Incremental learning algorithms and applications - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Incremental learning algorithms and applications

Résumé

Incremental learning refers to learning from streaming data, which arrive over time, with limited memory resources and, ideally, without sacrificing model accuracy. This setting fits different application scenarios where lifelong learning is relevant, e.g. due to changing environments , and it offers an elegant scheme for big data processing by means of its sequential treatment. In this contribution, we formalise the concept of incremental learning, we discuss particular challenges which arise in this setting, and we give an overview about popular approaches, its theoretical foundations, and applications which emerged in the last years.
Fichier principal
Vignette du fichier
article.pdf (276.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01418129 , version 1 (16-12-2016)

Identifiants

  • HAL Id : hal-01418129 , version 1

Citer

Alexander Gepperth, Barbara Hammer. Incremental learning algorithms and applications. European Symposium on Artificial Neural Networks (ESANN), 2016, Bruges, Belgium. ⟨hal-01418129⟩
5573 Consultations
33158 Téléchargements

Partager

More