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 and Goncharov, Novikov (2017). We also extend our example to the case of weighted Radon transforms along two-dimensional planes in R d , d ≥ 3.

Introduction

We consider weighted Radon transforms RW in R d defined by

RW f (s, θ) = xθ=s W (x, θ)f (x) dx, (1.1) 
s ∈ R, θ ∈ S d-1 , x ∈ R d , d ≥ 2,
where W = W (x, θ) is the weight, f = f (x) is a test function on R d . We assume that

W = W ≥ c > 0, W ∈ L ∞ (R d × S d-1 ), (1.2)
where W denotes the complex conjugate of W , c is a constant. The aforementioned transforms RW arise in various domains of pure and applied mathematics; see, e.g., [START_REF] Beylkin | The inversion problem and applications of the generalized Radon transform[END_REF], [START_REF] Beylkin | Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform[END_REF], [START_REF] Boman | Support theorems for real-analytic Radon transforms[END_REF], [START_REF] Boman | An example of non-uniqueness for a generalized Radon transform[END_REF], [START_REF] Finch | Uniqueness for the attenuated X-ray transform in the physical range[END_REF], [START_REF] Lavrent'ev | A class of operator equations of the first kind[END_REF], [START_REF] Goncharov | An analog of Chang inversion formula for weighted Radon transforms in multidimensions[END_REF], [START_REF] Goncharov | An iterative inversion of weighted Radon transforms along hyperplanes[END_REF], [START_REF] Goncharov | An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions[END_REF], [START_REF] Kunyansky | Generalized and attenuated Radon transforms: restorative approach to the numerical inversion[END_REF], [START_REF] Natterer | The Mathematics of Computerized Tomography[END_REF], [START_REF] Novikov | Weighted Radon transforms and first order differential systems on the plane[END_REF], [START_REF] Quinto | The invertibility of rotation invariant Radon transforms[END_REF], [START_REF] Quinto | The invertibility of rotation invariant Radon transforms[END_REF] and references therein.

In particular, studies on the transforms RW under assumptions (1.2) were recently continued in [START_REF] Goncharov | An analog of Chang inversion formula for weighted Radon transforms in multidimensions[END_REF], [START_REF] Goncharov | An iterative inversion of weighted Radon transforms along hyperplanes[END_REF], [START_REF] Goncharov | An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions[END_REF] for d ≥ 3.

Note that the works [START_REF] Goncharov | An analog of Chang inversion formula for weighted Radon transforms in multidimensions[END_REF], [START_REF] Goncharov | An iterative inversion of weighted Radon transforms along hyperplanes[END_REF] extend to the case of RW , d ≥ 3, the two-dimensional injectivity and reconstruction results of [START_REF] Kunyansky | Generalized and attenuated Radon transforms: restorative approach to the numerical inversion[END_REF], [START_REF] Novikov | Weighted Radon transforms for which Chang's approximate inversion formula is exact[END_REF], [START_REF] Novikov | Weighted Radon transforms and first order differential systems on the plane[END_REF], [START_REF] Guillement | Inversion of weighted Radon transforms via finite Fourier series weight approximations[END_REF].

On the other hand, under assumptions (1.2), the work [START_REF] Goncharov | An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions[END_REF] gives an example of RW , d ≥ 3, with nontrivial kernel in C ∞ 0 (R d ) (infinitely smooth functions with compact support). This example was constructed in [START_REF] Goncharov | An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions[END_REF] proceeding from the example of non-uniqueness of [START_REF] Boman | An example of non-uniqueness for a generalized Radon transform[END_REF] for RW in R 2 and a recent result of [START_REF] Goncharov | An analog of Chang inversion formula for weighted Radon transforms in multidimensions[END_REF].

In the two-dimensional example of non-uniqueness of [START_REF] Boman | An example of non-uniqueness for a generalized Radon transform[END_REF] the weight W satisfies (1.2), for d = 2, and is infinitely smooth everywhere. In the multidimensional example of non-uniqueness of [START_REF] Goncharov | An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions[END_REF] the weight satisfies (1.2), for d ≥ 3, is infinitely smooth almost everywhere but is not yet continuous at some points.

In the present work we construct an example of RW , for d = 3, with non-trivial kernel in C ∞ 0 (R 3 ), where W satisfies (1.2) and is continuous everywhere. Moreover, in this example W is rotation invariant and RW f ≡ 0 for some non-zero spherically symmetric f ∈ C ∞ 0 (R 3 ). The rotation invariancy of the latter example is its principal advantage in comparison with the aforementioned examples of [START_REF] Boman | An example of non-uniqueness for a generalized Radon transform[END_REF] and [START_REF] Goncharov | An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions[END_REF]. By our rotation invariant example of non-uniqueness we also continue studies of [START_REF] Markoe | An elementary proof of local invertibility for generalized and attenuated Radon transforms[END_REF], where an example of non-uniqueness for RW was constructed for d = 2. In the example of [START_REF] Markoe | An elementary proof of local invertibility for generalized and attenuated Radon transforms[END_REF] the weight W is bounded and positive but is not yet continuous and strictly positive. The continuity and strict positivity of W is the principal advantage of the example of the present work in comparison with the example of [START_REF] Markoe | An elementary proof of local invertibility for generalized and attenuated Radon transforms[END_REF].

Following [START_REF] Quinto | The invertibility of rotation invariant Radon transforms[END_REF] we say that W is rotation invariant if and only if

W (x, θ) = U (|x -(xθ)θ|, xθ), x ∈ R d , θ ∈ S d-1 , (1.3)
for some positive and continuous U such that

U (r, s) = U (-r, s) = U (r, -s), r ∈ R, s ∈ R. (1.4)
On the other hand, we recall that weighted Radon transforms RW in R d with smooth weights W satisfying properties (1.2), (1.3), (1.4) are injective for f ∈ L 2 0 (R d ) (square integrable functions on R d with compact support); see [START_REF] Quinto | The invertibility of rotation invariant Radon transforms[END_REF]. Here the smoothness of W can be specified, at least, as C 1 for d = 2 and d = 3. In view of the aforementioned counterexamples of [START_REF] Markoe | An elementary proof of local invertibility for generalized and attenuated Radon transforms[END_REF] and of the present work, some smoothness of W is crucial for these injectivity results.

In the present work we also extend our rotation invariant example of non-uniqueness for RW in R 3 to the case of weighted Radon transforms R d,2

W along two-dimensional planes in R d , d > 3; see Section 4. In this case R d,2 W f is defined on P d,2 (manifold of all oriented two-dimensional planes in R d ) and is overdetermined already. That is dim

P d,2 = 3d -6 > dim R d = d for d > 3. (1.5) Nevertheless, R d,2 W f ≡ 0 on P d,2
in our result. We expect that the results of the present work admit generalizations to the weighted Radon transforms R d,n W along n-dimensional planes in R d for arbitrary d and n such that 1 ≤ n < d, d ≥ 2. For n = 1 such results are already obtained in [START_REF] Goncharov | A breakdown of injectivity for weighted ray transforms in multidimensions[END_REF].

Note also that the construction of the present work was developed in a large extent in the process of adopting the Boman's construction of the aforementioned work [START_REF] Boman | An example of non-uniqueness for a generalized Radon transform[END_REF].

In Section 2 we give some preliminaries.

Our main results are formulated in detail in Sections 3, 4. Proofs are given in Sections 5-8.

Some preliminaries

Notations for d = 3. Let

B = {x ∈ R 3 : |x| < 1}, B = {x ∈ R 3 : |x| ≤ 1}, (2.1) 
P = R × S 2 , (2.2) P0(δ) = {(s, θ) ∈ P : |s| > δ}, (2.3) P1(δ) = P\P0(δ) = {(s, θ) ∈ P : |s| ≤ δ}, δ > 0,
(2.4)

P(Λ) = {(s, θ) ∈ P : s ∈ Λ}, Λ ⊂ R, (2.5 
)

Ω(Λ) = {(x, θ) ∈ R 3 × S 2 : xθ ∈ Λ}, Λ ⊂ R, (2.6) Js,ε = J |s|,ε = (-|s| -ε, -|s| + ε) ∪ (|s| -ε, |s| + ε) ⊂ R, s ∈ R, ε > 0.
(2.7)

Note that P0(δ), P1(δ) of (2.3), (2.4) are particular cases of P (Λ) of formula (2.5).

In addition, we interpret P as the set of all oriented planes in R 3 . If P = (s, θ) ∈ P, then

P = P (s,θ) = {x ∈ R 3 : xθ = s} (modulo orientation) (2.8)
and θ gives the orientation of P (in the sense that ordered tuple (e1, e2, θ) is positively oriented in R 3 with any orthonormal positively oriented basis e1, e2 on P ). The set P0(δ) in (2.3) is considered as the set of all oriented planes in R 3 which are positioned at distance greater than δ from the origin.

The set P1(δ) in (2.4) is considered as the set of all oriented planes in R 3 which are located at distance less or equal than δ.

Rotation invariancy for d = 3. Symmetries (1.3), (1.4) of W can be also written as Additional notations. For a function f on R d we denote its restriction to a subset Σ by f |Σ.

W (x, θ) = Ũ (|x|, xθ), x ∈ R 3 , θ ∈ S 2 , (2.9) Ũ (r, s) = Ũ (r, -s), Ũ (r, s) = Ũ (-r, s), r ∈ R, s ∈ R, ( 2 
By C0, C ∞ 0 we denote continuous compactly supported and infinitely smooth compactly supported functions, respectively.

Partition of unity. We recall the following classical result (see Theorem 5.6 in [START_REF] Do Carmo | Riemannian Geometry[END_REF]):

Let M be a C ∞ -manifold, which is Hausdorff and satisfies second countability axiom (i.e. has countable base). Let also {Ui} ∞ i=1 be the open locally-finite cover of M. Then there exists a C ∞ -smooth locally-finite partition of unity {ψi} ∞ i=1 on M, such that supp ψi ⊂ Ui.

(2.11)

In particular, any open interval (a, b) ⊂ R and P ≃ R × S 2 satisfy conditions of the aforementioned statement. It will be used in Subsection 3.4.

Main results for d = 3

Theorem 1. There exist a non-zero spherically symmetric function f ∈ C ∞ 0 (R 3 ) with support in B, and W

satisfying (1.2)-(1.4) such that RW f ≡ 0, (3.1)
where RW is defined in (1.1).

The construction of f and W proving Theorem 1 is presented below in this section. This construction adopts considerations of [START_REF] Boman | An example of non-uniqueness for a generalized Radon transform[END_REF]. In particular, we construct f , first, and then W .

Construction of f

The function f is constructed as follows: Lemma 1 is proved in Section 5.

f = ∞ k=1 f k k! , (3.2) f k (x) = f k (|x|) = Φ(2 k (1 -|x|)) cos(8 k |x| 2 ), x ∈ R 3 , k = 1, 2, . . . , (3.3) 
for arbitrary Φ ∈ C ∞ (R) such that supp Φ = [4/5, 6/5], (3.4) 0 < Φ(t) ≤ 1 for t ∈ (4/5, 6/5), (3.5) 

Construction of W

In our example W is of the following form: there exists δ0 ∈ (1/2, 1) such that:

W (x, θ) = N i=0 ξi(|xθ|)Wi(x, θ) = ξ0(|xθ|)W0(x, θ) + N i=1 ξi(|xθ|)Wi(x, θ), x ∈ R 3 , θ ∈ S 2 , (3.7) where {ξi(s), s ∈ R} N i=0 is a C ∞ -smooth partition of unity on R, (3.8) ξi(s) = ξi(-s), s ∈ R, i = 0, N , (3.9 
W0(x, θ) ≥ 1/2 if |xθ| > δ0, W0(x, θ) = 1 if |xθ| ≥ 1, (3.12) RW 0 f (s, θ) = 0 for |s| > 1/2, θ ∈ S 2 , (3.13)
where RW 0 is defined according to (1.1) for W = W0, f is given by (3.2), (3.3). In addition,

supp ξ0 ⊂ (-∞, -δ0) ∪ (δ0, +∞), (3.14) ξ0(s) = 1 for |s| ≥ 1, (3.15)
where δ0 is the number of (3.12).

In particular, from (3.8), (3.12), (3.14) it follows that

W0(x, θ)ξ0(|xθ|) > 0 if ξ0(|xθ|) > 0. (3.16)
Remark 1. The result of (3.11)-(3.13) can be considered as a counterexample to the Cormack-Helgason support theorem (see Theorem 3.1 in [START_REF] Natterer | The Mathematics of Computerized Tomography[END_REF]) in the framework of the theory of weighted Radon transforms under assumptions (1.2) and even under assumptions (1.2)-(1.4).

In addition, ξi(|xθ|)Wi(x, θ) are bounded, continuous and rotation invariant on R 3 × S 2 , (3.17) We point out that the construction of W0 of (3.7) is substantially different from the construction of W1, . . . , WN . In particular, the weight W0 is defined on the planes P ∈ P which can be close to the boundary ∂B of B which results in restrictions on the smoothness of W0.

Wi(x, θ) ≥ 1/2 if ξi(|xθ|) = 0, (3.18) RW i f (s, θ) = 0 if ξi(|s|) = 0, (3.19) i = 1, N , x ∈ R 3 , θ ∈ S 2 , s ∈ R. ( 3 

Construction of W

0 Let {ψ k } ∞ k=1 be a C ∞ partition of unity on (1/2, 1), such that supp ψ k ⊂ (1 -2 -k+1 , 1 -2 -k-1 ), k ∈ N. (3.21) Note that 1 -2 -(k-2)-1 < 1 -2 -k (6/5), k ≥ 3. (3.22) Therefore, ∀s0, t0 ∈ R : s0 ∈ supp ψ k-2 , t0 ∈ supp Φ(2 k (1 -t)) ⇒ s0 < t0, k ≥ 3. (3.23)
The weight W0 is defined by the following formulas

W0(x, θ) =    1 -G(x, θ) ∞ k=3 k!f k (x) ψ k-2 (|xθ|) H k (x, θ) , 1/2 < |xθ| < 1, 1, |xθ| ≥ 1 , (3.24) G(x, θ) = yθ=xθ f (y) dy, H k (x, θ) = yθ=xθ f 2 k (y) dy, (3.25) x ∈ R 3 , θ ∈ S 2 ,
where f k are defined in (3.3). Formula (3.24) implies that W0 is defined on P0(1/2) ⊂ P. Due to (3.3) and (3.23), in (3.25) we have that

H k (x, θ) = 0 if ψ k-2 (|xθ|) = 0.
Also, for any fixed (x, θ) ∈ R 3 × S 2 , 1/2 < |xθ| < 1, the series in the right hand-side of (3.24) has only a finite number of non-zero terms (in fact, no more than two) and, hence, W0 is well-defined.

By the spherical symmetry of f , functions G, H k in (3.24) are of the type (2.9), (2.10). Therefore, W0 is rotation invariant (in the sense (2.9), (2.10)).

Actually, formula (3.13) follows from (3.2)-(3.4), (3.24), (3.25) (see Subsection 5.2 for details).

Using the construction of W0 and the assumption that |xθ| > 1/2 (implying that sign(xθ) is locally constant) one can see that W0 is C ∞ on its domain of definition, possibly, except points with |xθ| = 1.

Lemma 2. Let W0 be defined by (3.24), (3.25). Then the following estimate holds:

|1 -W0(x, θ)| ≤ C0ρ(|xθ|) log 2 1 ρ(|xθ|) 4 , (3.26) W0(x, θ) → 1 as |xθ| → 1, (3.27) x ∈ R 3 , θ ∈ S 2 , 1/2 < |xθ| < 1.
where ρ = ρ(s) = 1s, s ∈ (1/2, 1), C0 is a positive constant depending on Φ.

Lemma 2 is proved in Section 6. The result of Lemma 2 completes the proof of (3.12). This completes the description of W0 and δ0.

3.4 Construction of W 1 , . . . , W N and ξ 0 , . . . , ξ N Lemma 3. Let f ∈ C0(R 3 ) be spherically symmetric, P (s 0 ,θ 0 ) ∈ P, f |P (s 0 ,θ 0 ) ≡ 0 and f |P (s 0 ,θ 0 ) changes the sign. Then:

(i) there exist ε > 0 and weight W f,s 0 ,ε such that

RW f,s 0 ,ε f (s, θ) = 0 for s ∈ Js 0 ,ε, θ ∈ S 2 , (3.28)
where Js,ε is defined in (2.7), W f,s 0 ,ε is defined on the open set Ω(Js 0 ,ε), defined by (2.6);

(ii) weight W f,s 0 ,ε is bounded, continuous, strictly positive and rotation invariant on Ω(Js 0 ,ε).

Lemma 3 is proved in Section 7.

Let f be the function of (3.2), (3.3). Then, using Lemmas 1, 3 one can see that ∀δ ∈ (0, 1) there exist {Ji

= Js i ,ε i , Wi = W f,s i ,ε i } N i=1 such that Ji, i = 1, N , is an open cover of [-δ, δ]
and Wi satisfy (i) and (ii) (of Lemma 3) on Ω(Ji).

(3.29)

Actually, we consider (3.29) for the case of δ = δ0 of (3.12). Note that in this case {P(Ji)} N i=1 for Ji of (3.29) is an open cover of P1(δ0). To the set P0(δ0) we associate the open set

J0 = (-∞, δ0) ∪ (δ0, +∞) ⊂ R.
(3.30)

Therefore, the collection of intervals {Ji, i = 0, N } is an open cover of R.

We construct the partition of unity {ξi} N i=0 on R as follows:

ξi(s) = ξi(|s|) = 1 2 ( ξi(s) + ξi(-s)), s ∈ R, (3.31) supp ξi ⊂ Ji, i = 0, N , (3.32) 
where { ξi} Note that the transform R d,2 W is reduced to RW of (1.1) for d = 3. We say that W in (4.1) is rotation invariant if and only if

W (x, P ) = Ũ (|x|, dist(P, {0})), (4.3) Ũ (r, s) = Ũ (r, -s), Ũ (r, s) = Ũ (-r, s), r ∈ R, s ∈ R, (4.4)
where Ũ is some positive and continuous function on R × R, dist(P, {0}) denotes the distance from the origin {0} ∈ R d to the plane P . Note that W (x, P ) is independent of the orientation of P in this case. Consider Ũ and f such that

W (x, θ) = Ũ (|x|, |xθ|), f (x) = f (|x|), x ∈ R 3 , θ ∈ S 2 , (4.5)
for W and f of Theorem 1 of Section 3. Theorem 1 implies the following corollary:

Corollary 1. Let W and f be defined as W (x, P ) = Ũ (|x|, dist(P, {0})), P ∈ P d,2 , x ∈ P, (4.6)

f (x) = f (|x|), x ∈ R d , (4.7)
where Ũ , f are the functions of (4.5), d > 3. Then R d,2 W f ≡ 0 on P d,2 . (4.8)

In addition, the weight W is continuous strictly positive and rotation invariant, f is infinitely smooth compactly supported on R d and f ≡ 0.

Formula (4.8) is proved as follows:

R d,2 W (P ) = P Ũ (|x|, dist(P, {0})) f (|x|) dx = I def = P ′ Ũ (|x|, s) f (|x|) dx, (4.9) 
P ′ = {se3 + x1e1 + x2e2 : x = (x1, x2) ∈ R 2 }, s = dist(P, {0}),
where (e1, . . . , e d ) is the standard basis in R d . In addition, I = 0 by Theorem 1. Properties of W and f mentioned in Corollary 1 follow from definitions (4.6), (4.7) and properties of Ũ and f (arising in Theorem 1).

5 Proofs of Lemma 1 and formula (3.13)

Proof of Lemma 1

The spherical symmetry of f follows from (3.2), (3.3). The series in (3.2) converges uniformly with all derivatives of f k . Therefore, f ∈ C ∞ (R 3 ). Due to (3.2), (3.3), (3.4), (3.5) we have that supp

f k ⊂ B, k ≥ 1. Therefore, supp f ⊆ B.
It remains to show that f restricted to any straight line l in R 3 intersecting B changes the sign. This implies change of the sign for f |P for any plane P such that P ∩ B = ∅.

We consider

D k = {x ∈ R 3 : |x| ∈ (1 -2 -k (6/5), 1 -2 -k (4/5))}, k ≥ 1, (5.1) l(x0, ω) = {x ∈ R 3 : x = x(t) = x0 + ωt, t ∈ R}, ω ∈ S 2 , x0 ∈ R 3 , x0ω = 0. (5.2) Note that supp f k = D k ⊂ B.
Note also that the line l(x0, ω) intersects B if and only if |x0| < 1. Assuming that |x0| < 1 -2 -k (6/5), (5.3) 1):

we consider D k ∩ l(x0, ω) = I - k ⊔ I + k (see Figure
I - k = {x(t) : t ∈ (-t1, -t0)}, (5.4) 
I + k = {x(t) : t ∈ (t0, t1)}, (5.5) t0 := t0(k), t1 := t1(k). l(x 0 , ω) x 0 γ t 0 t 1 x(t) supp f k I + k 1 -2 -k (6/5) 1 -2 -k (4/5) 0 Figure 1.
One can see that assumption (5.3) holds for all k ≥ k0(|x0|) =ln 5 6 (1 -|x0|) . By the Cosine theorem we have (see Figure 1):

ϕ(t) := |x(t)| 2 = (t -t0) 2 + |x(t0)| 2 -2|x(t0)|(t -t0) cos(π -γ) for t ∈ [t0, t1].
(5.6)

One can see also that

γ ∈ [0, π/2], cos(π -γ) ≤ 0. (5.7) Let g k (t) := cos(8 k ϕ(t)), t ∈ [t1, t2],
(5.8)

where ϕ(t) is defined in (5.6).

It is sufficient to show that g k changes the sign on (t0, t1) for sufficiently large k.

Due to (3.2)-(3.5) this implies that f changes the sign on I + k . From (5.6), (5.7) we obtain the inequality

ϕ ′ (t) = 2(t -t0) -2|x(t0)| cos(π -γ) ≥ 0 for t ∈ (t0, t1), γ ∈ [0, π/2],
(5.9) which implies the phase in (5.8) is monotonously increasing on t ∈ (t0, t1).

The full variation V (t 0 ,t 1 ) (ϕ) of the monotonous phase ϕ(t) on (t0, t1) is given by the formula

V (t 0 ,t 1 ) (ϕ) = (t1 -t0) 2 -2|x(t0)|(t1 -t0) cos(π -γ).
(5.10) From (5.7), (5.10) we obtain the following inequality

V (t 0 ,t 1 ) (ϕ) ≥ (t1 -t0) 2 .
(5.11)

From (5.8), (5.11) it follows that g k changes the sign on t ∈ (t0, t1), for example, if

8 k V (t 0 ,t 1 ) (ϕ) ≥ 2π or (t1 -t0) ≥ √ 2π4 -k .
(5.12)

On the other hand, (t1 -t0) is exactly the length of the segment I + k (see Figure 1). Therefore, (t1 -t0) ≥ (2/5)2 -k .

(5.13) Inequality (5.13) implies that (5.12) holds for k ≥ 3. Therefore, g k of (5.8) changes the sign on (t0, t1)

starting from k ≥ max(3, k0(|x0|)).
Lemma 1 is proved.

Proof of formula (3.13)

From (1.1), (3.2)-(3.5), (3.21), (3.24), (3.25) it follows that:

RW 0 f (s, θ) = xθ=s f (x) dx -G(sθ, θ) ∞ k=3 k!ψ k-2 (|s|) xθ=s f (x)f k (x)dx H k (sθ, θ) (5.14) = xθ=s f (x) dx - xθ=s f (x)dx ∞ k=3 ψ k-2 (|s|) xθ=s f 2 k (x)dx xθ=s f 2 k (x) dx (5.15) = xθ=s f (x) dx - xθ=s f (x)dx ∞ k=3 ψ k-2 (|s|) = 0, |s| > 1/2, θ ∈ S 2 .
(5.16) Formula (3.13) is proved.

6 Proof of Lemma 2

Let Λ k := {(x, θ) ∈ R 3 × S 2 : |xθ| ∈ (1 -2 -k+3 , 1 -2 -k+1 )}, k ∈ N, k ≥ 4. (6.1)
From (3.21) it follows that, for k ≥ 4:

supp ψ k-1 ⊂ (1 -2 -k+2 , 1 -2 -k ), (6.2) supp ψ k-2 ⊂ (1 -2 -k+3 , 1 -2 -k+1 ), (6.3) supp ψ k-3 ⊂ (1 -2 -k+4 , 1 -2 -k+2
). (6.4) Formulas (3.24), (3.25), (6.2)-(6.4) imply the following expression for W0(x, θ):

W0(x, θ) = 1 -G(x, θ) (k -1)!f k-1 (x) ψ k-3 (|xθ|) H k-1 (x, θ) +k!f k (x) ψ k-2 (|xθ|) H k (x, θ) +(k + 1)!f k+1 (x) ψ k-1 (|xθ|) H k+1 (x, θ) , (x, θ) ∈ Λ k , k ≥ 4.
(6.5)

Lemma 4. There are positive constants c1, c2, k1 depending on Φ, such that

|f k (x)| ≤ c1, for k ∈ N, (6.6) ψ k-2 (|xθ|) H k (x, θ) ≤ c22 k for k ≥ k1 and |xθ| ≤ 1 -2 -k+1 , (6.7) |G(x, θ)| ≤ c1 4 -k k! for k ≥ 3 and |xθ| ≥ 1 -2 -k , (6.8) x ∈ R 3 , θ ∈ S 2 , 1/2 < |xθ| < 1,
where f k , G, H k are defined in (3.3), (3.25).

Lemma 4 is proved in Section 8. From definition (6.1) and estimates (6.7), (6.8) it follows that |G(x, θ)| ≤ c14 -k+3 /(k -3)!, (6.9)

ψ k-2 (|xθ|) H k (x, θ) ≤ c22 k , (6.10) for (x, θ) ∈ Λ k , k ≥ max(4, k1).
In addition, properties (6.2)-(6.4) and estimate (6.7) imply that:

   ψ k-1 (|xθ|) = 0, ψ k-3 (|xθ|) H k-1 (x, θ) ≤ c22 k-1 if |xθ| ∈ (1 -2 -k+3 , 1 -2 -k+2 ), (6.11)    ψ k-2 (|xθ|) = 0, ψ k-1 (|xθ|) H k+1 (x, θ) ≤ c22 k+1 if |xθ| ∈ (1 -2 -k+2 , 1 -2 -k+1
), (6.12)

ψ k-1 (|xθ|) = 0, ψ k-3 (|xθ|) = 0 if |xθ| = 1 -2 -k+2 , (6.13) for (x 
, θ) ∈ Λ k , k ≥ max(4, k1).
Note that the condition (x, θ) ∈ Λ k is splitted into the assumptions of (6.11), (6.12), (6.13). Due to formulas (6.5), (6.9)-(6.13), we obtain the following estimates:

|1 -W0(x, θ)| = |G(x, θ)| (k -1)!f k-1 (x) ψ k-3 (|xθ|) H k-1 (x, θ) + k!f k-2 (x) ψ k-2 (|xθ|) H k (x, θ) ≤ c14 -k+3 (c1c2(k -2)(k -1)2 k-1 + c1c2(k -2)(k -1)k2 k ) ≤ 2 6 c 2 1 c22 -k k 3 if |xθ| ∈ (1 -2 -k+3 , 1 -2 -k+2 ), (6.14) |1 -W0(x, θ)| = |G(x, θ)| k!f k (x) ψ k-2 (|xθ|) H k (x, θ) + (k + 1)!f k+1 (x) ψ k-1 (|xθ|) H k+1 (x, θ) ≤ c14 -k+3 (c1c22 k (k -1)(k -2) + c1c22 k+1 (k -2)(k -1)k(k + 1)) ≤ 2 12 c 2 1 c22 -k k 4 if |xθ| ∈ (1 -2 -k+2 , 1 -2 -k+1 ), (6.15) 
|1 -W0(x, θ)| = |G(x, θ)| k!f k (x) ψ k-2 (|xθ|) H k (x, θ) ≤ 2 6 c 2 1 c22 -k k 3 if |xθ| = 1 -2 -k+2 .
(6.16)

Estimates (6.14)-(6.16) imply that

|1 -W0(x, θ)| ≤ C • 2 -k k 4 , (x, θ) ∈ Λ k , k ≥ max(4, k1). (6.17)
where C is a positive constant depending on c1, c2 of Lemma 4. In addition, for (x, θ) ∈ Λ k we have that 2 -k+1 < ρ(|xθ|) < 2 -k+3 , which together with (6.17) imply (3.26).

Lemma 2 is proved.

Proof of Lemma 3

Let (e1, e2) be an orthonormal basis on P (s,θ) ∈ P and the origin of the coordinate system on P (s,θ) is located at sθ ∈ P (s,θ) . By u = (u1, u2), u ∈ R 2 , we denote the coordinates on P (s,θ) with respect to (e1, e2).

Using Lemma 1 one can see that

f |P (s,θ) ∈ C ∞ 0 (R 2 ), f |P (s,θ) (u) = f |P (s,θ) (|u|), u ∈ R 2 . (7.1)
By our assumptions f |P (s 0 ,θ 0 ) (u) changes the sign. Using this assumption and (7.1) one can see that there exist ψ1,s 0 , ψ2,s 0 , such that: ψ1,s 0 ∈ C([0, +∞)), ψ1,s 0 ≥ 0, ψ2,s 0 (u) := ψ1,s 0 (|u|), u ∈ R 2 , (7.2)

P (s 0 ,θ 0 ) f ψ2,s 0 dσ = 0. (7.3)
and if

P (s 0 ,θ 0 )
f dσ = 0 (7.4) then also sgn(

P (s 0 ,θ 0 )
f dσ) sgn(

P (s 0 ,θ 0 ) f ψ2,s 0 dσ) = -1, (7.5) 
where dσ = du1 du2 (i.e., σ is the standard Euclidean measure on P (s,θ) ). Let

W f,s 0 (x, θ) = 1 -ψ1,s 0 (|x -(xθ)θ|) P (xθ,θ)
f dσ

P (xθ,θ) f ψ2,s 0 dσ , x ∈ R 3 , θ ∈ S 2 , (7.6) 
where dσ = du1 du2 and (u1, u2) are the coordinates on P (s,θ) , s = xθ, defined at the beginning of this proof.

Results of Lemma 1 and property (7.2) imply that

P (xθ,θ)
f dσ and

P (xθ,θ)
f ψ2,s 0 dσ depend only on |xθ|, where x ∈ R 3 , θ ∈ S 2 . (7.7) From (7.6), (7.7) it follows that W f,s 0 is rotation-invariant in the sense (1.3), (1.4). Formulas (7.3), (7.6), (7.7) and properties of f and ψ2,s 0 of Lemma 1 and (7.2) imply that ∃ε1 > 0 :

P (xθ,θ)
f ψ2,s 0 dσ = 0, for (x, θ) ∈ Ω(Js 0 ,ε 1 ), (7.8)

where the sets Js,ε, Ω(J ) are defined in (2.6), (2.7), respectively. In addition, using (7.6), (7.8), one can see that W f,s 0 is continuous on (x, θ) ∈ Ω(Js 0 ,ε 1 ). (7.9)

In addition, from (7.1)-(7.7) it follows that

if |xθ| = |s0| then W f,s 0 (x, θ) = 1 -ψ1,s 0 (|x -(xθ)θ|) P (s 0 ,θ)
f dσ

P (s 0 ,θ) f ψ2,s 0 dσ = 1 -ψ1,s 0 (|x -(xθ)θ|) P (s 0 ,θ 0 )
f dσ

P (s 0 ,θ 0 ) f ψ2,s 0 dσ ≥ 1. (7.10)
From properties of f, ψ1,s 0 , ψ2,s 0 of Lemma 1 and (7.2) and from formulas (7.6), (7.7), (7.9), (7.10) it follows that ∃ε0 > 0 (ε0 < ε1) : W f,s 0 (x, θ) ≥ 1/2, for (x, θ) ∈ Ω(Js 0 ,ε 0 ), (7.11) which implies strict positiveness for W f,s 0 on Ω(Js 0 ,ε). Properties (7.7), (7.9), (7.11) imply item (ii) of Lemma 3 for W f,s 0 ,ε := W f,s 0 , defined on Ω(Js 0 ,ε 0 ). From (1.1), (7.6), (7.8) it follows that

RW f,s 0 f (s, θ) = P (s,θ) W f,s 0 (•, θ)f dσ = P (s,θ)
f dσ -

P (s,θ)
f dσ

P (s,θ) f ψ2,s 0 dσ P (s,θ)
f ψ2,s 0 dσ = 0 for s ∈ Js 0 ,ε 0 , θ ∈ S 2 . (7.12) Item (i) of Lemma 3 follows from (7.12). Lemma 3 is proved. 

G = ∞ k=1 G k k! , (8.1) G k (x, θ) = yθ=xθ f k (y) dy, x ∈ R 3 , θ ∈ S 2 . (8.2)
Parametrization of the points y(r, φ) on P (s,θ) ∈ P, s ∈ R, θ ∈ S 2 , is given by the formula

y(r, φ) = sθ + r(e1 cos φ + e2 sin φ), r ∈ [0, +∞), φ ∈ [0, 2π], (8.3) 
where (e1, e2) is some fixed orthonormal basis on P (s,θ) . On the other hand,

r = r(γ) = |s| tan(γ), γ ∈ [0, π/2), (8.4) 
where γ is the angle between sθ and the radius-vector y(r, φ) of (8.3).

It is convenient to rewrite y(r, φ) of (8.3) as y = y(r(γ), φ)

def = y(γ, φ), γ ∈ [0, π/2), φ ∈ [0, 2π].
The standard Lebesgue measure σ on P (s,θ) is given by the following formula:

dσ(γ, φ) = r(γ, φ)dφ dr(γ) = |s| tan γ dφ dr(γ) = |s| 2 sin γ cos 3 γ dφ dγ. (8.5) 
From (3.3), (8.2)-(8.5) we obtain

G k (x, θ) = s 2 2π 0 dφ π/2 0 Φ 2 k 1 - |s| cos γ cos 8 k |s| 2 cos 2 γ sin γ cos 3 γ dγ = -2π|s| 2 π/2 0 Φ 2 k 1 - |s| cos γ cos 8 k |s| 2 cos 2 γ d(cos γ) cos 3 γ = {t = cos γ} = -2π|s| 2 0 1 Φ 2 k 1 - |s| t cos 8 k |s| 2 t 2 dt t 3 = {u = 1 t 2 } = π|s| 2 +∞ 1 Φ(2 k (1 -|s| √ u)) cos(8 k |s| 2 u) du, s = xθ. (8.6) From (3.4)-(3.6), (8.6) it follows that G k (x, θ) = 8 -k π +∞ 1 Φ(2 k (1 -|s| √ u)) d sin(8 k |s| 2 u) = 8 -k π   -Φ(2 k (1 -|s|)) sin(8 k |s| 2 ) - +∞ 1 d du Φ(2 k (1 -|s| √ u)) sin(8 k |s| 2 u) du   , (8.7) |Φ(2 k (1 -|s|)) sin(8 k |s| 2 )| ≤ 1, (8.8) +∞ 1 d du Φ(2 k (1 -|s| √ u)) sin(8 k |s| 2 u) du ≤ 2 k max t∈R |Φ ′ (t)| Λ k,|s| du ≤ 2 k max t∈R |Φ ′ (t)|, (8.9) Λ k,|s| = {u ≥ 1 : 2 k (1 -|s| √ u) ∈ [4/5, 6/5]}, (8.10) where 1/2 < |s| < 1, s = xθ, k ∈ N. Note that |Λ k,|s| | ≤ 1 for 1/2 < |s| < 1, (8.11)
where |Λ| denotes the length of Λ. Formulas (8.7)-(8.11) imply that

|G k (x, θ)| ≤ 4 -k π max t∈R |Φ ′ (t)| for 1/2 < |s| < 1, s = xθ, k ∈ N. (8.12)
Note that for y ∈ P (s,θ) , the following inequality holds:

2 k (1 -|y|) ≤ 2 k (1 -|s|) ≤ 2 k-m ≤ 4/5 for 1 -2 -m ≤ |s| < 1, k < m, m ≥ 3. (8.13)
Formulas (3.3), (3.4), (8.13) imply that

P (s,θ) ∩ supp f k = ∅ if |s| ≥ 1 -2 -m , k < m. (8.14)
In turn, (8.2), (8.14) imply that

G k (x, θ) = 0 for k < m, |xθ| ≥ 1 -2 -m . (8.15)
Due to (8.1), (8.12), (8.15) we have that: 

|G(x, θ)| ≤ ∞ k=1 |G k (x, θ)|/k! = ∞ k=m |G k (x, θ)|/k! ≤ max t∈R |Φ ′ (t)|π4 -m /m! ∞ k=0 4 -k = c1 4 -
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Φ

  (t) = 1 for t ∈ [9/10, 11/10]. (3.6) Properties (3.4), (3.5) imply that functions f k in (3.3) have disjoint supports and series (3.2) converges for every fixed x ∈ R 3 . Lemma 1. Let f be defined by (3.2)-(3.6). Then f is spherically symmetric, f ∈ C ∞ 0 (R 3 ) and supp f ⊆ B. In addition, if P ∈ P, P ∩ B = ∅, then f |P ≡ 0 and f |P has non-constant sign.

)

  Wi(x, θ) are bounded continuous strictly positive and rotation invariant (according to (1.3), (1.4)) on supp ξi(|xθ|), i = 0, N , respectively. (3.10) From (3.7)-(3.10) it follows that W of (3.7) satisfies the conditions (1.2)-(1.4). The weight W0 is constructed in Subsection 3.3 and has the following properties: W0 is bounded, continuous and rotation invariant on {(x, θ) : |xθ| > 1/2}, (3.11)

  .20) Weights W1, . . . , WN of (3.7) and {ξi} N i=0 are constructed in Subsection 3.4. Result of Theorem 1 follows from Lemma 1 and formulas (3.7)-(3.9), (3.11)-(3.13), (3.16)-(3.20).

NW

  i=0 is a partition of unity for the open cover {Ji} N i=0 (see Section 2, Partition of unity, for Ui = Ji). Properties (3.14), (3.32) follow from (2.11) for { ξi} N i=0 (with Ui = Ji), the symmetry of Ji = Js i ,ε i , i = 1, N , choice of J0 in (3.30) and from (3.31). In addition, (3.15) follows from (3.30) and the construction of Ji, i = 1, N , from (3.29) (see the proof of Lemma 3 and properties (3.29) in Section 7 for details). Properties (3.17)-(3.20) follow from (3.29) for δ = δ0 and from (3.30)-(3.32). 4 Extension to the case of R d,2 We consider the weighted Radon transforms R d,2 W along two-dimensional planes in R d , defined by R d,2 W f (P ) = P W (x, P )f (x) dx, P ∈ P d,2 , x ∈ P, d ≥ 3, (4.1) where W = W (x, P ) is the weight, f = f (x) is a test function on R d , P d,2 is the manifold of all oriented two-dimensional planes P in R d . (4.2)

  -|s|) ≥ 2 k • 2 -k+1 ≥ 2 > 6/5 for |s| ≤ 1 -2 -k+1 , k ≥ 3.On the other hand, using (3.4), (8.21), (8.23), in a similar way with (8.7)-(8.11), we obtain|H k,2 (x, θ)| = π|s| 2 2 < |xθ| < 1-2 -k+1 , k ≥ 3. From (8.19)-(8.21), (8.26), (8.27) it follows that |H k (x, θ)| ≥ |H k,1 (x, θ)| -|H k,2 (x, θ)|

			+∞	Φ 2 (2 k (1 -|s| √	u)) cos(2 • 8 k |s| 2 u) du
			1					
				=	π 4	8 -k |s| -2	+∞ 1 sin(2 • 8 k |s| 2 u)	d du	Φ 2 (2 k (1 -|s| √	u)) du	(8.27)
				≤	π 4	8 -k |s| -1 max t∈R	|Φ(t)| • max t∈R	|Φ ′ (t)| • 2 k	du
									Λ k,|s|
				≤	π 2	4 -k max t∈R	|Φ(t)| • max t∈R	|Φ ′ (t)|, s = xθ,
	m m! |Φ(t)| • max , c1 = t∈R |Φ ′ (t)| 4π 3 ≥ C22 -k for 1/2 < |xθ| < 1 -2 -k+1 , k ≥ k1, max t∈R for 1/2 ≥ π 40 2 -k -π 2 4 -k max t∈R C2 = π 40 -2 -k 1 π 2 max t∈R |Φ(t)| max t∈R |Φ ′ (t)|, for |xθ| ≥ 1 -2 -m , m ≥ 3. Estimate (6.8) follows from (8.16). where k1 is arbitrary constant such that k1 ≥ 3 and C2 is positive. Estimate (6.7) follows from (8.28).	|Φ ′ (t)|	(8.16) (8.28)
	Lemma 4 is proved.						
									(8.19)
	H k,1 (x, θ) =	π|s| 2 2	+∞ Φ 2 (2 k (1 -|s| √	u)) du,	(8.20)
			1					
	H k,2 (x, θ) =	π|s| 2 2	+∞ Φ 2 (2 k (1 -|s| √	u)) cos(2 • 8 k |s| 2 u) du.	(8.21)
			1					
	Note that							
		2 k (1 (8.22)
	In turn, (3.4), (8.22) imply that					
			Φ(2 k (1 -|s| √	u)) = 0 for u ≤ 1, |s| ≤ 1 -2 -k+1 , k ≥ 3.	(8.23)
	Using (8.22) one can see that					
		∃u1 ≥ 1, u2 ≥ 1, u2 > u1 such that |u2 -u1| ≥ ( √ u2 -√ u1) = 2 -k 5 |s| -1 ≥ 2 k (1 -|s| √ u1) = 11/10, √ u2) = 9/10, 2 k (1 -|s| 2 -k 5 ,	(8.24) (8.25)

8.3 Proof of estimate (6.7)

For each ψ k from (3.21) we have that:

|ψ k | ≤ 1. (8.17)

Therefore, it is sufficient to show that

H k ≥ C22 -k for k ≥ k1, C2 = c -1 2 . (8.18)

Due to formula (3.25) and in a similar way with (8.6) we obtain

H k (x, θ) = |s| 2 π ∞ 1 Φ 2 (2 k (1 -|s| √ u)) cos 2 (8 k |s| 2 u) du = H k,1 (x, θ) + H k,2 (x, θ), s = xθ, for 1/2 < |s| ≤ 1 -2 -k+1 , k ≥ 3.

Using (3.4), (3.6), (8.20), (8.23), (8.25) we obtain

H k,1 (x, θ) ≥ π 8 u 2 u 1 du ≥ 2 -k π 40

, for 1/2 < |xθ| < 1 -2 -k+1 , k ≥ 3. (8.26)