Parametric inference for hypoelliptic ergodic diffusions with full observations - Archive ouverte HAL
Article Dans Une Revue Statistical Inference for Stochastic Processes Année : 2020

Parametric inference for hypoelliptic ergodic diffusions with full observations

Résumé

Multidimensional hypoelliptic diffusions arise naturally in different fields, for example to model neuronal activity. Estimation in those models is complex because of the degenerate structure of the diffusion coefficient. In this paper we consider hypoelliptic diffusions, given as a solution of two-dimensional stochastic differential equations (SDEs), with the discrete time observations of both coordinates being available on an interval $T = n\Delta_n$, with $\Delta_n$ the time step between the observations. The estimation is studied in the asymptotic setting, with $T\to\infty$ as $\Delta_n\to 0$. We build a consistent estimator of the drift and variance parameters with the help of a discretized log-likelihood of the continuous process. We discuss the difficulties generated by the hypoellipticity and provide a proof of the consistency and the asymptotic normality of the estimator. We test our approach numerically on the hypoelliptic FitzHugh-Nagumo model, which describes the firing mechanism of a neuron.
Fichier principal
Vignette du fichier
Paper2020_final.pdf (714.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01704010 , version 1 (08-02-2018)
hal-01704010 , version 2 (11-01-2019)
hal-01704010 , version 3 (24-06-2020)
hal-01704010 , version 4 (15-07-2020)

Identifiants

Citer

Anna Melnykova. Parametric inference for hypoelliptic ergodic diffusions with full observations. Statistical Inference for Stochastic Processes, 2020, 23, pp.595-635. ⟨10.1007/s11203-020-09222-4⟩. ⟨hal-01704010v4⟩
437 Consultations
369 Téléchargements

Altmetric

Partager

More