An example of non-uniqueness for Radon transforms with continuous positive rotation invariant weights - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

An example of non-uniqueness for Radon transforms with continuous positive rotation invariant weights

Résumé

We consider weighted Radon transforms $R_W$ along hyperplanes in $R^3$ with strictly positive weights $W$. We construct an example of such a transform with non-trivial kernel $\mathrm{Ker}R_W$ in the space of infinitely smooth compactly supported functions and with continuous weight. Moreover, in this example the weight $W$ is rotation invariant. In particular, by this result we continue studies of Quinto (1983), Markoe, Quinto (1985), Boman (1993) and Goncharov, Novikov (2017). We also extend our example to the case of weighted Radon transforms along two-dimensional planes in $R^d$ , $d \geq 3$.
Fichier principal
Vignette du fichier
boman_3D.pdf (177.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01593781 , version 1 (26-09-2017)
hal-01593781 , version 2 (14-11-2017)

Identifiants

Citer

Fedor Goncharov, Roman Novikov. An example of non-uniqueness for Radon transforms with continuous positive rotation invariant weights. 2017. ⟨hal-01593781v1⟩
556 Consultations
181 Téléchargements

Altmetric

Partager

More