An example of non-uniqueness for Radon transforms with continuous positive rotation invariant weights - Archive ouverte HAL
Article Dans Une Revue The Journal of Geometric Analysis Année : 2018

An example of non-uniqueness for Radon transforms with continuous positive rotation invariant weights

Résumé

We consider weighted Radon transforms $R_W$ along hyperplanes in $R^3$ with strictly positive weights $W$. We construct an example of such a transform with non-trivial kernel $\mathrm{Ker}R_W$ in the space of infinitely smooth compactly supported functions and with continuous weight. Moreover, in this example the weight $W$ is rotation invariant. In particular, by this result we continue studies of Quinto (1983), Markoe, Quinto (1985), Boman (1993) and Goncharov, Novikov (2017). We also extend our example to the case of weighted Radon transforms along two-dimensional planes in $R^d$ , $d \geq 3$.
Fichier principal
Vignette du fichier
ninj_planes.pdf (179.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01593781 , version 1 (26-09-2017)
hal-01593781 , version 2 (14-11-2017)

Identifiants

Citer

Fedor O Goncharov, Roman G Novikov. An example of non-uniqueness for Radon transforms with continuous positive rotation invariant weights. The Journal of Geometric Analysis, 2018, 28 (4), pp.3807-3828. ⟨10.1007/s12220-018-0001-y⟩. ⟨hal-01593781v2⟩
556 Consultations
181 Téléchargements

Altmetric

Partager

More