinates are available
on an interval T = n∆n, with ∆n the time step between the observations. We discuss
the difficulties generated by the hypoellipticity and provide a proof of the consistency
and the asymptotic normality of the estimator in the asymptotic setting T → ∞ as
∆n → 0. We test our approach numerically on the hypoelliptic FitzHugh-Nagumo
model, which describes the firing mechanism of a neuron.

Keywords: parametric inference, hypoelliptic diffusions, FitzHugh-Nagumo model,
contrast estimator

1 Introduction

Hypoelliptic diffusions naturally occur in various applications, most notably in neuro-
science, molecular physics and mathematical finance. In particular, neuronal activity of
one single neuron (Höpfner et al., 2016, Leon and Samson, 2018), or a large population
of neurons (Ditlevsen and Löcherbach, 2017, Ableidinger et al., 2017), or exotic models of
option pricing (Malliavin and Thalmaier, 2006) are described by hypoelliptic diffusions.

The main difference between classical (or elliptic) and hypoelliptic systems of stochastic
differential equations (SDE) is that in the latter case the rank of the diffusion matrix is lower
than the dimension of the system itself. More formally, hypoellipticity can be explained in
the following way: though the covariance matrix is singular, smooth transition density with
respect to the Lebesgue measure still exists. That is the case when the noise is propagated
to all the coordinates through the drift term.
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Hypoelliptic SDEs present a number of extra challenges in comparison to elliptic sys-
tems. The most important problem is the degenerate diffusion coefficient. As the explicit
form of the transition density of an SDE is often unknown, parametric inference is usually
based on discrete approximation with a piece-wise Gaussian processes (see, for example
Kessler (1997)). But in the hypoelliptic case this approach cannot be applied directly
because the covariance matrix of the approximated transition density is not invertible,
since its rank is smaller than the dimension of the system. The second problem is that
each coordinate has a variance of different order. It needs to be taken into account when
constructing the discretization scheme for approximating the density.

Now let us be more specific. Consider a two-dimensional system of stochastic differential
equations of the form:{

dXt = a1(Xt, Yt; θ
(1))dt

dYt = a2(Xt, Yt; θ
(2))dt+ b(Xt, Yt;σ)dWt,

(1)

where (Xt, Yt)
T ∈ R×R, (a1(Xt, Yt; θ

(1)), a2(Xt, Yt; θ
(2)))T is the drift term, (0, b(Xt, Yt;σ))T

is the diffusion coefficient, (dWt) is a standard Brownian motion defined on some probabil-
ity space (Ω,Ft,P), where Ft contains the information about all states of the process until
time t. (θ(1), θ(2), σ) is the vector of the unknown parameters, taken from some compact set
Θ1 ×Θ2 ×Ξ, and (x0, y0) is a bounded F0-measurable random variable, thus independent
on (Xt, Yt).

The goal of this paper is to estimate the parameters of (1) from discrete observations
of both coordinates X and Y . It is achieved in two steps: first, we consider a discretization
scheme in order to approximate the transition density of the continuous process. Then we
propose an estimation technique which maximizes the likelihood function of the discrete
approximate model in the asymptotic setting T = n∆n →∞ and ∆n → 0 as n→∞. Let
us discuss the solutions proposed by other authors for hypoelliptic systems.

Several works treat the parametric inference problem for a particular case of system (1),
the class of stochastic Damping Hamiltonian systems, also known as Langevin equations
(Gardiner and Collett, 1985). These hypoelliptic models arise as the stochastic expansion
of 2-dimensional deterministic dynamical systems — for example, the Van der Pol oscillator
(Van der Pol, 1920) perturbed by noise. They are defined as the solution of the following
SDE: {

dXt = Ytdt

dYt = a2(Xt, Yt; θ)dt+ b(Xt, Yt;σ)dWt.
(2)

The particular case of Hamiltonian systems with b(Xt, Yt;σ) ≡ σ and a2(Xt, Yt; θ) =
g1(Xt; θ)Xt+g2(Xt; θ)Yt is considered in Ozaki (1989), where the link between the continuous-
time solution of (2) and the corresponding discrete model is obtained with the so-called
local linearization scheme. The idea of this scheme is the following: for a SDE with a
non-constant drift and a constant variance, its solution can be interval-wise approximated
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by the solution of a system with a linear drift (see Biscay et al. (1996), Ozaki (2012),
Jimenez and Carbonell (2015)). This scheme allows to construct a quasi Maximum Likeli-
hood Estimator. Consistency of the estimator based on the local linearization scheme for
Hamiltonian SDEs is proven in León et al. (2018). Pokern et al. (2007) attempt to solve the
problem of the non-invertibility of the covariance matrix for the particular case of (2) with
a constant variance with the help of Itô-Taylor expansion of the transition density. The
parameters are estimated with the Gibbs sampler based on the discretized model with the

noise propagated to the first coordinate with order ∆
3
2
n . This approach allows to estimate

the variance coefficient, but it is not suitable for estimating the parameters of the drift
term. In Samson and Thieullen (2012) it is shown that a consistent estimator for fully and
partially observed data can be constructed using only the discrete approximation of the
second equation of system (2). This method can be used in practice even for more general
models, on condition that the system (1) can be converted to the simpler form (2). How-
ever, this transformation of the observations sampled from the continuous model (1) often
requires the prior knowledge of the parameters involved in the first equation which is often
unrealistic. The particular case of (1), when b(Xt, Yt;σ) ≡ σ and the drift term is linear
and thus the transition density is known explicitly, is treated in Le-Breton and Musiela
(1985). A consistent maximum likelihood estimator is then constructed in two steps —
first, a covariance matrix of the process is estimated from the available continuous-time
observations, and then it is used for computing the parameters of the drift term. The
resulting estimator is strongly consistent on a fixed interval of time [0, T ]. Few works are
devoted to the non-parametric estimation of the drift and the variance terms (Cattiaux
et al., 2014, 2016).

To the best of our knowledge for systems (1) the only reference is Ditlevsen and Samson
(2017). They construct a consistent estimator using a discretization scheme based on a
Itô-Taylor expansion. To take into account different variance orders in each variable they
construct two separate estimators for the rough and the smooth variables. However, this
approach has several limitations. The first problem consists in minimizing two different
criteria simultaneously, which is not very natural from a numerical point of view. The
second problem is that in order to prove the convergence of the estimator for each variable,
the parameters in the other variable need to be fixed to their true values.

In this paper, we want to avoid these limitations by proposing a single estimation crite-
ria, able to estimate simultaneously all the parameters. This allows to prove the theoretical
convergence of the vector of estimators, without any assumption on the knowledge of a set
of parameters. Moreover, we illustrate that from a numerical point of view, the estima-
tion of the first coordinate parameters are less biased than those obtained with approach
Ditlevsen and Samson (2017). More precisely, we develop a new estimation method, ad-
justing the local linearization scheme described in Ozaki (1989) developed for the models
of type (2) to the more general class of SDEs (1). Under the hypoellipticity assumption
this scheme propagates the noise to both coordinates of the system and allows to obtain an
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invertible covariance matrix. We start with describing the discretization scheme, proving
the rate of convergence even when only one part of the parameters is fixed at the true
value. Then we propose a contrast estimator based on the discretized log-likelihood, esti-
mating the parameters included in the drift and diffusion coefficient simultaneously. Then
we study the convergence of the scheme and prove the consistency and the asymptotic nor-
mality of the proposed estimator based on the 2-dimensional contrast. To the best of our
knowledge, the proof of this consistency is new in the literature. We finish with numerical
experiments, testing the proposed approach on the hypoelliptic FitzHugh-Nagumo model
and compare it to the other estimators.

This paper is organized as follows: Section 2 presents the model and assumptions.
Discrete model is introduced in Section 3. The estimators are studied in Section 4 and
illustrated numerically in Section 5. We close with Section 6, devoted to conclusions and
discussions. Formal proofs are gathered in Appendix.

2 Models and assumptions

We assume that both variables of (1) are discretely observed at equally spaced periods of
time ∆n on the time interval [0, T ]. The vector of observations at time i∆n is denoted by
Zi = (Xi, Yi)

T , where Zi is the value of the process at time i∆n, i ∈ 0 . . . n = T
∆n

. We
further assume that it is possible to draw a sufficiently large and accurate sample of data,
i.e that T = n∆n → ∞, with the partition size ∆n → 0 as n → ∞. Let us also introduce
the vector notations:

dZt = A(Zt; θ)dt+B(Zt;σ)dWt, Z0 = z0, t ∈ [0, T ] (3)

where Zt = (Xt, Yt)
T , Wt is a one-dimensional Brownian motion defined on the filtered

probability space, z0 = (x0, y0), and θ = (θ(1), θ(2)) is the vector of drift parameters.
Matrices A and B represent, respectively, the drift and the diffusion coefficient, that is
A(Zt; θ) = (a1(Xt, Yt; θ

(1)), a2(Xt, Yt; θ
(2)))T and

B(Zt;σ) =

(
0 0
0 b(Zt;σ)

)
. (4)

Throughout the paper we use the following abbreviations for the partial derivatives (unless

the arguments need to be specified): ∂xif ≡
∂f
∂xi

(x1, . . . , xp), ∂
2
xi,xj ≡

∂2f
∂xi∂xj

(x1, . . . , xp)∀i, j ∈
[1, p]. We suppress the dependency on the parameters, when their values are clear from the
context, otherwise additional indexes are introduced. True values of the parameters are

denoted by θ
(1)
0 , θ

(2)
0 , σ0 and P0 is the probability P

θ
(1)
0 ,θ

(2)
0 ,σ0

. We also refer to the variable

Yt which is directly driven by the Gaussian noise as ”rough”, and to Xt as ”smooth”.
We are working under the following set of assumptions:
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A1 The functions a1(Zi; θ
(1)) and a2(Zi; θ

(2)) have bounded partial derivatives of every
order, uniformly in θ. Furthermore ∂ya1 6= 0 ∀(x, y) ∈ R2.

A2 Global Lipschitz and linear growth conditions. ∀t, s ∈ [0,∞) ∃Kθ s.t.:

‖A(Zt; θ)−A(Zs; θ)‖+ ‖B(Zt;σ)−B(Zs;σ)‖ ≤ Kθ‖Zt − Zs‖
‖A(Zt; θ)‖2 + ‖B(Zt;σ)‖2 ≤ K2

θ (1 + ‖Zt‖2),

where ‖ · ‖ is the standard Euclidean norm.

A3 The process (Zt)t≥0 is ergodic and there exists a unique invariant probability measure
ν0 with finite moments of any order.

A4 Both functions a1(Zt; θ
(1)) and a2(Zt; θ

(2)) are identifiable, that is ak(Zt; θ
(k)) ≡

ak(Zt; θ
(k)
0 )⇔ θ(k) = θ

(k)
0 . The diffusion coefficient is assumed to be strictly positive

with a non-zero derivative with respect to σ, that is b(Zt;σ) > 0, ∂σb(Zt;σ) 6= 0 ∀t.

Further, we introduce a rather restrictive assumption, which is required for the study
of the consistency and asymptotic normality of the estimator for the parameters of the
rough variable.

A5 The fuction a1(Zt; θ
(1)) can be represented in the following form:

a1(z; θ(1)) = f(z) + (θ(1))T g(x), (5)

where g(x) is a vector-valued function of the same dimension as vector θ(1), f(z)
is a continuous function. Functions f(z) and g(x) are such that the assumptions
(A1)-(A4) hold everywhere.

Assumption (A1) ensures that the system is hypoelliptic in the sense of the stochastic
calculus of variations (Nualart, 2006, Malliavin and Thalmaier, 2006). In order to prove
it we first write the coefficients of the system (3) as two vector fields, converting (3) from
the Itô to the Stratonovich form:

A0(x, y) =

(
a1(x, y; θ(1))

a2(x, y; θ(2))− 1
2b(x, y;σ)∂yb(x, y;σ)

)
A1(x, y) =

(
0

b(x, y;σ)

)
.

Then their Lie bracket is equal to

[A0, A1] =

(
∂ya1(x, y; θ(1))

∂xa2(x, y; θ(2))− 1
2∂xb(x, y;σ)∂2

xyb(x, y;σ)

)
.

By (A1) the first element of this vector is not equal to 0, thus we conclude that A1 and
[A0, A1] generate R2. That means that the weak Hörmander condition is satisfied and as a
result the transition density for the system (3) exists, though not necessarily has an explicit
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form. (A2) is a sufficient condition to ensure the existence and uniqueness in law of the
strong solution of system (3), moreover this solution is Feller (Revuz and Yor, 2013). (A4)
is a standard condition which is needed to prove the consistency of the estimator. (A3)
ensures that we can apply the weak ergodic theorem. That is, for any continuous function
f of polynomial growth at infinity:

1

T

∫ T

0
f(Zs)ds −→

T→∞
ν0(f) a.s.,

where ν0(·) is the stationary density of model (3). By choosing this notation we highlight
that ν0(·) := ν

θ
(1)
0 ,θ

(2)
0 ,σ0

(·).
We do not investigate the conditions under which the process (Zt)t≥0 is ergodic as it is

not the main focus of this work. Ergodicity of the stochastic damping Hamiltonian system
(2) is studied in Wu (2001). Conditions for a wider class of hypoelliptic SDEs can be
found in Roynette (1975), Mattingly et al. (2002), Arnold and Kliemann (1987). It is also
important to know that if the process (Zt)t≥0 is ergodic then its sampling {Zi}, i ∈ [0, n]
is also ergodic (Genon-Catalot et al., 2000).

3 Discrete model

In this section we introduce a Local Linearization scheme, which approximates the solution
Zt of (3) by the solution of a piece-wise linear autonomous equation. This solution has a
piece-wise Gaussian density. We use the approximated solution to construct a discretization
scheme and study its properties.

3.1 Approximation with the Local Linearization scheme

Local Linearization refers to the family of approximation schemes studied by different
authors (Biscay et al., 1996, Ozaki, 2012, Jimenez and Carbonell, 2015). The idea consists
in approximating the solution of a general SDE by the solution of an autonomous linear
SDE, which can be solved explicitly. Before we proceed to the derivation of the scheme,
let us introduce additional notations. The Jacobian of the drift vector A(z; θ) is given by(

∂xa1(x, y; θ(1)) ∂ya1(x, y; θ(1))

∂xa2(x, y; θ(2)) ∂ya2(x, y; θ(2))

)
=: J(z; θ). (6)

We also define the Hessian matrix of the j−th coordinate (j = 1, 2) in the drift vector
A(Zt; θ) as: (

∂2
xxaj(x, y; θ(j)) ∂2

xyaj(x, y; θ(j))

∂2
yxaj(x, y; θ(j)) ∂2

yyaj(x, y; θ(j))

)
=: Haj (z; θ

(j)). (7)
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For further use we also compute the following operator, which corresponds to the cross-term
between the diffusion and drift in Itô-Taylor-expansion for each coordinate:

Tr
[
BT (z;σ)Haj (z; θ

(j))B(z;σ)
]

= b2(z;σ)∂2
yyaj(z; θ

(j)).

We now consider the Itô-Taylor expansion of the drift term on the interval t ∈ [i∆n, (i +
1)∆n]:

A(zt; θ) ≈ A(zi; θ) + J(zi; θ)(zt − zi) +
(t− i∆n)

2
b2(zi;σ)∂2

yyA(zi; θ),

where ∂2
yyA(z; θ) := (∂2

yya1(z; θ(1)), ∂2
yya2(z; θ(2)))T .

This transformation allows us to find an approximate solution of (3). We introduce
a new process (Z̃t)t∈[i∆n,(i+1)∆n] which is the solution of the following linear autonomous
equation:

dZ̃t =

(
A(Z̃i; θ) + J(Z̃i; θ)(Z̃t − Z̃i) +

1

2
b2(Z̃i;σ)∂2

yyA(Z̃i; θ)(t− i∆n)

)
dt+B(Z̃i; θ)dWt.

The solution for the above equation is given for t ∈ [i∆n, (i+ 1)∆n] by

Z̃t = Z̃i+

∫ t

i∆n

eJ(Z̃i;θ)(t−s)
(
A(Z̃i; θ)− J(Z̃i; θ)Z̃i +

1

2
b2(Z̃i;σ)∂2

yyA(Z̃i; θ)(s− i∆n)

)
ds+∫ t

i∆n

eJ(Z̃i;θ)(s−i∆n)B(Z̃i; θ)dWs. (8)

Note that conditionally on Z̃i, Z̃i+1 is a normal variable, whose expectation and variance
are given, respectively, by:

E
[
Z̃i+1|Z̃i

]
= Z̃i +

∫ (i+1)∆n

i∆n

eJ(Z̃i;θ)((i+1)∆n−s)
(
A(Z̃i; θ)− J(Z̃i; θ)Z̃i +

1

2
b2(Z̃i;σ)∂2

yyA(Z̃i; θ)(s− i∆n)

)
ds ,

(9)

Σ
[
Z̃i+1|Z̃i

]
= E

(∫ (i+1)∆n

i∆n

eJ(Z̃i;θ)((i+1)∆n−s)B(Z̃i;σ)dWs

)(∫ (i+1)∆n

i∆n

eJ(Z̃i;θ)((i+1)∆n−s)B(Z̃i;σ)dWs

)T .
(10)

The approximation of the solution of (3) (Z̃i)i≥0 is then defined recursively as a sum of
random variables with the mean and variance given by (9) and (10). However, these ex-
pressions are not convenient for the numerical implementation because of the integrals and
the matrix exponents. One possible solution is to rely on numerical integration algorithms
when implementing the scheme. But we propose to simplify (9)-(10) in order to obtain the
final scheme which is easier to implement and analyze from the theoretical point of view.
We use the following propositions, whose proofs are postponed to appendix:
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Proposition 1. The component-wise drift approximation for (9) is given by:

E
[
Z̃i+1|Z̃i

]
=

(
Ā1

Ā2

)
+O(∆3

n),

where Ā1 and Ā2 are given as follows:

Ā1(Z̃i; θ
(1), θ(2), σ) := X̃i + ∆na1(Z̃i; θ

(1))+

∆2
n

2

(
∂a1(Z̃i; θ

(1))

∂x
a1(Z̃i; θ

(1)) +
∂a1(Z̃i; θ

(1))

∂y
a2(Z̃i; θ

(2))

)
+

∆2
n

4
b2(Z̃i;σ)∂2

yya1(Z̃; θ(1))

Ā2(Z̃i; θ
(1), θ(2), σ) := Ỹi + ∆na2(Z̃i; θ

(2))+

∆2
n

2

(
∂a2(Z̃i; θ

(2))

∂x
a1(Z̃i; θ

(1)) +
∂a2(Z̃i; θ

(2))

∂y
a2(Z̃i; θ

(2))

)
+

∆2
n

4
b2(Z̃i;σ)∂2

yya2(Z̃; θ(2)).

(11)

Proposition 2. The matrix Σ[Z̃i+1|Z̃i] defined in (10) is approximated by:

b2(Z̃i;σ)

(
(∂ya1)2 ∆3

n
3 (∂ya1)∆2

n
2 + (∂ya1)(∂ya2)∆3

n
3

(∂ya1)∆2
n

2 + (∂ya1)(∂ya2)∆3
n

3 ∆n + (∂ya2)∆2
n

2 + (∂ya2)2 ∆3
n

3

)
+O(∆4

n), (12)

where the derivatives are computed at time i∆n.

Both from the theoretical and computational points of view, it is enough to use only
the higher-order terms of (12). Thus, we define:

Σ∆n(Z̃i+1; θ, σ2) := b2(Z̃i;σ)

(∂ya1(Z̃i; θ
(1))
)2

∆3
n

3 ∂ya1(Z̃i; θ
(1))∆2

n
2

∂ya1(Z̃i; θ
(1))∆2

n
2 ∆n

 . (13)

The inverse of (13) is defined by:

Σ−1
∆n

(Z̃i+1; θ, σ2) =
1

b2(Z̃i;σ)

 12

(∂ya1(Z̃i;θ(1)))
2
∆3
n

− 6
∂ya1(Z̃i;θ(1))∆2

n

− 6
∂ya1(Z̃i;θ(1))∆2

n

4
∆n

 . (14)

Finally, the element-wise approximation of Z̃i+1 conditionally on Z̃i is written as:

X̃i+1 = Ā1(Z̃i; θ
(1), θ(2), σ) + ξ1,i

Ỹi+1 = Ā2(Z̃i; θ
(1), θ(2), σ) + ξ2,i,

(15)
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where (ξ1,i) and (ξ2,i) are normal random sequences with zero means, independent in i,
such that the covariance matrix of vector (ξ1,i, ξ2,i) is given by (13). Numerically they
can be simulated by decomposing the matrix (13) with the help of the LU or Cholesky
decomposition, i.e. any matrix B̄(Zi; θ, σ

2) such that B̄B̄T = Σ(Zi; θ, σ
2), and multiply

it by a 2-dimensional vector whose entries are independent standard normal variables.
The chosen method of the decomposition does not affect the theoretical properties of the
scheme. Note that the approximated diffusion term now depends on the parameters of the
drift term. It is proven that the approximated solution Z̃t converges weakly to the true
solution Zt with order 2 (see Theorem 2 in Jimenez and Carbonell (2015)).

Now we want to study component-wise the moments of the obtained discretization,
build on the observations of the process (Zt)t≥0. We will rely on the result of the following
Proposition (recall that the true value of the vector of parameters is denoted by θ0):

Proposition 3 (Moments of the discretized process). The following holds:

E
[
Xi+1 − Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ0)|Zi

]
= O(∆3

n)

E
[
Yi+1 − Ā2(Zi; θ

(1)
0 , θ

(2)
0 , σ0)|Zi

]
= O(∆3

n)

E

[(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ0)

)2
|Zi
]

= (∂ya1)2

θ
(1)
0

∆3
n

3
b2(Zi;σ0) +O(∆4

n)

E

[(
Yi+1 − Ā2(Zi; θ

(1)
0 , θ

(2)
0 , σ0)

)2
|Zi
]

= ∆nb
2(Zi;σ0) +O(∆2

n)

E
[(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ0)

)(
Yi+1 − Ā2(Zi; θ

(1)
0 , θ

(2)
0 , σ0)

)
|Zi
]

= (∂ya1)
θ
(1)
0

∆2
n

2
b2(Zi;σ0) +O(∆3

n),

where E is taken under P0 and the derivatives ∂ya1 are computed at time i∆n.

Proof. The moments of the Feller process can be approximated by its generator (Kloeden
et al., 2003). That is, for a sufficiently smooth and integrable function f : R×R→ R:

E(f(Zt+∆n)|Zt = z) =

j∑
i=0

∆i
n

i!
Lif(z) +O(∆j+1

n ), (16)

where Lif(z) is the i times iterated generator of model (3) given by

Lf(z) = (∂zf(z))A(z) +
1

2
52
B f(z),

where 52
B(·) = b2(z;σ) ∂

2

∂y2 (·) is a weighted Laplace type operator. Since the process is

approximated by (11), it coincides with (16) up to the terms of order ∆2
n.

Further, we need an extension of Proposition 3 which gives the order of moments of
the increments of the discrete process when parameters are fixed to their true values only

9



partly. By doing that, we lose one order of accuracy in first two bounds, but the results for
the variance remain unchanged. Note however that we cannot obtain the last three terms

unless θ(1) = θ
(1)
0 . This is the main technical challenge to overcome when constructing an

estimator.

Proposition 4. The following holds:

(i) E
[
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)|Zi

]
= O(∆2

n)

(ii) E
[
Yi+1 − Ā2(Zi; θ

(1), θ
(2)
0 , σ)|Zi

]
= O(∆2

n)

(iii) E

[(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)2
|Zi
]

= (∂ya1)2

θ
(1)
0

∆3
n

3
b2(Zi;σ) +O(∆4

n)

(iv) E
[
(Yi+1 − Yi)2 |Zi

]
= ∆nb

2(Zi;σ) +O(∆2
n)

(v) E
[(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(Yi+1 − Yi) |Zi

]
= (∂ya1)

θ
(1)
0

∆2
n

2
b2(Zi;σ) +O(∆3

n),

where E is taken under P0 and the derivatives ∂ya1 are computed at time i∆n.

Proof. We show the result for (i) and (iii). Start with (i):

Xi+1 − Ā1(Zi; θ
(1)
0 , θ(2), σ) = Xi+1 − Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ0)+

Ā1(Zi; θ
(1)
0 , θ

(2)
0 , σ0)− Ā1(Zi; θ

(1)
0 , θ(2), σ).

The difference E
[
Xi+1 − Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ0)|Zi

]
= O(∆3

n) by Proposition 3 and the as-

sumption (A2). It remains to consider the second part:

Ā1(Zi; θ
(1)
0 , θ

(2)
0 , σ0)− Ā1(Zi; θ

(1)
0 , θ(2), σ) =

∆2
n

2

(
∂a1(Zi; θ

(1)
0 )

∂y

(
a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2))
)

+
∂2
yya1(Z; θ

(1)
0 )

2

(
b2(Zi;σ0)− b2(Zi;σ)

))
.

Thus, E
[
Xi+1 − Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ0)|Zi

]
= O(∆2

n). Let us now consider (iii):

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)2
=
(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ0)

)2
+(

Ā1(Zi; θ
(1)
0 , θ

(2)
0 , σ0)− Ā1(Zi; θ

(1)
0 , θ(2), σ)

)2
+

2
(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ0)

)(
Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ0)− Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
.
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Again, by Proposition 3 and previous computations we have the following:

E

[(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ0)

)2
|Zi
]

= (∂ya1)2
θ0

∆3
n

3
b2(Zi;σ) +O(∆4

n)

E

[(
Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ0)− Ā1(Zi; θ

(1)
0 , θ(2), σ)

)2
|Zi
]

= O(∆4
n)

E
[
2
(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ0)

)(
Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ0)− Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
|Zi
]

= O(∆5
n).

The rest of proofs follows the same pattern.

4 Parameter estimation

In this section we propose a contrast estimator based on the pseudo-likelihood function
and prove its consistency and asymptotic normality. Then we discuss other already known
results for the linear homogeneous SDEs (least squares estimator in particular) and show
how it works in the general case.

4.1 Contrast estimator

Let us introduce the so-called contrast function for the system (3). This function is defined
as −2 times the log-likelihood of the discretized model (Florens-Zmirou, 1989, Kessler,
1997):

Ln,∆n(θ, σ2;Z0:n) =
1

2

n−1∑
i=0

(Zi+1 − Ā(Zi; θ))
TΣ−1

∆n
(Zi; θ, σ

2)(Zi+1 − Ā(Zi; θ))

+
n−1∑
i=0

log det(Σ∆n(Zi; θ, σ
2)), (17)

where the inverse matrix Σ−1
∆n

is given by (14). Then the local linearization (LL) estimator
is defined as:

(θ̂n,∆n , σ̂
2
n,∆n

) = arg min
θ,σ2

Ln,∆n(θ, σ2;Z0:n), (18)

where θ̂n,∆n = θ̂
(1)
n,∆n

, θ̂
(2)
n,∆n

.
Before proceeding to the proofs, let us explain how the contrast estimator works in the

classical elliptic setting and give a roadmap for the proofs of consistency and asymptotic
normality of the estimator (18), following Kessler (1997). The first notable difference
between the estimator (18) and the elliptic case is that in the elliptic case the estimation
of the drift and the variance parameters can be separated. For example, the contrast
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estimator for a 1-dimensional SDE discretized with the Euler-Maruyama scheme is defined
as follows:(

θ̂, σ̂2
)

= arg min
θ,σ2

n∑
i=1

(
1

2

(Xi+1 −Xi −∆na(Xi; θ))
2

∆nb2(Xi;σ)
+ log b2(Xi;σ)

)
, (19)

where a(x; θ) is a drift term. Here the estimation of the parameter θ is independent of
the value of σ, because the minimization of the criteria boils down to minimizing the ex-
pression (Xi+1 −Xi −∆na(Xi; θ))

2 and θ̂ converges to θ0 with a rate
√
n∆n. For the

variance term, the estimator of σ converges independently of the value of θ, because
(Xi+1 −Xi −∆na(Xi; θ))

2 is of order ∆n for any θ and it is enough to ensure the con-
vergence of the variance parameter. The convergence rate for the variance is

√
n. This

property is also shared by the estimator for the Hamiltonian SDE proposed by Samson
and Thieullen (2012).

In a general hypoelliptic setting the parametric inference is more complicated. First,
the drift parameter θ is contained in the covariance matrix Σ∆n . Second, the variance of
the first variable is of order ∆3

n, while for an arbitrary chosen vector of parameters θ(1)

the expression (Xi+1 − Ā1(Zi; θ
(1), θ(2), σ))2 is of order ∆2

n. It is not enough to show the
convergence of the diffusion parameter in a standard way. From the practical point of view
it means that if we launch the minimization algorithm on (18) only with respect to θ(2)

and σ2, it will not converge to the true value. The inverse, however, is possible: using the
Proposition 4 the consistency result for θ̂(1) can be obtained without fixing θ(2) and σ.

Ditlevsen and Samson (2017) propose to overcome the problem of dependency between
the estimators by separating the estimation of the rough and smooth variables. They
introduce two separate contrasts, based on the approximate marginal distribution on each
variable.

θ̂(1) = arg min
θ(1)

n−1∑
i=1

3

2

(
Xi+1 − Ā1(Zi; θ

(1), θ
(2)
0 , σ0)

)2

∆3
n

(
∂ya1(Zi; θ(1))

)2
b2(Zi;σ0)

+

log
(
∂ya1(Zi; θ

(1))b(Zi;σ0)
)2
)
. (20)

(
θ̂(2), σ̂2

)
= arg min

θ(2),σ2

n−1∑
i=1

1

2


(
Yi+1 − Ā2(Zi; θ

(1)
0 , θ(2), σ)

)2

∆nb2(Zi;σ)
+ log b2(Zi;σ)

 . (21)

The estimation is then conducted as follows: first, the parameters of the first equation

are estimated from (20). Estimator (20) is shown to converge with rate
√

n
∆n

. Since the

parameters of the second equation are contained only in higher order terms, they are shown
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to have no impact on the convergence of the estimator. We are able to show that thanks
to the Proposition 4. Then, the obtained value θ̂(1) is plugged in (21). The contrast is
minimized with respect to σ and θ(2). It is proven that the estimator θ̂(2) converges with the
rate

√
n∆n and σ̂2 — with a rate

√
n. The rates are identical to the rates of convergence

obtained in Kessler (1997) for elliptic systems. The weak point of the scheme is that in
order to prove the convergence of the estimator (21) the value of θ(1) needs to be fixed to

θ
(1)
0 .

We choose a different approach and focus on the 2-dimensional contrast without split-
ting the numerical procedure in two parts. We still need to take into account the different
rates of convergence and the eventual dependencies between the parameters. Thus, the
proof of the consistency and asymptotic normality is splitted in two principal steps. The

first step is a proof of the consistency and the convergence rate for θ̂
(1)
n,∆n

(Theorem 1).
Except for the unusual convergence rate, the proof repeats the standard techniques from
Kessler (1997) and Ditlevsen and Samson (2017), adapted to the unknown value of θ(2).
The second step, however, is more intricate. As in Ditlevsen and Samson (2017), the es-
timators for θ(2) and σ2 do not converge for an arbitrary θ(1). However, we prove that

the consistency and the asymptotic normality still hold for θ̂
(2)
n,∆n

and σ̂2
n,∆n

, because the

sequence of estimators θ̂
(1)
n,∆n

is tight and converges with rates proven in Theorem 1. It

is proven at the cost of an additional assumption (A5) on the function a1(Zt; θ
(1)) in the

drift term.
We begin the study from the following Lemma, on which the consistency of θ̂(1) crucially

relies:

Lemma 1. Under the assumptions (A1)-(A4), and assuming ∆n → 0 and n∆n →∞, the
following holds:

lim
n→∞,∆n→0

∆n

n

[
Ln,∆n(θ(1), θ(2), σ2;Z0:n)− Ln,∆n(θ

(1)
0 , θ(2), σ2;Z0:n)

]
P0−→

6

∫
(a1(z; θ

(1)
0 )− a1(z; θ(1)))2

b2(z;σ)(∂ya1)2
θ

ν0(dz).

Proof is postponed to Appendix. On the next step we obtain the consistency and the
asymptotic normality of (18) with respect to θ(1):

Theorem 1. Under the assumptions (A1)-(A5), and assuming ∆n → 0, n∆n → ∞ and
n∆2

n → 0, the following holds:

θ̂
(1)
n,∆n

P0−→ θ
(1)
0 ,

13



√
n

∆n
(θ̂

(1)
n,∆n

− θ(1)
0 )

D−→

N

(
0, 3

(∫
(∂θ(1)a1)(∂θ(1)a1)T

b2(z;σ)(∂ya1)
ν0(dz)

)−1(∫
b2(z;σ0)

b4(z;σ)
(∂θ(1)a1)(∂θ(1)a1)T

(
1 +

1

(∂ya1)2

)
ν0(dz)

))
,

where ∂xa1 is a simplified notation for ∂xa1(z; θ
(1)
0 )

The asymptotic variance of the estimator slightly differs from the one obtained in
Ditlevsen and Samson (2017). It is because the 2-dimensional estimator contains the
cross-terms of type (Xi+1 − Ā1(Zi; θ

(1), θ(2), σ))(Yi+1 − Ā2(Zi; θ
(1), θ(2), σ)), not taken into

account if the estimator is splitted in two separate contrasts for rough and smooth variables.
The speed of convergence, however, stays the same. Notice also that the assumption (A5)
is not used for Lemma 1, on which proof of consistency relies. However, it is needed for the
asymptotic normality. However, we do not need θ(2) and σ2 to be known, on the contrary
to Ditlevsen and Samson (2017).

The idea of the proof of consistency for the diffusion and the rough term parameters
follows Gloter and Sørensen (2009). Since we are working in a compact set, we can always

find a sequence of estimators θ̂
(1)
n,∆n

such that the sequence (θ̂
(1)
n,∆n

− θ(1)
0 ) is tight. Then

we use the tightness in combination with the rate of convergence obtained in Theorem 1
and the continuous mapping theorem for proving the consistency of the remaining terms
in a standard way. On this stage we need an additional assumption (A5). The reason
for that is when the parameter θ(1) is included in the derivative ∂ya1, this parameter is
present both in the drift and the variance term, which substantially complicates the study.
It is rather restrictive, but the idea of the proof can be reused for a more general case (for
example, under the condition of Lipschitz continuity with respect to parameter θ(1)) at the
cost of additional technicalities, which are omitted in this paper. The consistency follows
from the following Lemmas (proofs are postponed to Appendix):

Lemma 2. Under assumptions (A1)-(A5), and assuming ∆n → 0 and n∆n → ∞, the
following holds:

lim
n→∞,∆n→0

1

n∆n

[
Ln,∆n(θ̂

(1)
n,∆n

, θ(2), σ2;Z0:n)− Ln,∆n(θ̂
(1)
n,∆n

, θ
(2)
0 , σ2;Z0:n)

]
P0−→

2

∫
(a2(z; θ(2))− a2(z; θ

(2)
0 ))2

b2(z;σ)
ν0(dz)

Lemma 3. Under assumptions (A1)-(A5), and assuming ∆n → 0 while n∆n → ∞, the
following holds:

1

n
Ln,∆n(θ̂

(1)
n,∆n

, θ(2), σ2;Z0:n)
P0−→

∫ (
b2(z;σ0)

b2(z;σ)
+ log b2(z;σ)

)
ν0(dz)
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Theorem 2. Under assumptions (A1)-(A5), and assuming ∆n → 0, n∆n → ∞ and
n∆2

n → 0 the following holds:

θ̂
(2)
n,∆n

P0−→ θ
(2)
0 , σ̂n,∆n

P0−→ σ0

and

√
n∆n(θ̂

(2)
n,∆n

− θ(2)
0 )

D−→ N

0,

(∫
(∂θ(2)a2(z; θ

(2)
0 ))(∂θ(2)a2(z; θ

(2)
0 ))T

b2(z, σ)
ν0(dz)

)−1


√
n(σ̂n,∆n − σ0)

D−→ N

(
0, 2

(∫
(∂σb(z, σ0))(∂σb(z, σ0))T

b2(z, σ0)
ν0(dz)

)−1
)
.

The obtained rates coincide with the rates in Ditlevsen and Samson (2017), but with
the advantage that we avoid fixing any of the parameters to their true value, instead we

work with the estimated sequence θ̂
(1)
n,∆n

.

4.2 Least squares estimator

For certain applications it is natural to split the estimation of the parameters in the dif-
fusion coefficient and the drift term (see, for example, Le-Breton and Musiela (1985)).
First, it reduces the dimension of the optimization problem, and thus spares the computa-
tional cost. Second, it is easier to generalize the drift-based least square estimator to the
high-dimensional hypoelliptic systems, when the approximation of the diffusion matrix is
difficult to compute. The idea is to compute the least square estimator of the differences
between the discrete observations of (Zt)t≥0 and the expectation of this process computed
with the LL scheme. For system (3) however we should be careful about the order of each
difference. In order for the estimator to converge properly we need to renormalize the
expression. We do that as follows:

θ̂LSEn,∆n
= arg min

θ
LLSEn,∆n

(θ;Z0:n), (22)

where

LLSEn,∆n
(θ;Z0:n) =

arg min
θ(1)

∑n−1
i=0

(Xi+1−Ā1(Zi;θ
(1),θ(2),σ))

2

∆3
n

arg min
θ(2)

∑n−1
i=0

(Yi+1−Ā2(Zi;θ
(1),θ(2),σ))

2

∆n


where Āj(Zi; θ

(1), θ(2), σ), j = 1, 2 are defined in (11). Using the same reasoning as for the
LL contrast we prove the next Theorem (the proof is postponed to appendix):
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Theorem 3. Under the assumptions (A1)-(A4) and the conditions ∆n → 0, n∆ → ∞
and n∆2

n → 0 the following holds:

θ̂LSEn,∆n

P0−→ θ0,

and√ n
∆n

(θ̂
LSE,(1)
n,∆n

− θ0)
√
n∆n(θ̂

LSE,(2)
n,∆n

− θ0)

 D−→ 2N

(
0, I2 ·

[
1
3

∫
b2(z;σ0)(∂ya1(z; θ

(1)
0 ))2(∂θ(1)a1(z; θ

(1)
0 ))2ν0(dz)∫

b2(z;σ0)(∂θ(2)a2(z; θ
(2)
0 ))2ν0(dz)

])
,

where I2 is a 2×2 identity matrix, θ̂
LSE,(j)
n,∆n

denote the j−th element of the vector LLSEn,∆n
(θ;Z0:n)

and

Ci =

∫
(∂θ(i)ai(z; θ

(i)
0 ))(∂θ(i)ai(z; θ

(i)
0 ))T ν0(dz)

The advantage of this estimator over the LL contrast is that due to the absence of the
cross-terms, the estimation of both parameters is independent. For instance, in Theorem 3
we prove the consistency of the estimator with respect to θ(2) without assumption (A5) and

fixing θ(1) to the estimated sequence θ̂
(1)
n,∆n

. Also, since the term (∂ya1(z; θ
(1)
0 )) is not present

in the variance, we do not need (A5) to obtain the asymptotic normality for the estimator
of θ(1). The asymptotic variance differs from that obtained in Theorems 1-2, in particular
because the covariance matrix is diagonal. Also, when using the LSE estimator we expect
the performance to depend heavily on the diffusion coefficient. It is expected, since we only
renormalize the increments by its order ∆n and not by its theoretical variance. Also, the

performance for the first parameter will depend additionally on the value of (∂ya1(z; θ
(1)
0 ))2.

When b(x, y;σ) ≡ σf(x, y), the parameter σ can be estimated explicitly with the help
of the sample covariance matrix. The properties of this approach for the elliptic case are
proven in Kessler (1997), Jacod and Protter (2011). For hypoelliptic systems, this approach
must be modified, as the discretization of order ∆n does not allow to compute the terms
of order ∆3

n, which represent the propagated noise. However, the value of σ can still be
inferred from the observations of the rough coordinate by computing

σ̃2
n,∆n

=
1

n∆n

n−1∑
i=0

(Yi+1 − Yi)2

f2(Xi, Yi)
. (23)

It can be shown that this estimator is consistent and asymptotically normal. In fact, it
is a straightforward consequence of point (iv) of Lemma 7 (see Appendix), but we do not
aim to provide the details here as it only concerns the particular case of model (1), that
is, when the diffusion term depends linearly on only one unknown parameter.

16



5 Simulation study

5.1 The model

The two estimators (θ̂n,∆n , σ̂
2
n,∆n

) and (θ̂LSEn,∆n
, σ̃2

n,∆n
) are evaluated on the simulation study

with a hypoelliptic stochastic neuronal model called FitzHugh-Nagumo model (Fitzhugh,
1961). It is a simplified version of the Hodgkin-Huxley model (Hodgkin and Huxley, 1952),
which describes in a detailed manner activation and deactivation dynamics of a spiking
neuron. First it was studied in the deterministic case, then in the stochastic elliptic setting
with two sources of noise in both coordinates. However, it is often argued that only ion
channels are perturbed by noise, while the membrane potential depends on them in a
deterministic way. This idea leads to a 2-dimensional hypoelliptic diffusion. In this paper
we consider a hypoelliptic SDE with noise only in the second coordinate as studied in Leon
and Samson (2018). More precisely, the behaviour of the neuron is defined through the
solution of the system {

dXt = 1
ε (Xt −X3

t − Yt − s)dt
dYt = (γXt − Yt + β)dt+ σdWt,

(24)

where the variable Xt represents the membrane potential of the neuron at time t, and Yt
is a recovery variable, which could represent the channel kinetic. The parameter s is the
magnitude of the stimulus current and is often known in experiments, ε is a time scale
parameter and is typically significantly smaller than 1, since Xt moves ”faster” than Yt.
Parameters to be estimated are θ = (γ, β, ε, σ). For system (24) we obtain the following
expressions for Ā and Σ∆n , which we plug in (17):

Ā(Zi; θ) =

(
Xi + ∆n

ε (Xi −X3
i − Yi + s) + ∆2

n
2ε

(
(1−3X2

i )
ε (Xi −X3

i − Yi + s)− (γXi − Yi + β)
)

Yi + ∆n(γXi − Yi + β) + ∆2
n

2

(γ
ε (Xi −X3

i − Yi + s)− (γXi − Yi + β)
)

)

Σ∆n(Zi; θ, σ) = σ2

(
∆3
n

3ε2
∆2
n

2ε
∆2
n

2ε ∆n

)
Hypoellipticity and ergodicity of (24) are proven in Leon and Samson (2018). The same
problem, but for the hypoelliptic setting is studied in Jensen (2014), Ditlevsen and Samson
(2017).

5.2 Experimental design

We consider two different settings: an excitatory and an oscillatory behaviour. For the first
regime, the drift parameters are set to γ = 1.5, β = 0.3, ε = 0.1, s = 0.01 and the diffusion
coefficient σ = 0.6, and for the second γ = 1.2, β = 1.3, ε = 0.1, s = 0.01 and σ = 0.4.
The diffusion coefficient does not change the behaviour pattern, only the ”noisiness” of the
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observations. The starting point is (X0, Y0) = (0, 0). Sample trajectories for both settings
are shown on Figure 1.

We organize the trials as follows: first, we generate 100 trajectories using recursive
formula (15) for each set of parameters with ∆n = 0.0001 and n = 500000. The observed
time interval is thus equal to 50. Then we subsample the sequence so that we can vary the
discretization step ∆n and eventually truncate the observed time interval. We estimate
the parameters by minimizing the contrast (17). We refer to this method as LL contrast.
For the least square estimator (LSE) we do the following: we estimate the parameter σ
explicitly from the observations of the second variable by (23), and then compute the
parameters of the drift by minimizing (22). In addition, we compare both methods to the
1.5 strong order scheme (Ditlevsen and Samson, 2017), based on two separate estimators
for each coordinate, which are defined in (20) and (21).

The minimization of the criterions is conducted with the optim function in R with
the Conjugate Gradient method. As the initial value of parameters we take θ0 ± U([0, 1]).
In Tables 1-2 we present the mean value of the estimated parameters and their standard
deviation (in brackets), computed over 100 trajectories for each set of parameters. Figures
2-3 illustrate the estimation densities for ∆n = 0.01 and the interval of observations being
fixed to T = 5 or T = 50. The LL contrast is depicted in blue, the least square estimator
— in red, the 1.5 scheme in green.

The estimation of the diffusion coefficient σ with the LL estimator is slightly biased
in both sets of data. This bias does not appear in the one-dimensional criteria and when
the value is directly computed from the observations as a mean empirical variance. The
performance of the LL contrast improves when we reduce the step size and increase the
observed time interval. However, when ∆n becomes too small the performance of LL
contrast with respect to σ is worse than the one-dimensional estimators for σ given by (21)
and (23). It is slightly biased and its variance is bigger than that of LSE and 1.5 estimator.
One possible explanation is that the estimation of σ with the LL contrast, as it is shown in
Theorem 2, depends heavily on the convergence of the parameters of the first coordinate.
Minor inaccuracies in the estimation of the drift parameters lead to non-negligible errors in
σ̂. Note, for example, that the LL scheme scores better on interval T = 50 for ∆n = 0.01
than for ∆n = 0.001 (see Table 1), while for the other schemes it is not the case. Thus, it
is important to ensure that n→∞ faster than ∆n → 0, as required by Theorem 2.

Parameters of the second coordinate γ and β are estimated accurately with all three
methods once the time interval T is big enough (see the bottom pictures on Figures 2-3
for T = 50). However, when T = 5, 1.5 scheme scores considerably worse than the LL
and LSE estimator. Also when estimating ε, the 1-dimensional criteria (20) does not score
better than the LL and LSE estimators. This parameter seems to be underestimated in
the case of the 1.5 scheme, and this bias is bigger in the case of the inhibitory setting for
∆n = 0.01. The problems in the inhibitory setting are anticipated, since the trajectory
is more erratic than in the excitatory case. Drift parameters are thus more difficult to
estimate: the variance of the estimators is bigger in average. Also, during the simulation
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study it is observed that ε is the most sensitive to the initial value with which the optim

function is initialized, since it directly regulates the amount of noise which is propagated
to the first coordinate. However, as predicted by Theorems 1-2, estimators for ε converge
indeed faster than for the rest of the parameters.

∆n = 0.01, T = 5 γ β ε σ

LC 1.501 (0.053) 0.302 (0.055) 0.101 (0.001) 0.592 (0.056)
LSE 1.488 (0.108) 0.311 (0.149) 0.100 (0.000) 0.612 (0.020)

1.5 scheme 1.561 (0.362) 0.324 (0.295) 0.099 (0.000) 0.598 (0.019)

∆n = 0.01, T = 10 γ β ε σ

LC 1.504 (0.055) 0.306 (0.053) 0.100 (0.001) 0.562 (0.026)
LSE 1.503 (0.069) 0.299 (0.176) 0.100 (0.000) 0.610 (0.014)

1.5 scheme 1.540 (0.237) 0.301 (0.212) 0.099 (0.000) 0.596 (0.013)

∆n = 0.01, T = 50 γ β ε σ

LC 1.500 (0.050) 0.297 (0.052) 0.100 (0.000) 0.560 (0.018)
LSE 1.513 (0.072) 0.302 (0.068) 0.100 (0.000) 0.610 (0.007)

1.5 scheme 1.495 (0.095) 0.301 (0.093) 0.099 (0.000) 0.596 (0.007)

∆n = 0.001, T = 5 γ β ε σ

LC 1.505 (0.054) 0.306 (0.051) 0.100 (0.000) 0.699 (0.090)
LSE 1.498 (0.062) 0.290 (0.072) -47.86 (477.2) 0.599 (0.005)

1.5 scheme 1.497 (0.183) 0.304 (0.169) 0.100 (0.000) 0.598 (0.005)

∆n = 0.001, T = 10 γ β ε σ

LC 1.513 (0.049) 0.302 (0.054) 0.100 (0.000) 0.662 (0.096)
LSE 1.501 (0.051) 0.299 (0.052) 0.100 (0.000) 0.600 (0.004)

1.5 scheme 1.513 (0.159) 0.288 (0.161) 0.100 (0.000) 0.599 (0.004)

∆n = 0.001, T = 50 γ β ε σ

LC 1.487 (0.054) 0.303 (0.050) 0.100 (0.000) 0.628 (0.098)
LSE 1.493 (0.056) 0.303 (0.052) 0.100 (0.000) 0.601 (0.002)

1.5 scheme 1.488 (0.066) 0.302 (0.068) 0.100 (0.000) 0.600 (0.002)

Table 1: Set 1, γ0 = 1.5, β0 = 10.3, ε0 = 0.1, σ0 = 0.6.. Value without brackets: mean,
value in parentheses: standard deviation.

6 Conclusions

The proposed contrast estimator generalizes parametric inference methods developed for
models of type (2) to more general class (1). Numerical study shows that it can be used
with no prior knowledge of the parameters. It is the main advantage of our method over
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∆n = 0.01, T = 5 γ β ε σ

LC 1.205 (0.046) 1.311 (0.053) 0.100 (0.001) 0.357 (0.013)
LSE 1.243 (0.771) 1.592 (0.887) 0.101 (0.002) 0.400 (0.014)

1.5 scheme 1.324 (0.357) 1.415 (0.365) 0.095 (0.002) 0.397 (0.014)

∆n = 0.01, T = 10 γ β ε σ

LC 1.201 (0.053) 1.303 (0.053) 0.100 (0.001) 0.356 (0.008)
LSE 1.251 (0.367) 1.507 (0.521) 0.100 (0.001) 0.399 (0.009)

1.5 scheme 1.260 (0.187) 1.354 (0.188) 0.091 (0.003) 0.396 (0.009)

∆n = 0.01, T = 50 γ β ε σ

LC 1.200 (0.046) 1.302 (0.048) 0.101 (0.001) 0.357 (0.004)
LSE 1.207 (0.208) 1.374 (0.288) 0.100 (0.001) 0.400 (0.004)

1.5 scheme 1.217 (0.073) 1.304 (0.075) 0.083 (0.009) 0.398 (0.004)

∆n = 0.001, T = 5 γ β ε σ

LC 1.206 (0.052) 1.302 (0.050) 0.100 (0.000) 0.370 (0.052)
LSE 1.183 (0.074) 1.330 (0.126) 0.100 (0.000) 0.400 (0.004)

1.5 scheme 1.239 (0.170) 1.327 (0.177) 0.100 (0.000) 0.400 (0.004)

∆n = 0.001, T = 10 γ β ε σ

LC 1.193 (0.050) 1.303 (0.050) 0.100 (0.000) 0.345 (0.013)
LSE 1.183 (0.069) 1.328 (0.101) 0.100 (0.000) 0.400 (0.003)

1.5 scheme 1.231 (0.126) 1.328 (0.114) 0.099 (0.000) 0.400 (0.003)

∆n = 0.001, T = 50 γ β ε σ

LC 1.201 (0.052) 1.301 (0.053) 0.100 (0.000) 0.344 (0.009)
LSE 1.207 (0.208) 1.374 (0.288) 0.100 (0.001) 0.400 (0.004)

1.5 scheme 1.206 (0.088) 1.295 (0.084) 0.099 (0.000) 0.400 (0.001)

Table 2: Set 2: γ0 = 1.2, β0 = 1.3, ε0 = 0.1, σ0 = 0.4. Value without brackets: mean, value
in parentheses: standard deviation.
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Figure 2: Estimation density for the LL contrast (blue), the LSE (red) and 1.5 scheme
(green) estimators for the excitatory set. ∆n = 0.01
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Figure 3: Estimation density for the LL contrast (blue), the LSE (red) and 1.5 scheme
(green) estimators for the inhibitory set. ∆n = 0.01



the analogous works, in particular Ditlevsen and Samson (2017), where the convergence of
the estimator is proven with the parameters being partly fixed to their true values.

From the theoretical point of view, our estimators reveal good properties. Both the
contrast based on the local linearization scheme and the least square estimators are con-
sistent. In the case of the contrast, the estimator of the rough coordinate asymptotically
depends on the estimator of the smooth coordinate. Therefore its performance is sensitive
to the form of the drift term. The convergence of the smooth coordinate, however, does
not depend nor on the diffusion term, nor on the rough coordinate. The question of the
asymptotic normality is more intricated. We prove the asymptotic normality under rather
restrictive assumptions of the drift term. Nevertheless, the method can be applied to more
general models, which is confirmed by the numerical study. The normality of the least
squares estimator is studied under no additional assumptions on the drift term. It is noted
that the estimation of parameters with LSE in the drift term is mutually independent,
that gives an advantage over the classical contrast estimator. However, numerically LSE is
rather sensitive to the experiment design and tends to produce outliers if the observation
interval is not big enough.

The most important direction of the prospective work is the adaptation of the estima-
tion method to the case when only the observations of the first coordinate are available.
Under proper conditions it must be possible to couple the contrast minimization with
one of the existing filtering methods and estimate the parameters of the system (at least,
partially).

Another point is the generalization of the contrast to systems of higher dimension. In
practice we often deal with high-dimensional systems with arbitrary number of rough and
smooth variables. The general rule which describes gives the contrast function in that case
is not yet established. The most important step here would be to establish the condition
of hypoellipticity for such a system. Finally, it is crucial to pair the method with a robust
optimization procedure, since the minimization of the contrast is sensitive to choice of the
discretization step and initial conditions.
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7 Appendix

7.1 Properties of the scheme

Proposition 1. By integrating (8) by parts two times we get the following:

E
[
Z̃i+1|Z̃i

]
= Z̃i + J−1(Z̃i; θ)

(
eJ(Z̃i;θ)∆n − I

)
A(Z̃i; θ)+

1

2
J−2(Z̃i; θ)

(
eJ(Z̃i;θ)∆n − I − J(Z̃i; θ)∆n

)
b2(Z̃i;σ)∂2

yyA(Z̃i; θ) (25)

Recall that the matrix exponent for some square matrix M is given by eM =
∑∞

l=0
M l

l! .
Then (25) can be simplified as:

E
[
Z̃i+1|Z̃i

]
= Z̃i + J−1(Z̃i; θ)

(
I + ∆nJ(Z̃i; θ) +

∆2
n

2
J2(Z̃i; θ)− I +O(∆3

n)

)
A(Z̃i; θ)+

1

2
J−2(Z̃i; θ)

(
I + ∆nJ(Z̃i; θ) +

∆2
n

2
J2(Z̃i; θ)− I −∆nJ(Z̃i; θ) +O(∆3

n)

)
b2(Z̃i;σ)∂2

yyA(Z̃i; θ) =

Z̃i + ∆nA(Z̃i; θ) +
∆2
n

2
J(Z̃i; θ)A(Z̃i; θ) +

∆2
n

4
b2(Z̃i;σ)∂2

yyA(Z̃i; θ) +O(∆3
n)

Writing the above expression component-wise gives the proposition.

Proposition 2. Let us consider each integral of (10) separately. Denote:

W(i+1)∆n
=

∫ (i+1)∆n

i∆n

eJ(Z̃i;θ)((i+1)∆n−s)B(Z̃i;σ)dWs.

Recall that the Jacobian of system (3) is given by (6) and the definition of the matrix
exponent, we have:

W(i+1)∆n
=

∫ (i+1)∆n

i∆n

(I + J(Z̃i; θ)((i+ 1)∆n − s) +O(∆2
n))B(Z̃i;σ)dWs =

=

∫ (i+1)∆n

i∆n

[(
1 + ∂xa1(Z̃i; θ

(1))((i+ 1)∆n − s) ∂ya1(Z̃i; θ
(1))((i+ 1)∆n − s)

∂xa2(Z̃i; θ
(2))((i+ 1)∆n − s) 1 + ∂ya2(Z̃i; θ

(2))((i+ 1)∆n − s)

)
+O(∆2

n)

](
0 0
0 1

)
b(Z̃i;σ)dWs

= b(Z̃i;σ)

[
0 ∂ya1(Z̃i; θ

(1))
∫ (i+1)∆n

i∆n
((i+ 1)∆n − s)dWs +O(∆2

n)

0
∫ (i+1)∆n

i∆n
dWs + ∂ya2(Z̃i; θ

(2))
∫ (i+1)∆n

i∆n
((i+ 1)∆n − s)dWs +O(∆2

n)

]
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Then we can calculate E
[
W(i+1)∆n

W ′(i+1)∆n

]
:

E
[
W(i+1)∆n

W ′(i+1)∆n

]
= b2(Z̃i;σ)E

(
Σ

(1)
∆n

Σ
(12)
∆n

Σ
(12)
∆n

Σ
(2)
∆n

)
+O(∆4

n),

where entries are given by:

Σ
(1)
∆n

=
(
∂ya1(Z̃i; θ

(1))
)2
[∫ (i+1)∆n

i∆n

((i+ 1)∆n − s)dWs

]2

Σ
(12)
∆n

=

(
∂ya1(Z̃i; θ

(1))

∫ (i+1)∆n

i∆n

((i+ 1)∆n − s)dWs

)(∫ (i+1)∆n

i∆n

dWs + ∂ya2(Z̃i; θ
(2))

∫ (i+1)∆n

i∆n

((i+ 1)∆n − s)dWs

)

Σ
(2)
∆n

=

(∫ (i+1)∆n

i∆n

dWs + ∂ya2(Z̃i; θ
(2))

∫ (i+1)∆n

i∆n

((i+ 1)∆n − s)dWs

)2

The first entry can be easily calculated by the Itô isometry:

E[Σ
(1)
∆n

] =
(
∂ya1(Z̃i; θ

(1))
)2
E

[∫ (i+1)∆n

i∆n

((i+ 1)∆n − s)dWs

]2

=

(
∂ya1(Z̃i; θ

(1))
)2
∫ (i+1)∆n

i∆n

((i+ 1)∆n − s)2ds =
(
∂ya1(Z̃i; θ

(1))
)2 ∆3

n

3

Now consider the product of two stochastic integrals in the terms Σ
(12)
∆n

and Σ
(2)
∆n

. Assume
for simplicity that t = 0. From the properties of the stochastic integrals (Karatzas and
Shreve, 1987), it is straightforward to see that:

E

 lim
n→∞

∑
ti,ti−1∈[0,∆n]

(∆n − s)(Wti −Wti−1)
∑

ti,ti−1∈[0,∆n]

(Wti −Wti−1)

 =

= lim
n→∞

∑
ti,ti−1∈[0,∆n]

(∆n − s)E
[
(Wti −Wti−1)2

]
=

∫ ∆n

0
(∆n − s)ds =

∆2
n

2

That gives the proposition.

7.2 Auxiliary results

We start with an important Lemma which links the sampling and the probabilistic law of
the continuous process:
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Lemma 4 (Kessler (1997)). Let ∆n → 0 and n∆n → ∞, let f ∈ R × Θ → R be such
that f is differentiable with respect to z and θ, with derivatives of polynomial growth in z
uniformly in θ. Then:

1

n

n∑
i=1

f(Zi; θ)
P0−→
∫
f(z; θ)ν0(dz) as n→∞ uniformly in θ.

Lemma is proven in Kessler (1997) for the one-dimensional case. Its proof is based
only on ergodicity of the process and the assumptions analogous to ours, and not on the
discretization scheme or dimensionality. So it can be generalized to a multi-dimensional
case.

Proposition 4 in combination with the continuous ergodic theorem and Lemma 4 allow
us to establish the following important result:

Lemma 5. Let f : R2 × Θ → R be a function with the derivatives of polynomial growth
in x, uniformly in θ. Assume ∆n → 0 and n∆n →∞. Then:

(i) 1
n∆3

n

∑n−1
i=0

f(Zi;θ)

(∂ya1(Zi;θ
(1)
0 ))2

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)2 P0−→ 1
3

∫
f(z; θ)b2(z;σ0)ν0(dz)

(ii) 1
n∆n

∑n−1
i=0 f(Zi; θ) (Yi+1 − Yi)2 P0−→

∫
f(z; θ)b2(z;σ0)ν0(dz)

(iii) 1
n∆2

n

∑n−1
i=0

f(Zi;θ)

∂ya1(Zi;θ
(1)
0 )

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(Yi+1 − Yi)

P0−→ 1
2

∫
f(z; θ)b2(z;σ0)ν0(dz)

Proof. We consider only the cross-term (iii), since the results for the first and the second
term are analogous to Ditlevsen and Samson (2017) (upon replacing the bounds from
Proposition 3 by 4). Thanks to Proposition 4 we know that:

E

[
1

n∆2

f(Zi; θ)

∂ya1(Zi; θ
(1)
0 )

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(Yi+1 − Yi) |Fi

]
=

1

2n
f(Zi; θ)b

2(Zi;σ0) +O(∆n).

Then from Lemma 4 it follows that for n→∞ uniformly in θ:

n−1∑
i=0

E

[
1

n∆2

f(Zi; θ)

∂ya1(Zi; θ
(1)
0 )

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(Yi+1 − Yi) |Fi

]
P0−→

1

2

∫
f(z; θ)b2(z;σ0)ν0(dz)
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Let us introduce an auxiliary Lemma which establishes the convergence in probability
for the first moments:

Lemma 6. Let f : R2 ×Θ→ R be a function with derivatives of polynomial growth in x,
uniformly in θ. Assume ∆n → 0 and n∆n → ∞. Then the following convergence results
hold:

(i) 1
n∆n

∑n−1
i=0 f(Zi; θ)(Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ))

P0−→ 0

(ii) 1
n∆n

∑n−1
i=0 f(Zi; θ)(Yi+1 − Ā2(Zi; θ

(1), θ
(2)
0 , σ))

P0−→ 0

uniformly in θ.

Proof. Consider (ii). Expectation of the sum tends to zero for ∆n → 0 and n∆n → ∞
due to Proposition 4. Convergence for θ(1) is due to Lemma 9 in Genon-Catalot and
Jacod (1993) and uniformity in θ(1) follows the proof of Lemma 10 in Kessler (1997). The
second assertion is proven in the same way. For (i) see Lemma 3 in Ditlevsen and Samson
(2017).

We also need the following Lemma for proving the asymptotic normality of the estima-
tors.

Lemma 7. Assume (A1)-(A4) and n∆n → ∞ and n∆2
n → 0. Then for any bounded

function f(z; θ) ∈ R2 ×Θ→ R the following holds:

(i) 1√
n∆3

n

∑n−1
i=0 f(Zi; θ)(Xi+1−Ā1(Zi; θ

(1)
0 , θ(2), σ))

D−→ N
(

0, 1
3ν0

(
b2(z;σ0)(∂ya1(z; θ

(1)
0 ))2f2(z; θ)

))
(ii) 1√

n∆3
n

∑n−1
i=0 f(Zi; θ)(Xi+1−Ā1(Zi; θ

(1)
0 , θ(2), σ))2− 1√

n

∑n−1
i=0 f(Zi; θ)

1
3b

2(z;σ0)(∂ya1(z; θ
(1)
0 ))2 D−→

N
(

0, 2
9ν0

(
b4(z;σ0)(∂ya1(z; θ

(1)
0 ))4f2(z; θ)

))
(iii) 1√

n∆n

∑n−1
i=0 f(Zi; θ)(Yi+1 − Yi)

D−→ N
(
0, ν0

(
b2(z;σ0)f2(z; θ)

))
(iv) 1√

n∆n

∑n−1
i=0 f(Zi; θ)(Yi+1−Yi)2− 1√

n

∑n−1
i=0 f(Zi; θ)b

2(Zi;σ0)
D−→ N

(
0, 2ν0

(
b4(z;σ0)f2(z; θ)

))
(v) 1√

n∆2
n

∑n−1
i=0 f(Zi; θ)(Xi+1−Ā1(Zi; θ

(1)
0 , θ(2), σ))(Yi+1−Yi)− 1√

n

∑n−1
i=0 f(Zi; θ)

1
2b

2(Zi;σ0)∂ya1(Zi; θ
(1)
0 )

D−→

N
(

0, 4
3ν0

(
f(z; θ)b4(z;σ0)(∂ya1(z; θ

(1)
0 ))2

))
Proof. We focus on the proof of (v), since (i)-(iv) closely follow Lemmas 4-5 in Ditlevsen
and Samson (2017). To simplify the proof for the cross-term, we recall that the represen-
tation (15) can be transformed so that the two noise terms are independent. For example,
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we can use an analogue of such a decomposition proposed in Pokern et al. (2007):

Xi+1 − Ā1(Zi; θ
(1)
0 , θ(2), σ) = b(Zi;σ0)∂ya1(Zi; θ

(1)
0 )

 ∆
3
2
n√
12
η1
i +

∆
3
2
n

2
η2
i

+ δ1
i

Yi+1 − Yi = ∆na2(Zi; θ
(2)) + b(Zi;σ0)∆

1
2
nη

2
i + δ2

i ,

where δ1
i and δ2

i are error terms such that E[δki |Fi] = O(∆2
n) and E[(δki )2|Fi] = O(∆4

n) (see
Proposition 4), and η1

i and η2
i are standard independent normal variables.

Then Proposition 4 gives that E
[(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(Yi+1 − Yi) |Fi

]
= ∆2

n
2 b(Zi;σ0)∂ya1(Zi; θ

(1)
0 )+

O(∆3
n), and then E

[
f(Zi; θ)

((
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(Yi+1 − Yi)− ∆2

n
2 b

2(Zi;σ0)∂ya1(Zi; θ
(1)
0 )
)
|Fi
]

=

0. With slightly more tedious computations (which are omitted) we get also that

E

[((
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(Yi+1 − Yi)−

∆2
n

2
b2(Zi;σ0)(∂ya1(Zi; θ

(1)
0 ))

)2

|Fi

]
=

4∆4
n

3
b4(Zi;σ0)(∂ya1(Zi; θ

(1)
0 ))2 +O(∆5

n)

Then we obtain:

1√
n∆2

n

n−1∑
i=0

f(Zi; θ)
(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(Yi+1 − Yi)−

1√
n

n−1∑
i=0

f(Zi; θ)
1

2
b2(Zi;σ0)∂ya1(Zi; θ

(1)
0 )

=
1√
n∆2

n

n−1∑
i=0

f(Zi; θ)

b(Zi;σ0)∂ya1(Zi; θ
(1)
0 )

 ∆
3
2
n√
12
η1
i +

∆
3
2
n

2
η2
i

+ δ1
i


(

∆na2(Zi; θ
(2)) + b(Zi;σ0)∆

1
2
nη

2
i + δ2

i

)
− 1√

n

n−1∑
i=0

f(Zi; θ)
1

2
b2(Zi;σ0)∂ya1(Zi; θ

(1)
0 )

Since ∆n
n → 0 by design we see that

1

n∆4
n

E

[
n−1∑
i=0

f2(Zi; θ)
((
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(Yi+1 − Yi)−

∆2
n

2
b(Zi;σ0)(∂ya1(Zi; θ

(1)
0 ))

)2
]
→ 4

3
ν0

(
f2(z; θ)b4(z;σ0)(∂ya1(z; θ

(1)
0 )2

)
Further, since E

[
f4(Zi; θ)

((
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(Yi+1 − Yi)− ∆2

n
2 b

2(Zi;σ0)(∂ya1(Zi; θ
(1)
0 ))

)4
|Fi
]

is bounded by (A2), we have

1

n2∆8
n

E

[
n−1∑
i=0

f4(Zi; θ)

((
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(Yi+1 − Yi)−

∆2
n

2
b2(Zi;σ0)(∂ya1(Zi; θ

(1)
0 ))

)4

|Fi

]
→ 0.
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Therefore, we can apply again the Theorem 3.2 from Hall and Heyde (1980) and obtain
the statement (v).

Remark. Note that the results for the convergence in distribution for the increments of the
second coordinate hold without any assumption on the parameters of the function a2(z; θ(2)).
It is due to the fact that the order of the noise dominates the order of the drift term (which
is not the case in first coordinate, where the noise is propagated with the higher order). As
a consequence, the convergence of a functional

∑n−1
i=0 f(Zi; θ)(Yi+1 − Ā2(Zi; θ

(1), θ(2), σ))
holds, with a proper scaling, for any value of θ.

7.3 Consistency and asymptotic normality of the LL contrast estimator

Lemma 1. Consider

∆n

n

[
Ln,∆n(θ(1), θ(2), σ2;Z0:n)− Ln,∆n(θ

(1)
0 , θ(2), σ2;Z0:n)

]
= T1 + T2 + T3 + T4,

where the terms are given as follows:

T1 =
6∆n

n∆3
n

n−1∑
i=0

(Xi+1 − Ā1(Zi; θ
(1), θ(2), σ)

)2
b2(Zi;σ)

(
∂ya1(Zi; θ(1))

)2 −

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)2

b2(Zi;σ)
(
∂ya1(Zi; θ

(1)
0 )
)2


T2 = − 6∆n

n∆2
n

n−1∑
i=0

1

b2(Zi;σ)

[(
Xi+1 − Ā1(Zi; θ

(1), θ(2), σ)
) (
Yi+1 − Ā2(Zi; θ

(1), θ(2), σ)
)

∂ya1(Zi; θ(1))
−(

Xi+1 − Ā1(Zi; θ
(1)
0 , θ(2), σ)

)(
Yi+1 − Ā2(Zi; θ

(1)
0 , θ(2), σ)

)
∂ya1(Zi; θ

(1)
0 )


T3 =

2∆n

n∆n

n−1∑
i=0

(Yi+1 − Ā2(Zi; θ
(1), θ(2), σ)

)2
b2(Zi;σ)

−

(
Yi+1 − Ā2(Zi; θ

(1)
0 , θ(2), σ)

)2

b2(Zi;σ)


T4 =

∆n

n

n−1∑
i=0

log

(
∂ya1(Zi; θ

(1))

∂ya1(Zi; θ
(1)
0 )

)
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Consider term T1:

T1 =
6∆n

n∆3
n

n−1∑
i=0

1

b2(Zi;σ)


(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ) + Ā1(Zi; θ

(1)
0 , θ(2), σ)− Ā1(Zi; θ

(1), θ(2), σ)
)2

(
∂ya1(Zi; θ(1))

)2 −

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)2

(
∂ya1(Zi; θ

(1)
0 )
)2

 =
6∆n

n∆3
n

n−1∑
i=0

1

b2(Zi;σ)

[(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)2
[

1(
∂ya1(Zi; θ(1))

)2−
1(

∂ya1(Zi; θ
(1)
0 )
)2

+
2∆n(

∂ya1(Zi; θ(1))
)2 (Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(a1(Zi; θ

(1)
0 )− a1(Zi; θ

(1)))+

∆2
n

(∂ya1(Zi; θ(1)))2

(
a1(Zi; θ

(1)
0 )− a1(Zi; θ

(1))
)2
]
.

Recalling Lemmas 4, 6 and 5 we have that:

6

n∆2
n

n−1∑
i=0

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)2

b2(Zi;σ)

 1(
∂ya1(Zi; θ(1))

)2 − 1(
∂ya1(Zi; θ

(1)
0 )
)2

 P0−→ 0

6

n∆n

n−1∑
i=0

1

b2(Zi;σ)(∂ya1(Zi; θ(1)))2

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(a1(Zi; θ

(1)
0 )− a1(Zi; θ

(1)))
P0−→ 0

6

n

n−1∑
i=0

(a1(Zi; θ
(1)
0 )− a1(Zi; θ

(1)))2

b2(Zi;σ)(∂ya1(Zi; θ(1)))2

P0−→ 6

∫
(a1(z; θ

(1)
0 )− a1(z; θ(1)))2

b2(z;σ)(∂ya1(z; θ(1)))2
ν0(dz).

Now consider T2, which can be rewritten as:

− 6

n∆n

n−1∑
i=0

(Yi+1 − Yi +O(∆n))

b2(Zi;σ)


(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ) + Ā1(Zi; θ

(1)
0 , θ(2), σ)− Ā1(Zi; θ

(1), θ(2), σ)
)

∂ya1(Zi; θ(1))
−

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
∂ya1(Zi; θ

(1)
0 )

 = − 6

n∆n

n−1∑
i=0

(Yi+1 − Yi +O(∆n))

b2(Zi;σ)

[(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
[

1

∂ya1(Zi; θ(1))
− 1

∂ya1(Zi; θ
(1)
0 )

]
+

∆n

(∂ya1(Zi; θ(1)))
(a1(Zi; θ

(1)
0 )− a1(Zi; θ

(1)))

]
.
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Then we use the fact that the expectation of
(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
is of order ∆2

n

and of increments Yi+1 − Yi is of ∆n, and by Lemma 5 we obtain:

− 6

n∆n

n−1∑
i=0

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(Yi+1 − Yi +O(∆n))

b2(Zi;σ)(∂ya1(Zi; θ
(1)
0 ))

[
(∂ya1(Zi; θ

(1)
0 ))

(∂ya1(Zi; θ(1)))
− 1

]
P0−→ 0.

The same holds for T4. Consider then T3:

2∆n

n∆n

n−1∑
i=0

2

(
Yi+1 − Ā2(Zi; θ

(1), θ(2), σ)
)2

b2(Zi;σ)
−

(
Yi+1 − Ā2(Zi; θ

(1)
0 , θ(2), σ)

)2

b2(Zi;σ)

 =

2

n

n−1∑
i=0

1

b2(Zi;σ)

[(
Yi+1 − Ā2(Zi; θ

(1)
0 , θ(2), σ)

)(
Ā2(Zi; θ

(1)
0 , θ(2), σ)− Ā2(Zi; θ

(1), θ(2), σ)
)
−

(
Ā2(Zi; θ

(1)
0 , θ(2), σ)− Ā2(Zi; θ

(1), θ(2), σ)
)2
]

This term is of order O(∆3
n) (since θ(1) is contained only in terms of order ∆2

n), thus it
converges to zero as ∆n → 0. Thus, we indeed have

lim
n→∞,∆n→0

∆n

n

[
Ln,∆n(θ(1), θ(2), σ2;Z0:n)− Ln,∆n(θ

(1)
0 , θ(2), σ2;Z0:n)

]
P0−→

6

∫
(a1(z; θ

(1)
0 )− a1(z; θ(1)))2

b2(z;σ)(∂ya1(z; θ(1)))2
ν0(dz). (26)

Theorem 1 (consistency and asymptotic normality of θ(1)). Throughout the proof we as-
sume that θ(1) ∈ R in order to simplify the notations.

Consistency. It follows essentially from Lemma 1. Indeed, the result of the Lemma
(and the fact that the parameter space is compact) implies that we can find a subsequence

θ̂
(1)
n,∆n

which converges to some value θ
(1)
∞ . However, the minimum of the expression in

Lemma 1 is attained for θ
(1)
0 . Then by identifiability of the drift function we have the

consistency, that is θ̂
(1)
n,∆n

→ θ
(1)
0 .

Asymptotic normality. The proof follows the standard pattern (see Kessler (1997),
Genon-Catalot et al. (1999), Ditlevsen and Samson (2017)). First, we write the Taylor
expansion of the function (17). Then we have:∫

∆n

n

∂2

∂θ(1)∂θ(1)
Ln,∆n

(
θ

(1)
0 + u(θ̂

(1)
n,∆n

− θ0), θ(2), σ; z
)
du ·

√
n

∆n
(θ̂

(1)
n,∆n

− θ(1)
0 ) =

−
√

∆n

n

∂

∂θ(1)
Ln,∆n(θ

(1)
0 , θ(2), σ; z)
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Note that the values of θ(2) and σ may be taken arbitrary. Now we have to compute the
first and the second order derivatives of (17). We omit the dependency on parameters in
the expression for partial derivatives to make it readable and study the convergence of the
first order derivative:

∂

∂θ(1)
Ln,∆n(θ

(1)
0 , θ(2), σ; z) =

n−1∑
i=1

[
2∂2

y,θ(1)a1

∂ya1
− 6

b2(Zi;σ)∂ya1[
2(Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ))2

∆3
n(∂ya1)2

∂2
y,θ(1)a1 +

2(Xi+1 − Ā1(Zi; θ
(1)
0 , θ(2), σ))(∂θ(1)a1)

∆2
n(∂ya1)

−

(Yi+1 − Ā2(Zi; θ
(1)
0 , θ(2), σ))(∂θ(1)a1)

∆n
−

(Xi+1 − Ā1(Zi; θ
(1)
0 , θ(2), σ))(Yi+1 − Ā2(Zi; θ

(1)
0 , θ(2), σ))(∂2

y,θ(1)a1)

∆2
n(∂ya1)

 (27)

Under assumption (A5) the only non-zero terms are the following:

∂

∂θ(1)
Ln,∆n(θ

(1)
0 , θ(2), σ; z) =

n−1∑
i=1

− 6

b2(Zi;σ)∂ya1

[
2(Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ))(∂θ(1)a1)

∆2
n(∂ya1)

−

(Yi+1 − Ā2(Zi; θ
(1)
0 , θ(2), σ))(∂θ(1)a1)

∆n

]
Applying Lemma 7, we get:

1√
n∆3

n

n−1∑
i=1

[
12(∂θ(1)a1)

b2(Zi;σ)(∂ya1)
(Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ))

]
D−→ N

(
0, 36ν0

(
b2(z;σ0)

b4(z;σ)
(∂θ(1)a1)2

))
1√
n∆n

n−1∑
i=1

[
6(∂θ(1)a1)

b2(Zi;σ)

(Yi+1 − Ā2(Zi; θ
(1)
0 , θ(2), σ))

(∂ya1)

]
D−→ N

(
0, 36ν0

(
b2(z;σ0)

b4(z;σ)

(∂θ(1)a1)2

(∂ya1)2

))
Thus, we have the following convergence in law:√

∆n

n

∂

∂θ(1)
Ln,∆n(θ

(1)
0 , θ(2), σ; z)

D−→ N
(

0, 36ν0

(
b2(z;σ0)

b4(z;σ)
(∂θ(1)a1)2

(
1 +

1

(∂ya1)2

)))
For the second order derivative we split again the expression (27) in several parts and study
their convergence:

T1 :=
∆n

n

n−1∑
i=1

− 12∆n

∆2
nb

2(Zi;σ)(∂ya1)2

[
(∂θ(1)a1)2 + (Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ))

(∂2
θ(1)θ(1)a1)(∂ya1)

(∂ya1)2

]
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T2 :=
∆n

n

n−1∑
i=1

6(Yi+1 − Ā2(Zi; θ
(1), θ(2), σ))

∆nb2(Zi;σ)

(∂ya1)2∂2
θ(1)θ(1)a1

(∂ya1)4

It is easy to see that the terms T2 converges to 0 by Lemmas 6 and 5. T1, according to the

Lemma 4 and Lemma 6, converges to 12
∫ (∂

θ(1)a1)2

b2(z;σ)(∂ya1)
ν0(dz). That gives the result.

Lemma 2. Note that we cannot infer the value of θ(2) with the same scaling as the pa-
rameter of the smooth coordinate because the estimator for each variable converges with

different speed. Thus, we fix the parameter θ(1) to its estimated value θ̂
(1)
n,∆n

and consider
the same sum, but with a different scaling, namely :

lim
n→∞,∆n→0

1

n∆n

[
Ln,∆n(θ̂

(1)
n,∆n

, θ(2), σ2;Z0:n)− Ln,∆n(θ̂
(1)
n,∆n

, θ
(2)
0 , σ2;Z0:n)

]
= T1 + T2 + T3

where the terms are given as follows:

T1 =
6

n∆4
n

n−1∑
i=0

1

b2(Zi;σ)
(
∂ya1(Zi; θ̂

(1)
n,∆n

)
)2

[(
Xi+1 − Ā1(Zi; θ̂

(1)
n,∆n

, θ(2), σ)
)2
−

(
Xi+1 − Ā1(Zi; θ̂

(1)
n,∆n

, θ
(2)
0 , σ)

)2
]

T2 = − 6

n∆3
n

n−1∑
i=0

1

b2(Zi;σ)


(
Xi+1 − Ā1(Zi; θ̂

(1)
n,∆n

, θ(2), σ)
)(

Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ(2), σ)
)

∂ya1(Zi; θ̂
(1)
n,∆n

)
−

(
Xi+1 − Ā1(Zi; θ̂

(1)
n,∆n

, θ
(2)
0 , σ)

)(
Yi+1 − Ā2(Zi; θ̂

(1)
n,∆n

, θ
(2)
0 , σ)

)
∂ya1(Zi; θ̂

(1)
n,∆n

)



T3 =
2

n∆2
n

n−1∑
i=0

[
(Yi+1 − Ā2(Zi; θ̂

(1)
n,∆n

, θ(2), σ))2 − (Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ
(2)
0 , σ))2

]
b2(Zi;σ)
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We start with T1:

T1 =
6

n∆4
n

n−1∑
i=0

1

b2(Zi;σ)
(
∂ya1(Zi; θ̂

(1)
n,∆n

)
)2

[(
Ā1(Zi; θ̂

(1)
n,∆n

, θ
(2)
0 , σ)− Ā1(Zi; θ̂

(1)
n,∆n

, θ(2), σ)
)

(
Xi+1 − Ā1(Zi; θ̂

(1)
n,∆n

, θ
(2)
0 , σ)

)
−
(
Ā1(Zi; θ̂

(1)
n,∆n

, θ
(2)
0 , σ)− Ā1(Zi; θ̂

(1)
n,∆n

, θ(2), σ)
)2
]

=

6

n∆4
n

n−1∑
i=0

1

b2(Zi;σ)
(
∂ya1(Zi; θ̂

(1)
n,∆n

)
)2

[
∆2
n

2

(
∂ya1(Zi; θ̂

(1)
n,∆n

)
)(

a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2))
)

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ)

)
+

∆3
n

2

(
∂ya1(Zi; θ̂

(1)
n,∆n

)
)(

a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2))
)

(
a1(Zi; θ

(1)
0 )− a1(Zi; θ̂

(1)
n,∆n

)
)

+
∆4
n

4

(
∂ya1(Zi; θ̂

(1)
n,∆n

)
)2 (

a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2))
)2
−

∆4
n

4

(
∂ya1(Zi; θ̂

(1)
n,∆n

)
)2 (

a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2))
)2
]

Recall that
(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ

(2)
0 , σ)

)
is of O(∆3

n) by Proposition 3. Thus, the first

summand of the T1 is of order ∆5
n and converges to 0. The second summand, under

assumption (A5), can be rewritten as

3

n∆4
n

n−1∑
i=0

∆3
n

(
θ

(1)
0 − θ̂

(1)
n,∆n

)T
g(Xi)

(
a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2))
)

b2(Zi;σ)
(
∂ya1(Zi; θ̂

(1)
n,∆n

)
) =

3√
n∆nn

n−1∑
i=0

√
n

∆n

(
θ

(1)
0 − θ̂

(1)
n,∆n

)T
g(Xi)

(
a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2))
)

b2(Zi;σ)
(
∂ya1(Zi; θ̂

(1)
n,∆n

)
) .

√
n

∆n

(
θ

(1)
0 − θ̂

(1)
n,∆n

)T
converges to a normal variable with zero mean due to Theorem 1,

and the whole expression converges to 0, because n∆n → ∞. Thus T1 converges to 0.
Consider T2:

T2 = − 6

n∆3
n

n−1∑
i=0

∆n

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)
(a2(Zi; θ

(2))− a2(Zi; θ
(2)
0 ))

∂ya1(Zi; θ̂
(1)
n,∆n

)b2(Zi;σ)
+

∆2
n(a1(Zi; θ

(1)
0 )− a1(Zi; θ̂

(1)
n,∆n

))(a2(Zi; θ
(2))− a2(Zi; θ

(2)
0 ))

∂ya1(Zi; θ̂
(1)
n,∆n

)b2(Zi;σ)


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Then, the first part of the sum converges to zero in probability after applying Lemma
6. The second part of the sum also converges to zero because n∆n → ∞ by design, and

θ̂
(1)
n,∆n

P0−→ θ
(1)
0 . So that, recalling (A5), and applying the arguments used above for T1 to

a1(Zi; θ
(1)
0 ) − a1(Zi; θ̂

(1)
n,∆n

) =
(
θ

(1)
0 − θ̂

(1)
n,∆n

)
g(Xi), we prove that T2 also converges to 0.

So we just have to consider the remaining term T3:

T3 =
2

n∆2
n

n−1∑
i=0

1

b2(Zi;σ)

[
(Yi+1 − Ā2(Zi; θ̂

(1)
n,∆n

, θ
(2)
0 , σ))2+

(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ
(2)
0 , σ))(Ā2(Zi; θ̂

(1)
n,∆n

, θ
(2)
0 , σ)− Ā2(Zi; θ̂

(1)
n,∆n

, θ(2), σ))+

(Ā2(Zi; θ̂
(1)
n,∆n

, θ
(2)
0 , σ)− Ā2(Zi; θ̂

(1)
n,∆n

, θ(2), σ))2 − (Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ
(2)
0 , σ))2

]
=

2

n∆2
n

n−1∑
i=0

1

b2(Zi;σ)

[
∆n(Yi+1 − Ā2(Zi; θ̂

(1)
n,∆n

, θ
(2)
0 , σ))(a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2)))+

∆2
n(a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2)))2
]

The first part of the sum converges to 0 due to Lemma 6. Then we apply Lemma 5 and
get the convergence:

lim
n→∞,∆n→0

1

n∆n

[
Ln,∆n(θ̂

(1)
n,∆n

, θ(2), σ2;Z0:n)− Ln,∆n(θ̂
(1)
n,∆n

, θ
(2)
0 , σ2

0;Z0:n)
]
P0−→

2

∫
(a2(z; θ

(2)
0 )− a2(z; θ(2)))2

b2(z;σ)
ν0(dz)

Lemma 3. We can split the contrast in the following sum:

lim
n→∞,∆n→0

1

2n
Ln,∆n(θ̂

(1)
n,∆n

, θ(2), σ2;Z0:n) = lim
n→∞,∆n→0

[3T1 − 3T2 + T3 + T4]
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where terms are given by follows:

T1 =
1

n

n−1∑
i=0

(Xi+1 − Ā1(Zi; θ̂
(1)
n,∆n

, θ(2), σ))2

∆3
nb

2(Zi;σ)(∂ya1(Zi; θ̂
(1)
n,∆n

))2

T2 =
1

n

n−1∑
i=0

(Xi+1 − Ā1(Zi; θ̂
(1)
n,∆n

, θ(2), σ))(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ(2), σ))

∆2
nb

2(Zi;σ)(∂ya1(Zi; θ̂
(1)
n,∆n

))

T3 =
1

n

n−1∑
i=0

(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ(2), σ))2

∆nb2(Zi;σ)

T4 =
1

n

n−1∑
i=0

log b2(Zi;σ)

For the term T1 we have:

T1 =
1

n∆3
n

n−1∑
i=0

1

b2(Zi;σ)

(
Xi+1 − Ā1(Zi; θ̂

(1)
n,∆n

, θ(2), σ)
)2

(∂ya1(Zi; θ̂
(1)
n,∆n

))2
=

1

n

n−1∑
i=0

1

b2(Zi;σ)

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ) + Ā1(Zi; θ

(1)
0 , θ(2), σ)− Ā1(Zi; θ̂

(1)
n,∆n

, θ(2), σ)
)2

∆3
n(∂ya1(Zi; θ̂

(1)
n,∆n

))2
=

=
1

n

n−1∑
i=0

1

b2(Zi;σ)


(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)2

∆3
n(∂ya1(Zi; θ̂

(1)
n,∆n

))2

(∂ya1(Zi; θ
(1)
0 ))2

(∂ya1(Zi; θ
(1)
0 ))2

+

2∆n

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)(
a1(Zi; θ

(1)
0 )− a1(Zi; θ̂

(1)
n,∆n

)
)

∆3
n(∂ya1(Zi; θ̂

(1)
n,∆n

))2
+

∆2
n

∆3
n

(
a1(Zi; θ

(1)
0 )− a1(Zi; θ̂

(1)
n,∆n

)
)2

b2(Zi;σ)(∂ya1(Zi; θ̂
(1)
n,∆n

))2


Thanks to the Lemmas 5 and 6, we know that the second term of the sum converges to 0
in probability, and for the first one we have:

1

n

n−1∑
i=0

1

b2(Zi;σ)

(
Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ)

)2

∆3
n(∂ya1(Zi; θ̂

(1)
n,∆n

))2

(∂ya1(Zi; θ
(1)
0 ))2

(∂ya1(Zi; θ
(1)
0 ))2

P0−→
∫
b2(z;σ0)

b2(z;σ)

(∂ya1(z; θ
(1)
0 ))2

(∂ya1(z; θ̂
(1)
n,∆n

))2
ν0(dz)

For the third term, we use the assumption (A5), and then obtain the convergence to 0 in
probability thanks to Theorem 1, the continuous mapping theorem and Lemma 4:

2

n

n−1∑
i=0

∆2
n

∆3
n

(
a1(Zi; θ

(1)
0 )− a1(Zi; θ̂

(1)
n,∆n

)
)2

b2(Zi;σ)(∂ya1(Zi; θ̂
(1)
n,∆n

))2
=

2

n2

n−1∑
i=0

(√
n

∆n
(θ

(1)
0 − θ̂

(1)
n,∆n

)
)2
g2(Xi)

b2(Zi;σ)(∂ya1(Zi; θ̂
(1)
n,∆n

))2

P0−→ 0.
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Then, T2 decomposes as:

1

n

n−1∑
i=0

(Xi+1 − Ā1(Zi; θ̂
(1)
n,∆n

, θ(2), σ))(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ(2), σ))

∆2
nb

2(Zi;σ)(∂ya1(Zi; θ̂
(1)
n,∆n

))
=

1

n

n−1∑
i=0

(∂ya1(Zi; θ
(1)
0 ))

b2(Zi;σ)(∂ya1(Zi; θ̂
(1)
n,∆n

))

(Xi+1 − Ā1(Zi; θ
(1)
0 , θ(2), σ))(Yi+1 − Ā2(Zi; θ̂

(1)
n,∆n

, θ
(2)
0 , σ))

∆2
n(∂ya1(Zi; θ

(1)
0 ))

+

∆n(Xi+1 − Ā1(Zi; θ
(1)
0 , θ(2), σ))(a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2)))

∆2
n(∂ya1(Zi; θ

(1)
0 ))

+

∆n(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ
(2)
0 , σ))(a1(Zi; θ

(1)
0 )− a1(Zi; θ̂

(1)
n,∆n

))

∆2
n(∂ya1(Zi; θ

(1)
0 ))

+

∆2
n(a1(Zi; θ

(1)
0 )− a1(Zi; θ̂

(1)
n,∆n

))(a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2)))

∆2
n(∂ya1(Zi; θ

(1)
0 ))


Again, using Lemma 6, we know that the second and the third terms are converging to 0
in probability. For the first term, thanks to Lemma 5 we have the following convergence:

1

n

n−1∑
i=0

(Xi+1 − Ā1(Zi; θ
(1)
0 , θ(2), σ))(Yi+1 − Ā2(Zi; θ̂

(1)
n,∆n

, θ
(2)
0 , σ))(∂ya1(Zi; θ

(1)
0 ))

∆2
nb

2(Zi;σ)(∂ya1(Zi; θ
(1)
0 ))(∂ya1(Zi; θ̂

(1)
n,∆n

))

P0−→

∫
b2(z;σ0)

b2(z;σ)

∂ya1(z; θ
(1)
0 )

∂ya1(z; θ̂
(1)
n,∆n

)
ν0(dz)

Finally, we treat the last term:

1

n

n−1∑
i=0

∆2
n(a1(Zi; θ

(1)
0 )− a1(Zi; θ̂

(1)
n,∆n

))(a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2)))

∆2
nb

2(Zi;σ)(∂ya1(Zi; θ̂
(1)
n,∆n

))

Using again the Lipschitz continuity of a1, Theorem 1 and the Slutsky’s theorem, we
obtain a convergence to zero in probability for this term. T4 converges in probability to
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∫
log b2(z;σ)ν0(dz) due to Lemma 4. Consider T3:

T3 =
1

n∆n

n−1∑
i=0

1

b2(Zi;σ)

[
(Yi+1 − Ā2(Zi; θ̂

(1)
n,∆n

, θ
(2)
0 , σ))2+

2(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ
(2)
0 , σ))(Ā2(Zi; θ̂

(1)
n,∆n

, θ
(2)
0 , σ)− Ā2(Zi; θ̂

(1)
n,∆n

, θ(2), σ))+

(Ā2(Zi; θ̂
(1)
n,∆n

, θ
(2)
0 , σ)− Ā2(Zi; θ̂

(1)
n,∆n

, θ(2), σ))2
]

=
1

n∆n

n−1∑
i=0

(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ
(2)
0 , σ))2

b2(Zi;σ)
+

2
∆n

n∆n

n−1∑
i=0

(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ
(2)
0 , σ))(a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2)))

b2(Zi;σ)
+

∆2
n

n∆n

n−1∑
i=0

(a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2)))2

b2(Zi;σ)

Thanks to Lemma 5 and 6 we conclude that

T3
P0−→
∫
b2(z;σ0)

b2(z;σ)
ν0(dz) + 0 + 0

Finally, we obtain

1

n
Ln,∆n(θ, σ2;Z0:n)

P0−→

∫ b2(z;σ0)

b2(z;σ)

3

 ∂ya1(z; θ
(1)
0 )

∂ya1(z; θ̂
(1)
n,∆n

)

2

− 3
∂ya1(z; θ

(1)
0 )

∂ya1(z; θ̂
(1)
n,∆n

)
+ 1

+ log b2(z;σ)

 ν0(dz)

By assumption (A5) ∂ya1(·) does not depend on θ(1), thus
∂ya1(z;θ

(1)
0 )

∂ya1(z;θ̂
(1)
n,∆n

)
= 1. It gives the

Lemma.

Theorem 2. The proof follows the standard pattern. Throughout the proof we assume that
θ(2) and σ ∈ R in order to simplify the notations. We write the Taylor expansion of the
contrast function defined in (17) and apply an appropriate scaling∫

Cn,∆n (ϕ0 + u(ϕ̂n,∆n − ϕ0); z) du En,∆n = −Dn,∆n(ϕ0),

where by ϕ we now denote (θ(2), σ) and the parameter θ(1) is fixed to its estimate θ̂
(1)
n,∆n
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throughout the proof, and

Cn,∆n(θ) :=

[
1

n∆n

∂2

∂θ(2)∂θ(2)Ln,∆n(θ̂
(1)
n,∆n

, θ(2), σ;Z0:n) 1
n
√

∆n

∂2

∂σ∂θ(2)L(θ̂
(1)
n,∆n

, θ(2), σ;Z0:n)

1
n
√

∆n

∂2

∂θ(2)∂σ
Ln,∆n(θ̂

(1)
n,∆n

, θ(2), σ;Z0:n) 1
n

∂2

∂σ∂σLn,∆n(θ̂
(1)
n,∆n

, θ(2), σ;Z0:n)

]
,

En,∆n :=

[√
n∆n(θ̂

(2)
n − θ(2)

0 )√
n(σ̂n − σ0)

]
, Dn,∆n =

[
1√
n∆n

∂
∂θ(2)Ln,∆n(θ̂

(1)
n,∆n

, θ(2), σ;Z0:n)

1√
n
∂
∂σLn,∆n(θ̂

(1)
n,∆n

, θ(2), σ;Z0:n)

]
.

First, we compute the higher-order terms of the partial derivatives of first and second order
with respect to θ(2) and σ:

∂

∂θ(2)
Ln,∆n(·) =

n−1∑
i=1

−6
∆n(∂θ(2)a2)(Xi+1 − Ā1(Zi; θ̂

(1)
n,∆n

, θ(2), σ))

∆2
nb

2(Zi;σ)(∂
θ̂
(1)
n,∆n

a1)
+

2
∆n(∂θ(2)a2)(Yi+1 − Ā2(Zi; θ̂

(1)
n,∆n

, θ(2), σ))

∆nb2(Zi;σ)

 =: D1
n,∆n

∂

∂σ
Ln,∆n(·) = −

n−1∑
i=1

∂σb

b3(Zi;σ)

6
(Xi+1 − Ā1(Zi; θ̂

(1)
n,∆n

, θ(2), σ))2

∆3
n(∂

θ̂
(1)
n,∆n

a1)2
−

6
(Xi+1 − Ā1(Zi; θ̂

(1)
n,∆n

, θ(2), σ)(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ(2), σ))

∆2
n(∂

θ̂
(1)
n,∆n

a1)
+

2
(Yi+1 − Ā2(Zi; θ̂

(1)
n,∆n

, θ(2), σ))2

∆n

+
∂σb

b(Zi;σ)
=: D2

n,∆n

∂2

∂θ(2)∂θ(2)
Ln,∆n(·) =

n−1∑
i=1

−6
∆n(∂2

θ(2)θ(2)a2)(Xi+1 − Ā1(Zi; θ̂
(1)
n,∆n

, θ(2), σ))

∆2
nb

2(Zi;σ)(∂θ(1)a1)
+

2
∆n(∂2

θ(2)θ(2)a2)(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ(2), σ))

∆nb2(Zi;σ)
+

∆2
n(∂θ(2)a2)2

∆nb2(Zi;σ)

 =: C11
n,∆n

∂2

∂θ(2)∂σ
Ln,∆n(·) =

n−1∑
i=1

∂σb

b2(Zi;σ)

12
∆n(∂θ(2)a2)(Xi+1 − Ā1(Zi; θ̂

(1)
n,∆n

, θ(2), σ))

∆2
nb(Zi;σ)(∂θ(1)a1)

+

4
∆n(∂θ(2)a2)(Yi+1 − Ā2(Zi; θ̂

(1)
n,∆n

, θ(2), σ))

∆nb(Zi;σ)

 =: C12
n,∆n

= C21
n,∆n
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∂2

∂σ2
Ln,∆n(·) = −

n−1∑
i=1

6(∂σb)
2 − 2b(Zi;σ)(∂2

σσb)

b4(Zi;σ)

6
(Xi+1 − Ā1(Zi; θ̂

(1)
n,∆n

, θ(2), σ))2

∆3
n(∂θ(1)a1)2

−

6
(Xi+1 − Ā1(Zi; θ̂

(1)
n,∆n

, θ(2), σ))(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ(2), σ))

∆2
n(∂θ(1)a1)

+ 2
(Yi+1 − Ā2(Zi; θ̂

(1)
n,∆n

, θ(2), σ))2

∆n

+

2
b(Zi;σ)(∂2

σσb)− (∂σb)
2

b2(Zi;σ)
=: C22

n,∆n

We start with proving the convergence for the terms Cn,∆n . Then we can obtain a conver-
gence in probability after few technical steps. We start with C11

n,∆n
:

1

n∆n
C11
n,∆n

=
1

n∆n

n−1∑
i=1

−6
∆n(∂2

θ(2)θ(2)a2)(Xi+1 − Ā1(Zi; θ̂
(1)
n,∆n

, θ(2), σ))

∆2
nb

2(Zi;σ)(∂θ(1)a1)
+

2
∆n(∂2

θ(2)θ
(2)
0

a2)(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ(2), σ))

∆nb2(Zi;σ)
+

∆2
n(∂θ(2)a2)2

∆nb2(Zi;σ)

 =

1

n∆n

n−1∑
i=1

−6
∆n(∂2

θ(2)θ(2)a2)(Xi+1 − Ā1(Zi; θ
(1)
0 , θ(2), σ))

∆2
nb

2(Zi;σ)(∂θ(1)a1)
− 6

∆2
n(∂2

θ(2)θ(2)a2)(a1(Zi; θ
(1)
0 )− a1(Zi; θ̂

(1)
n,∆n

))

∆2
nb

2(Zi;σ)(∂θ(1)a1)

2
∆n(∂2

θ(2)θ(2)a2)(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ(2), σ))

∆nb2(Zi;σ)
+

∆2
n(∂θ(2)a2)2

∆nb2(Zi;σ)


Note that thanks to Lemma 6 we know that

1

n∆n

n−1∑
i=1

[
−6

∆n(∂2
θ(2)θ(2)a2)(Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ))

∆2
nb

2(Zi;σ)(∂θ(1)a1)
+

2
∆n(∂2

θ(2)θ(2)a2)(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ(2), σ))

∆nb2(Zi;σ)
+

∆2
n(∂θ(2)a2)2

∆nb2(Zi;σ)

]
P0−→
∫

(∂θ(2)a2)2

b2(z;σ)
ν0(dz)
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What about the remaining term, thanks to the assumption (A5) we have:

− 6

n∆n

n−1∑
i=1

(∂2
θ(2)θ(2)a2)(a1(Zi; θ

(1)
0 )− a1(Zi; θ̂

(1)
n,∆n

))

b2(Zi;σ)(∂θ(1)a1)
=

− 6√
n∆n

1

n

n−1∑
i=1

(∂2
θ(2)θ(2)a2)a1(Zi;

√
n

∆n

(
θ

(1)
0 − θ̂

(1)
n,∆n

)
)

b2(Zi;σ)(∂θ(1)a1)

We know that
(
θ

(1)
0 − θ̂

(1)
n,∆n

)√
n

∆n
is normally distributed by Theorem 1, and 1

n

∑n−1
i=1

(∂2

θ(2)θ(2)
a2)

b2(Zi;σ)(∂
θ(1)a1)

converges to its invariant density by Lemma 4. Then by Slutsky’s and the continuous
mapping theorem the product also converges in distribution to a normal variable, which
is, divided by

√
n∆n converges to zero since n∆n →∞ by design. However, as n∆n →∞,

this term converges to 0 in probability. As a result,

1

n∆n
C11
n,∆n

P0−→
∫

(∂θ(2)a2)2

b2(z;σ)
ν0(dz)

With the same arguments we prove that 1
n
√

∆n
C12
n,∆n

= 1
n
√

∆n
C21
n,∆n

P0−→ 0 and that

1

n
C22
n,∆n

P0−→ −4

∫
(∂σb)

2

b2(z;σ0)
ν0(dz)

Then we consider the remaining term, recalling the assumption (A5): We start with the
term

1√
n∆n

D1
n,∆n

=
1√
n∆n

n−1∑
i=1

−6
∆n(∂θ(2)a2)(Xi+1 − Ā1(Zi; θ̂

(1)
n,∆n

, θ(2), σ))

∆2
nb

2(Zi;σ)(∂θ(1)a1)
+

2
∆n(∂θ(2)a2)(Yi+1 − Ā2(Zi; θ̂

(1)
n,∆n

, θ(2), σ))

∆nb2(Zi;σ)

 =
1√
n∆n

n−1∑
i=1

[
−6

(∂θ(2)a2)(Xi+1 − Ā1(Zi; θ
(1)
0 , θ(2), σ))

∆nb2(Zi;σ)(∂θ(1)a1)
−

6
(∂θ(2)a2)a1(Zi; θ̂

(1)
n,∆n

− θ(1)
0 )

b2(Zi;σ)(∂θ(1)a1)
+ 2

(∂θ(2)a2)(Yi+1 − Ā2(Zi; θ̂
(1)
n,∆n

, θ(2), σ))

b2(Zi;σ)


For the first and the third term we simply apply Lemma 7 and obtain convergence in

distribution to N
(

0, ν0

(
(∂
θ(2)a2)2

b2(z;σ0)

))
. For the second term we apply the result of Theorem

1, as well as the continuous mapping and Slutsky’s theorem we may state that:

−6

n−1∑
i=1

(∂θ(2)a2) a1(Zi;
√

n
∆n

(θ̂
(1)
n,∆n

− θ(1)
0 ))

b2(Zi;σ)(∂θ(1)a1)

D−→ −6

∫
(∂θ(2)a2)

b2(z;σ)(∂θ(1)a1)
a1(z; η̃)ν0(dz),
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where η̃ is distributed as stated in Theorem 1. Then as n→ 0,

− 6

n

n−1∑
i=1

(∂θ(2)a2) a1(Zi;
√

n
∆n

(θ̂
(1)
n,∆n

− θ(1)
0 ))

b2(Zi;σ)(∂
θ̂
(1)
n,∆n

a1)

P0−→ 0

By analogy, we prove the convergence for the term D2
n,∆n

, obtaining:

1√
n
D2
n,∆n

D−→ N
(

0, 32ν0

(
(∂σb)

2

b2(z;σ0)

))
That gives the result.

7.4 Consistency and normality of the least squares contrast

Theorem 3. The proof will follow the one of the classical contrast. Since the estimator for
each variable converges at different speed, we prove the convergence under different scaling
of (22), which is written as

LLSEn,∆n
(θ(1), θ(2);Z0:n) =

1

n

n−1∑
i=0

(
(Xi+1 − Ā1(Zi; θ

(1), θ(2), σ))2

∆3
n

+
(Yi+1 − Ā2(Zi; θ

(1), θ(2), σ))2

∆n

)

Consistency of θ̂(1). First, consider:

∆n

[
LLSEn,∆n

(θ(1), θ(2);Z0:n)− LLSEn,∆n
(θ

(1)
0 , θ(2);Z0:n)

]
=

∆n

n∆3
n

n−1∑
i=0

[
(Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ) + Ā1(Zi; θ

(1)
0 , θ(2), σ)−

Ā1(Zi; θ
(1), θ(2), σ))2 − (Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ))2

]
=

∆2
n

n∆3
n

n−1∑
i=0

[
2(Xi+1 − Ā1(Zi; θ

(1)
0 , θ(2), σ))(a1(Zi; θ

(1)
0 )− a1(Zi; θ

(1)))+

∆n(a1(Zi; θ
(1)
0 )− a1(Zi; θ

(1)))2 +O(∆2
n)
]

Then we have from Lemmas 5, 6:

2

n∆n

n−1∑
i=0

(Xi+1 − Ā1(Zi; θ
(1)
0 , θ(2), σ))(a1(Zi; θ

(1)
0 )− a1(Zi; θ

(1)))
P0−→ 0

1

n

n−1∑
i=0

(a1(Zi; θ
(1)
0 )− a1(Zi; θ

(1)))2 P0−→
∫

(a1(z; θ
(1)
0 )− a1(z; θ(1)))2ν0(dz)
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We conclude that there exists a subsequence θ̂
(1)
n,∆n

= arg min
θ

LLSEn,∆n
(θ;Z0:n) that tends

to θ∞. Since the minimum is attained at the point θ0 and from (A4), we conclude that
θ∞ = θ0. Hence the estimator is consistent.
Consistency of θ̂(2). Consider:

1

∆n

[
LLSEn,∆n

(θ(1), θ(2);Z0:n)− LLSEn,∆n
(θ(1), θ

(2)
0 ;Z0:n)

]
=[

1

n∆2
n

n−1∑
i=0

(Yi+1 − Ā2(Zi; θ
(1), θ

(2)
0 , σ) + Ā2(Zi; θ

(1), θ
(2)
0 , σ)− Ā2(Zi; θ

(1), θ(2), σ))2−

(
Yi+1 − Ā2(Zi; θ

(1), θ
(2)
0 , σ))2

]
=

∆n

n∆2
n

n−1∑
i=0

[
2(Yi+1 − Ā2(Zi; θ

(1), θ
(2)
0 , σ))(a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2)))+

∆n(a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2)))2 +O(∆2
n)
]

Thanks to Lemmas 4, 5:

2∆n

n∆2
n

n−1∑
i=0

(Yi+1 − Ā2(Zi; θ
(1), θ

(2)
0 , σ))(a2(Zi; θ

(2)
0 )− a2(Zi; θ

(2)))
P0−→ 0

∆2
n

n∆2
n

n−1∑
i=0

(a2(Zi; θ
(2)
0 )− a2(Zi; θ

(2)))2 P0−→
∫

(a2(z; θ
(2)
0 )− a2(z; θ(2)))2ν0(dz)

The consistency is concluded following the same arguments as in the case of θ(1).
Asymptotic normality. We apply again a Taylor formula for a function (22):∫

Cn

(
θ0 + u(θ̂n − θ0

)
)du En = Dn(θ0),

where we define

Cn(θ) :=

[
∆n
n

∂2

∂θ(1)∂θ(1)LLSEn,∆n
(θ;Z0:n) 1

n
∂2

∂θ(1)∂θ(2)LLSEn,∆n
(θ;Z0:n)

1
n

∂2

∂θ(1)∂θ(2)LLSEn,∆n
(θ;Z0:n) 1

n∆n

∂2

∂θ(2)∂θ(2)LLSEn,∆n
(θ;Z0:n)

]
,

En :=

[√
n

∆n
(θ̂

(1)
n,∆n

− θ(1)
0 )

√
n∆n(θ̂

(2)
n − θ(2)

0 )

]
, Dn(θ) =

[ √
∆n

n
∂

∂θ(1)LLSEn,∆n
(θ;Z0:n)

1
n
√

∆n

∂
∂θ(2)LLSEn,∆n

(θ;Z0:n)

]
.

Using Lemma 7 we get:

Dn(θ0)
D−→ −2N

(
0, I2 ·

[
1
3

∫
b2(z;σ0)(∂ya1(z; θ

(1)
0 ))2(∂θ(1)a1(z; θ

(1)
0 ))2ν0(dz)∫

b2(z;σ0)(∂θ(2)a2(z; θ
(2)
0 ))2ν0(dz)

])
,

47



where I2 is 2× 2 identity matrix. And by Lemmas 5, 4 we have the result for Cn(θ):

Cn(θ0)
P0−→ −2

[∫
(∂θ(1)a1(z; θ

(1)
0 ))2ν0(dz) 0

0
∫

(∂θ(2)a2(z; θ
(2)
0 ))2ν0(dz)

]
.

That, in the combination with the consistency result, gives the theorem.
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