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Abstract

We consider weighted Radon transforms Ry along hyperplanes in R® with strictly positive weights W.
We construct an example of such a transform with non-trivial kernel Ker Ry in the space of infinitely smooth
compactly supported functions and with continuous weight. Moreover, in this example the weight W is ro-
tation invariant. In particular, by this result we continue studies of Quinto (1983), Markoe, Quinto (1985),
Boman (1993) and Goncharov, Novikov (2017). We also extend our example to the case of weighted Radon
transforms along two-dimensional planes in R, d > 3.
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1 Introduction

We consider weighted Radon transforms Ry in R? defined by

Rw f(s,0) = / W(z,0)f(x)dz, (1.1)

zh=s

seR, €S, zeR: d> 2,

where W = W (z,9) is the weight, f = f(z) is a test function on R<.
We assume that

W=W2>c>0 WeL®Rxs*™), (1.2)

where W denotes the complex conjugate of W, c is a constant.

The aforementioned transforms Rw arise in various domains of pure and applied mathematics; see, e.g.,
[Bey84], [Bey85], [BQ8T7], [Bom93], [Fi86], [LB73], [GN16], [Gonl7], [GN17], [Kun92], [Natt01], [Nov14],
[Qui83], [Qui83Err] and references therein.

In particular, studies on the transforms Ry under assumptions (1.2) were recently continued in [GN16],
[Gonl7], [GN17] for d > 3.

Note that the works [GN16], [Gonl7] extend to the case of Rw, d > 3, the two-dimensional injectivity
and reconstruction results of [Kun92|, [Nov11], [Nov14], [GuiNov14].

On the other hand, under assumptions (1.2), the work [GN17] gives an example of Rw, d > 3, with non-
trivial kernel in C§°(R%) (infinitely smooth functions with compact support). This example was constructed
in [GN17] proceeding from the example of non-uniqueness of [Bom93] for Ry in R? and a recent result of
[GN16].

In the two-dimensional example of non-uniqueness of [Bom93] the weight W satisfies (1.2), for d = 2, and
is infinitely smooth everywhere. In the multidimensional example of non-uniqueness of [GN17] the weight
satisfies (1.2), for d > 3, is infinitely smooth almost everywhere but is not yet continuous at some points.

In the present work we construct an example of Ry, for d = 3, with non-trivial kernel in C§° (]R?’)7
where W satisfies (1.2) and is continuous everywhere. Moreover, in this example W is rotation invariant
and Rw f = 0 for some non-zero spherically symmetric f € C§°(R?).

The rotation invariancy of the latter example is its principal advantage in comparison with the afore-
mentioned examples of [Bom93] and [GN17].

By our rotation invariant example of non-uniqueness we also continue studies of [MQ85], where an
example of non-uniqueness for Ry was constructed for d = 2. In the example of [MQ85] the weight W is
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bounded and positive but is not yet continuous and strictly positive. The continuity and strict positivity of
W is the principal advantage of the example of the present work in comparison with the example of [MQ85].
Following [Qui83] we say that W is rotation invariant if and only if

W(z,0) = U(jz — (z0)0],z0), z € R?, § € S, (1.3)
for some positive and continuous U such that
U(r,s) =U(-r,s) =U(r,—s), r € R, s e R. (1.4)

On the other hand, we recall that weighted Radon transforms Ry in R with smooth weights W satisfying
properties (1.2), (1.3), (1.4) are injective for f € LE(R%) (square integrable functions on R with compact
support); see [Qui83]. Here the smoothness of W can be specified, at least, as C* for d = 2 and d = 3. In
view of the aforementioned counterexamples of [MQ85] and of the present work, some smoothness of W is
crucial for these injectivity results.

In the present work we also extend our rotation invariant example of non-uniqueness for Ry in R® to the
case of weighted Radon transforms Rz{f along two-dimensional planes in R%, d > 3; see Section 4. In this
case Ra’f f is defined on P%? (manifold of all oriented two-dimensional planes in R?) and is overdetermined
already. That is

dimP*? = 3d — 6 > dimR* = d for d > 3. (1.5)

Nevertheless, R%}Qf =0 on P%? in our result.

We expect that the results of the present work admit generalizations to the weighted Radon transforms
Ra’/" along n-dimensional planes in R¢ for arbitrary d and n such that 1 < n < d, d > 2. For n = 1 such
results are already obtained in [GonNov17].

Note also that the construction of the present work was developed in a large extent in the process of
adopting the Boman’s construction of the aforementioned work [Bom93].

In Section 2 we give some preliminaries.

Our main results are formulated in detail in Sections 3, 4.

Proofs are given in Sections 5-8.

2 Some preliminaries

Notations for d = 3. Let

B={zecR’:|z|<1},B={z eR®:|z| <1}, (2.1)
P=RxS? (2.2)
Po(0) ={(s,0) € P:|s| > &}, (2.3)
P1(6) =P\Po(d) = {(s,0) € P:|s| <6}, >0, (2.4)
PA)={(s,0) e P:se€ A}, ACR, (2.5)
Q(A) = {(z,0) e R® x S* : 20 € A}, A C R, (2.6)
Tee = Tjsle = (=8| —&,—Is| +e)U(|s] —&,|s| +€) CR, s e R, e > 0. (2.7)
Note that Po(d), P1(d) of (2.3), (2.4) are particular cases of P(A) of formula (2.5).
In addition, we interpret P as the set of all oriented planes in R®. If P = (s,0) € P, then
P=P,op={z€ R? : 26 = s} (modulo orientation) (2.8)

and 0 gives the orientation of P (in the sense that ordered tuple (e1, es, 0) is positively oriented in R* with
any orthonormal positively oriented basis e1, e2 on P).

The set Po(8) in (2.3) is considered as the set of all oriented planes in R* which are positioned at distance
greater than J from the origin.

The set P1(5) in (2.4) is considered as the set of all oriented planes in R?* which are located at distance
less or equal than §.

Rotation invariancy for d = 3. Symmetries (1.3), (1.4) of W can be also written as

W(z,0) = U(|z|,z6), z € R*, 6 € %, (2.9)

U(r,s) =U(r,—s), U(r,s) = U(fr, s), r €R, s ER, (2.10)

where U is positive and continuous on R x R. Using the formula |z|> = |20|? + |z — (z0)6]?, 6 € S, one can
see that symmetries (1.3), (1.4) and symmetries (2.9), (2.10) of W are equivalent.

Additional notations. For a function f on R? we denote its restriction to a subset X by f|s.
By Co, C§° we denote continuous compactly supported and infinitely smooth compactly supported func-
tions, respectively.



Partition of unity. We recall the following classical result (see Theorem 5.6 in [MCar92]):
Let M be a C*-manifold, which is Hausdorff and satisfies second countability axiom (i.e. has countable
base). Let also {U;}i2, be the open locally-finite cover of M.

Then there exists a C'°°-smooth locally-finite partition of unity {1;}i2, on M, such that

supp¢; C Ui. (2.11)

In particular, any open interval (a,b) C R and P ~ R X S? satisfy conditions of the aforementioned
statement. It will be used in Subsection 3.4.

3 Main results for d = 3

Theorem 1. There exist a non-zero spherically symmetric function f € C§°(R?®) with support in B, and W
satisfying (1.2)-(1.4) such that
Rwf=0, (3.1)

where Rw is defined in (1.1).

The construction of f and W proving Theorem 1 is presented below in this section. This construction
adopts considerations of [Bom93]. In particular, we construct f, first, and then W.

3.1 Construction of f

The function f is constructed as follows:

F=y (32)
k=1 "
fe(@) = fr(lz]) = @281 — |z])) cos(8F|z|?),z e R, k=1,2,..., (3.3)
for arbitrary ® € C°°(R) such that
supp® = [4/5,6/5], (3.4)
0<P(t)<1forte(4/5,6/5), (3.5)

®(t) =1 for t € [9/10,11/10].

Properties (3.4), (3.5) imply that functions f; in (3.3) have disjoint supports and series (3.2) converges
for every fixed z € R3.

Lemma 1. Let f be defined by (3.2)-(3.6). Then f is spherically symmetric, f € C§°(R*) and supp f C B.
In addition, if P € P, PN B # 0, then f|lp # 0 and f|p has non-constant sign.

Lemma 1 is proved in Section 5.

3.2 Construction of W

In our example W is of the following form:

W(z,0) = > &(|20)Wi(w,0)
=0 N (3.7)
= fo(|$9|)W0(x79) + Zfz(|$9|)Wz($79)7 S R37 0e 827

i=1
where
{&(s), s € R}ﬁ\;o is a C*-smooth partition of unity on R,
&i(s) =&i(~s), s €R,i=0,N,

Wi(x,0) are bounded continuous strictly positive and

N 3.10
rotation invariant (according to (1.3), (1.4)) on supp&;(|«6|), i = 0, N, respectively. (310
From (3.7)-(3.10) it follows that W of (3.7) satisfies the conditions (1.2)-(1.4).
The weight Wy is constructed in Subsection 3.3 and has the following properties:
Wp is bounded, continuous and rotation invariant on {(z,0) : [z0] > 1/2}, (3.11)
there exists do € (1/2,1) such that:
Wo(z,0) > 1/2 if |26] > do, (3.12)
Wo(z,0) =1 if [260] > 1,
Rw, f(s,0) =0 for |s| > 1/2, 6 € S?, (3.13)



where Rw, is defined according to (1.1) for W = Wy, f is given by (3.2), (3.3).
In addition,

supp &o C (—00, —do) U (o, +00), (3.14)
&o(s) =1 for [s| > 1, (3.15)

where ¢ is the number of (3.12).
In particular, from (3.8), (3.12), (3.14) it follows that

Wol(z, 0)€0(|20]) > 0 if £(|20]) > 0. (3.16)

Remark 1. The result of (3.11)-(3.13) can be considered as a counterexample to the Cormack-Helgason
support theorem (see Theorem 3.1 in [Natt01]) in the framework of the theory of weighted Radon transforms
under assumptions (1.2) and even under assumptions (1.2)-(1.4).

In addition,

&:(|z0|)Wi(x, 0) are bounded, continuous and rotation invariant on R® x S?, (3.17)
Wi(z,0) > 1/2 if &(|z0]) # 0, (3.18)
Rw, f(s,0) =0 if &(|s]) # 0, (3.19)
i=1,N,ze€R* 0eS* seR. (3.20)

Weights W1, ..., Wx of (3.7) and {¢;}, are constructed in Subsection 3.4.

Result of Theorem 1 follows from Lemma 1 and formulas (3.7)-(3.9), (3.11)-(3.13), (3.16)-(3.20).

We point out that the construction of Wy of (3.7) is substantially different from the construction of
Wi,...,Wn. In particular, the weight Wy is defined on the planes P € P which can be close to the
boundary B of B which results in restrictions on the smoothness of Wj.

3.3 Construction of W,
Let
{1 }721 be a C™ partition of unity on (1/2,1), such that supptr C (1—2" T 1-27%"1) ke N. (3.21)

Note that
127271 <1 _97%6/5), k > 3. (3.22)
Therefore,
Vso, to € R : s9 € supp¥r—_2, to € supp <I>(2k(1 — 1)) = so < to, k > 3. (3.23)
The weight Wy is defined by the following formulas

Yr—2(|z0])

1—G(z,0) 3 K L 1/2 < |af] < 1,
Wo(z, 8) (x )kgg fr(z) Hr(2,0) /2 < |z0)] 7 (3.24)
1, |z0] > 1
G0 = [ 5wy im0 = [ (3.25)
yO=x6 yO0=z6
zeR® 0eS?

where f, are defined in (3.3).

Formula (3.24) implies that Wy is defined on Po(1/2) C P. Due to (3.3) and (3.23), in (3.25) we have
that Hi(x,0) # 0 if wk,2(|x9|) # 0.

Also, for any fixed (z,0) € R® x §?, 1/2 < |26 < 1, the series in the right hand-side of (3.24) has only a
finite number of non-zero terms (in fact, no more than two) and, hence, Wy is well-defined.

By the spherical symmetry of f, functions G, Hy in (3.24) are of the type (2.9), (2.10). Therefore, W is
rotation invariant (in the sense (2.9), (2.10)).

Actually, formula (3.13) follows from (3.2)-(3.4), (3.24), (3.25) (see Subsection 5.2 for details).

Using the construction of Wy and the assumption that |z6] > 1/2 (implying that sign(z) is locally
constant) one can see that Wy is C*° on its domain of definition, possibly, except points with |z6]| = 1.

Lemma 2. Let Wy be defined by (3.24), (3.25). Then the following estimate holds:

11— Wole.0)] < Cop(|20]) (1og2 M) 7 (3.26)

Wo(z,0) = 1 as |z0| — 1, (3.27)
reR® HesS? 1/2 < |zb| < 1.
where p=p(s) =1—s, s € (1/2,1), Co is a positive constant depending on P.
Lemma 2 is proved in Section 6.

The result of Lemma 2 completes the proof of (3.12).
This completes the description of Wy and do.



3.4 Construction of Wy,... , Wy and &, ...,&y

Lemma 3. Let f € Co(R?) be spherically symmetric, Py, o,y € P, flPey.00) Z0 and flp, 4, changes the
sign. Then:

(i) there exist € > 0 and weight Wy o, - such that
Rw, . .f(5,0) =0 for s € Ty, 0 € S?, (3.28)

where Js.c is defined in (2.7), Wy s, is defined on the open set Q(Js,.c), defined by (2.6);
(i3) weight Wy s is bounded, continuous, strictly positive and rotation invariant on Q(Jso.e)-

Lemma 3 is proved in Section 7.
Let f be the function of (3.2), (3.3). Then, using Lemmas 1, 3 one can see that

V6 € (0,1) there exist {Ji = Js;.c0, Wi = Wi, e, bioa
such that J;, ¢ =1, N, is an open cover of [—§,d] (3.29)
and W; satisfy (i) and (ii) (of Lemma 3) on Q(J;).

Actually, we consider (3.29) for the case of § = dp of (3.12).
Note that in this case {P(J;)}; for J; of (3.29) is an open cover of P (dp).
To the set Po(do) we associate the open set

Jo = (—00,d0) U (do, +00) C R. (3.30)

Therefore, the collection of intervals {J;, « = 0, N} is an open cover of R.
We construct the partition of unity {&}7, on R as follows:

&i(s) = &i(|s]) = 5 (&ils) + &i(—9)), s € R, (3.31)
suppé&; C Ji, i =0, N, (3.32)

N =

where {él}f\;o is a partition of unity for the open cover {J;}I*, (see Section 2, Partition of unity, for U; = J;).

Properties (3.14), (3.32) follow from (2.11) for {&}X, (with U; = J;), the symmetry of J; = Js,.c;, i =
1, N, choice of Jy in (3.30) and from (3.31).

In addition, (3.15) follows from (3.30) and the construction of J;, i = 1, N, from (3.29) (see the proof of
Lemma 3 and properties (3.29) in Section 7 for details).

Properties (3.17)-(3.20) follow from (3.29) for 6 = do and from (3.30)-(3.32).

4 Extension to the case of R%}Q

We consider the weighted Radon transforms Rg{f along two-dimensional planes in R?, defined by

RE2f(P) = /W(m, P)f(z)dz, P € P** € P,d >3, (4.1)
P

where W = W (z, P) is the weight, f = f(x) is a test function on R%,

P*? is the manifold of all oriented two-dimensional planes P in R?. (4.2)

Note that the transform R{? is reduced to Ry of (1.1) for d = 3.
We say that W in (4.1) is rotation invariant if and only if

W (z, P) = U(|z|,dist(P,{0})), (4.3)
Ij(r, s) = U(r, —s), Ij(r, s) = U(fr, s), r €R, s ER, (4.4)

where U is some positive and continuous function on R x R, dist(P, {0}) denotes the distance from the origin
{0} € R to the plane P. Note that W (x, P) is independent of the orientation of P in this case.
Consider U and f such that

W (z,0) = U(|z|, |z0]), f(z) = f(|z|), z € R?, 6 € S?, (4.5)

for W and f of Theorem 1 of Section 3.
Theorem 1 implies the following corollary:



Corollary 1. Let W and f be defined as
W (z, P) = U(|z|, dist(P, {0})), P € P**, z € P, (4.6)
f(z) = f(lal), z € R, (4.7)
where U, f are the functions of (4.5), d > 3. Then

RE2f =0 on P2 (4.8)
In addition, the weight W is continuous strictly positive and rotation invariant, f is infinitely smooth com-

pactly supported on R? and f £ 0.

Formula (4.8) is proved as follows:

def

RIZ(P) = [ 0al, dist(P {0 F(fal) dz =1 [ (el ) do (19)
P P!
P’ = {se3 + x1e1 + m2e2 : & = (x1,22) € R*}, s = dist(P, {0}),
where (e1,...,eq) is the standard basis in R%. In addition, I = 0 by Theorem 1.

Properties of W and f mentioned in Corollary 1 follow from definitions (4.6), (4.7) and properties of U
and f (arising in Theorem 1).

5 Proofs of Lemma 1 and formula (3.13)

5.1 Proof of Lemma 1

The spherical symmetry of f follows from (3.2), (3.3).
The series in (3.2) converges uniformly with all derivatives of fz. Therefore, f € C*(R?). Due to (3.2),
(3.3), (3.4), (3.5) we have that supp fr C B, k > 1. Therefore, supp f C B.

It remains to show that f restricted to any straight line ! in R® intersecting B changes the sign. This
implies change of the sign for f|p for any plane P such that P N B # (.

We consider

Dy={zeR®:|z| e (1-277(6/5),1—27"(4/5)}, k > 1, (5.1)
Hzo,w)={z eR® :x=a(t) =z0+wt, t € R},w € S*, 29 € R®, zow = 0. (5.2)

Note that supp fx = Dy C B. Note also that the line I(zo,w) intersects B if and only if |zo| < 1.

Assuming that
lzo] < 1 —27%(6/5), (5.3)

we consider Dy NI(wo,w) = I, U I, (see Figure 1):
I, ={z(t): t € (—t1,—t0)}, (5.4)
t

(
I = {a(t) : t € (to, 11)}, (5.5)
to = to(k), t1 = t1(k).

Figure 1.

One can see that assumption (5.3) holds for all k > ko(|zo|) = —In (2(1 — |zol)).
By the Cosine theorem we have (see Figure 1):

o(t) == |z(t)|* = (t — to)? + |z (to)|* — 2|z(to)|(t — to) cos(m — ) for t € [to, t1]. (5.6)



One can see also that
€ [0,7/2], cos(m — ) < 0.
Let
gi(t) == cos(8%¢(t)), t € [t1, 2],
where ¢(t) is defined in (5.6).
It is sufficient to show that gp changes the sign on (fo, 1) for sufficiently large k.

Due to (3.2)-(3.5) this implies that f changes the sign on I;.
From (5.6), (5.7) we obtain the inequality

@' (t) = 2(t — to) — 2|z(to)| cos(m —v) >0 for t € (to,t1), v € [0,7/2],

which implies the phase in (5.8) is monotonously increasing on t € (to, t1).
The full variation Vi, ¢+,)(¢) of the monotonous phase ¢(t) on (to,%1) is given by the formula

Vitgutn) (9) = (t1 = t0)” = 2|(to) (1 — to) cos(m — 7).
From (5.7), (5.10) we obtain the following inequality
Vito,t) () 2 (1 — t0)2-
From (5.8), (5.11) it follows that g changes the sign on t € (¢o,t1), for example, if

SkV(to,tl)@P) > 27 or (t — to) > V2md ™",

On the other hand, (t1 — to) is exactly the length of the segment I} (see Figure 1). Therefore,

(tr — to) > (2/5)2°"

(5.10)

(5.11)

(5.12)

(5.13)

Inequality (5.13) implies that (5.12) holds for k > 3. Therefore, gi of (5.8) changes the sign on (o, 1)

starting from k > max(3, ko(|zol))-
Lemma 1 is proved.

5.2 Proof of formula (3.13)
From (1.1), (3.2)-(3.5), (3.21), (3.24), (3.25) it follows that:

[ @) fi(x)da

R, f( /f ) da — G(s6), a)zk'wk,2(|s|)%
xh=s
) filz
xe/.;f dx xe/.;f dxz¢k : | | f f2
/f dr — /f dmeH||_0||>1/2 s’
zh=s zh=s

Formula (3.13) is proved.

6 Proof of Lemma 2
Let
A i={(z,0) e R*xS?: [zl e (1 —27" 1 —27F )} keN, k>4
From (3.21) it follows that, for k > 4:
supp¢hr—1 C (1—27"*2 1 —-27%),
supp Yr—2 C (1 — PRLEE 2_k+1)
supp ¥r—3 C (1 —

)

9 kt1 | gkt2)

Formulas (3.24), (3.25), (6.2)-(6.4) imply the following expression for Wy(z, 6):

B Yr—3(|z0))

Wo(,0) = 1 - G(z,0) (UC—U’fk*l( VHy 1 (z,6)
+k!fk(w)%m

Yie-1(|29])

(k1) i (2) ) ) e k=1,

Hk?+1(x7 9)

(5.14)

(5.15)

(5.16)

(6.1)



Lemma 4. There are positive constants ci,c2, k1 depending on ®, such that

|fx(@)| < 1, for k €N,

%Em‘ < 2" fork > ki and |z6] <1 — 2_k+17
AR

4k
|G(z,0)] < 1 fork >3 and |z6] > 1 —27%,

reR® 0e€S%1/2 < |z6] <1,

where fi, G, Hy are defined in (3.3), (3.25).
Lemma 4 is proved in Section 8.
From definition (6.1) and estimates (6.7), (6.8) it follows that
G(x,0)] < c1d™ (k= 3)!,
Pr—2(|x0])
Hy, ($7 0)
for (z,0) € Ak, k > max(4, k1).

< 2k

)

In addition, properties (6.2)-(6.4) and estimate (6.7) imply that:

1/)k 1 |ac(9| —0
Y3 |:v9| ooy if |zl e (1 =278 1 o7k
< 22
Hk 1 x 0
Vk—2 |x9| =0, —k+2 —k+1
Yr—1 Ixt‘)l < ey if [z0] € (12 y1—2 )s
Hk+1 x, (9
o) =
Vi-1(lafl) =0, it |20] =1-27%2,
Yr—3(|z0]) =0

for (z,60) € Ay, k > max(4, k1).

Note that the condition (z,0) € Ay is splitted into the assumptions of (6.11), (6.12), (6.13).

Due to formulas (6.5), (6.9)-(6.13), we obtain the following estimates:
Pr—s(|0]) Yr—2(|20])
1-— 0)| = 0)| [(k— 1) fr— ——— L+ klfi_ —
1= Wl 0)] = [6(a.0) [k = 1) ics (o) =200 4 o) 2000
< ead " (e (k — 2)(k —1)2° 7 + crea(k — 2)(k — 1)k2")
<227 kY it |20 e (1 -2 1 —27F ),

11— Wo(z,0)] = G(,0)] ’k!fk(x)iw’“”('w') () ‘

1!
Hk?(x79) * (k * ) fk+1(m) Hk:+1(x79)
< e d M (o2 (k — 1) (k — 2) + 122" (k — 2)(k — 1)k(k + 1))
<2Pcfe27 RN if Jzfl € (1 - 2781 — 27,

k1) G2l

<227 Pk i jaf) =1 2782

1 —Wo(z,0)| =|G(z,0)]

Estimates (6.14)-(6.16) imply that
|1 — Wo(z,0)] < C-27"k*, (x,0) € Ax, k > max(4, k1).

where C' is a positive constant depending on ci1, c2 of Lemma 4.

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

In addition, for (z,60) € Ax we have that 27" < p(|z6]) < 2753 which together with (6.17) imply

(3.26).
Lemma 2 is proved.

7 Proof of Lemma 3

Let (e1, e2) be an orthonormal basis on P, 9y € P and the origin of the coordinate system on P, gy is located

at sf € P(S’Q)A
By u = (u1,u2), u € R? we denote the coordinates on P(s,9) with respect to (e1,ez2).



Using Lemma 1 one can see that

flp(s,e) € C(?O(RQ)v f|P(s,e) (u) = f|P(s,9) (Jul), u € R?. (7.1)

By our assumptions f|p , (u) changes the sign.
Using this assumption and 8741) one can see that there exist ¥1,s,,%2,s,, such that:

U1so € C([0,400)), P,y > 0, 82,00 (1) = V150 (|ul), u € R, (7.2)
/ fipa,so do # 0. (7.3)
Ps0,00)
and if
/ fdo#0 (7.4)
P(s0.60)
then also

sgn( / f do) sgn( / Fibas do) = —1, (75)
Psg,60) Psg,00)

where do = dui duz (i.e., o is the standard Euclidean measure on P g)).

Let
[ fdo

) Pz0,0)
fp(mg,e)flp?,so do

where do = dui duz and (u1,us) are the coordinates on P(syg), s = x0, defined at the beginning of this proof.
Results of Lemma 1 and property (7.2) imply that

Wiso(x,0) =1 — 15, (|l — (20)0) ,zeR? 0eS? (7.6)

/f do and /fz/)g,so do depend only on |z6|, where z € R®, 8 € S°. (7.7)
Pz0,0) Pz0,0)

From (7.6), (7.7) it follows that Wy ., is rotation-invariant in the sense (1.3), (1.4).
Formulas (7.3), (7.6), (7.7) and properties of f and 92 s, of Lemma 1 and (7.2) imply that

Je1 >0: /fwg,so do #0, for (z,0) € UTsg,e, ), (7.8)

P(zo,0)

where the sets Js.c, 2(J) are defined in (2.6), (2.7), respectively.
In addition, using (7.6), (7.8), one can see that

Wy,s, is continuous on (z,0) € Q(Tsp,e1 )- (7.9)
In addition, from (7.1)-(7.7) it follows that
[ fdo
. Plag.0)
if |$0| = |80| then nyso ($70) =1- 1/)1,so(|x - (m0)0|)m
Plag.o) 7 7 20
[ fdo
P
= 1= 5 (|2 — (20)0) — 22— > 1. (7.10)
fP(Soﬁo) s do

From properties of f, 41,5, %2,s, of Lemma 1 and (7.2) and from formulas (7.6), (7.7), (7.9), (7.10) it
follows that

Jeg > 0 (g0 < €1) : Wy so(x,0) > 1/2, for (z,0) € QTso,e0)s (7.11)

which implies strict positiveness for Wy s, on Q(Js,c)-
Properties (7.7), (7.9), (7.11) imply item (ii) of Lemma 3 for Wy s, . := Wy s,, defined on Q(Jsq,e0)-
From (1.1), (7.6), (7.8) it follows that

R, ., f(s,0) = / W oo (0) f do

P(s,0)
[fdo
_ Ps.0) _ 2
= [fdo — —2 [ fo . do=0 for s € ey, 0 €S> (7.12)
Jp  fib2s,do ’ ’
P(s,0) (:0) P(s,0)

Item (i) of Lemma 3 follows from (7.12).
Lemma 3 is proved.



8 Proof of Lemma 4

8.1 Proof of estimate (6.6)
Estimate (6.6) follows from (3.3) and properties (3.4)-(3.6).

8.2 Proof of estimate (6.8)
From definitions (3.2), (3.25) we have that

_ i G
o k!’
k=1
Gi(z,0) = /fk(y) dy, z € R® 0 € S”.
yO=x6
Parametrization of the points y(r,¢) on P9 € P, s € R, 0 € S?, is given by the formula

y(r,¢) = s6 4+ r(e1cos¢p + e2sin @), r € [0, +00), ¢ € [0, 27],

where (e1, e2) is some fixed orthonormal basis on P, o).
On the other hand,
r=r(y) = |s[tan(y), v € [0, 7/2),

where 7y is the angle between sf and the radius-vector y(r, ¢) of (8.3).

It is convenient to rewrite y(r, ¢) of (8.3) as y = y(r(y),d) et y(v, 9), v € [0,7/2), ¢ € [0, 27].

The standard Lebesgue measure o on P, g) is given by the following formula:

do(y,¢) = r(v,)dgdr(vy) = |s|tany d¢ dr(vy)
:| |2 Sll’l’y ¢d

cos3 ~y

From (3.3), (8.2)-(8.5) we obtain
27 w/2 ) .
Gk(x,e):s2/d¢/¢, ok (1 _ Is| cos [ 8* El siny
Cos 7y cos2y ) cos3y
0 0
/2 )
2727r|s|2/¢> ok 1,ﬂ cos [ 8" |s] d(cos~y)
cos?y cos?2vy ) cos3y
0
0 o S d
2 k S kS t
= (1= cosn} = —2nls” [ 0 (2 (1* T)) <8 t—z) &
1

—+oo

={u= 1y s|? / (2" (1 — |s|v/u)) cos(8F|s|*u) du, s = z6.

1

From (3.4)—(3.6), (8.6) it follows that

oo

Gr( 8 r [ ®(2"(1 — |s|[vu))d (sin(8k|s|2u))

1

(2" (1 — |s])) sin(8"|s[*)| < 1,

—+oo
/ ( d(2%(1 s |\/_))) sin(8"[s|?u) du| < 2" r?aﬁ(@/(t)' /du
€
1 Ak, s
< 2F max |® ()],

Apjs) = {u > 1:25(1 — [s|v/u) € [4/5,6/5]},

where 1/2 < |s| <1, s =x0, k € N.

Note that
|Ak,\s\| <1 for 1/2 < |S| <1,

10

+
—k _ sk 12y T d ok c ok 12
=8 "r F(1 - |s])) sin(8%|s]?) / du@(Q (1 —|s|vu)) ) sin(8%|s|“u) du | ,

(8.3)

(8.4)

(8.5)

(8.7)

(8.8)

(8.9)

(8.10)

(8.11)



where |A| denotes the length of A.
Formulas (8.7)-(8.11) imply that

|Gr(z,0)] < 47k7rr£1€a]1§(|¢>'(t)| for1/2 < |s| <1, s=1ua0, ke N.
Note that for y € P, g), the following inequality holds:
Fa—|yh) <P —|s) <2 <4/5for 127" < |s| <1,k <m, m>3.
Formulas (3.3), (3.4), (8.13) imply that
PioyNsupp fo =0 if [s] >1—-27" k <m.
In turn, (8.2), (8.14) imply that
Gr(z,0) =0 for k <m, |z0] >1—-2"™

Due to (8.1), (8.12), (8.15) we have that:

i Gr(z,0)|/k! = Z |G (z,0)|/k!

k=1

k=m
< max |®' (t)|74~ /m'24 - o= 4—7Tmax|<I>'(t)|
~ teR 3 teRr
for |[z0] >1—-2"", m > 3.

Estimate (6.8) follows from (8.16).

8.3 Proof of estimate (6.7)

For each v, from (3.21) we have that:
lib| < 1.

Therefore, it is sufficient to show that
Hy, > Co27 " for k> ki, Co = ¢ *.

Due to formula (3.25) and in a similar way with (8.6) we obtain

Hy(z,0) = |s| 7r/<I>2(2k(1 — |s|v/w)) cos® (8% |s|*u) du = Hy 1(x,0) + Hyo(x,0), s = x0,
1
+oo
7T|$|2 26k

Hiq(x,0) = 3 ®%(27(1 — |s|vu)) du

1
2 T

Hio(x,0) = W';' / ®%(2"(1 — |s|v/u)) cos(2 - 8"|s|*u) du

1
Note that

P —|s))y >2F- 27" > 25 6/5for [s| <1—27% k>3
In turn, (3.4), (8.22) imply that
B(2"(1 — |s|vu)) =0 foru <1, |s| <1—27F k>3
Using (8.22) one can see that
2%(1 — [s]y/ar) = 11/10,
28(1 — |s|y/uz) = 9/10,

RN

luz —u1| > (Vuz — /u1) = 5||712T,

for 1/2 < |s| <1—27F k>3

Jur > 1,u2 > 1, ug2 > u1 such that {

Using (3.4), (3.6), (8.20), (8.23), (8.25) we obtain

Hy(z,0) > /du>2 s 100 for 1/2 <]z <1—2"" k>3

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

(8.17)

(8.18)

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)

(8.26)



On the other hand, using (3.4), (8.21), (8.23), in a similar way with (8.7)-(8.11), we obtain

+oo
2
|Hi,2(x,0)| = % / ®%(27(1 — |s|v/u)) cos(2 - 8"|s|*u) du‘
1
+oo d
= ZgFs72 / sin(2 - 8%[s%u) ( ——®%(2"(1 — |s|v/a)) ) du
4 / du (8.27)
T —ky —1 ’ k
< = . .
< 2877 lslT max|®()] - max[®(t)] - 2 du
A ls)
T —k /
< = . =
< 547" max |®(t)] - max|®'(t)], s = 29,
for 1/2 < |z6] < 1-27"' &k > 3.
From (8.19)-(8.21), (8.26), (8.27) it follows that
|Hi(x,0)| > |Hp (2, 0)] — [He2(z,0)]
M-k T, —k . /
Z 302~ gt maxl®(®)] max|@(t)] 529
> Co27% for 1/2 < |a0] <1 — 27" k> ky, ‘
_ T 5k T /
G2 = 5 =27 5 max|®(t)| max |2 (t)],

where ki is arbitrary constant such that k1 > 3 and C3 is positive.
Estimate (6.7) follows from (8.28).
Lemma 4 is proved.
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