Non-asymptotic fractional order differentiator for a class of fractional order linear systems - Archive ouverte HAL
Article Dans Une Revue Automatica Année : 2017

Non-asymptotic fractional order differentiator for a class of fractional order linear systems

Résumé

This paper aims at designing a non-asymptotic fractional order differentiator for a class of fractional order linear systems to estimate the Riemann-Liouville fractional derivatives of the output in discrete noisy environment. The adopted method is a recent algebraic method originally introduced by Fliess and Sira-Ramirez. Firstly, the fractional derivative of the output of an arbitrary order is exactly given by a new algebraic formula in continuous noise free case without knowing the initial conditions of the considered system. Secondly, a digital fractional order differentiator is introduced in discrete noisy cases, which can provide robust estimations in finite-time. Then, some error analysis is given, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.
Fichier principal
Vignette du fichier
final.pdf (723.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01420910 , version 1 (08-03-2017)

Identifiants

Citer

Da-Yan Liu, Gang Zheng, Driss Boutat, Hao-Ran Liu. Non-asymptotic fractional order differentiator for a class of fractional order linear systems. Automatica, 2017, 78, pp.61-71. ⟨10.1016/j.automatica.2016.12.017⟩. ⟨hal-01420910⟩
227 Consultations
261 Téléchargements

Altmetric

Partager

More