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Abstract. Incremental learning refers to learning from streaming data,
which arrive over time, with limited memory resources and, ideally, with-
out sacrificing model accuracy. This setting fits different application sce-
narios where lifelong learning is relevant, e.g. due to changing environ-
ments, and it offers an elegant scheme for big data processing by means of
its sequential treatment. In this contribution, we formalise the concept of
incremental learning, we discuss particular challenges which arise in this
setting, and we give an overview about popular approaches, its theoretical
foundations, and applications which emerged in the last years.

1 What is incremental learning?

Machine learning methods offer particularly powerful technologies to infer struc-
tural information from given digital data; still, the majority of current applica-
tions restrict to the classical batch setting: data are given prior to training,
hence meta-parameter optimisation and model selection can be based on the
full data set, and training can rely on the assumption that the data and its
underlying structure are static. Lifelong learning, in contrast, refers to the situ-
ation of continuous model adaptation based on a constantly arriving data stream
[38, 149]. This setting is present whenever systems act autonomously such as
in autonomous robotics or driving [156, 5, 112, 65]. Further, online learning be-
comes necessary in any interactive scenario where training examples are provided
based on human feedback over time [134]. Finally, many digital data sets, albeit
static, can become so big that they are de facto dealt with as a data stream, i.e.
one incremental pass over the full data set [116]. Incremental learning investi-
gates how to learn in such a streaming setting. It comes in various forms in the
literature, and the use of the term is not always consistent. Therefore, first, we
give a meaning to the terms online learning, incremental learning, and concept
drift, giving particular attention to the supervised learning paradigm.

1.1 Online learning methods

In supervised learning, data D = ((~x1, y1), (~x2, y2), (~x3, y3), . . . , (~xm, ym)) are
available with input signals ~xi and outputs yi. The task is to infer a model
M ≈ p(y|~x) from such data. Machine learning algorithms are often trained in a
batch mode, i.e., they use all examples (~xi, yi) at the same time, irrespective of
their (temporal) order, to perform, e.g., a model optimisation step.
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Challenge 1: Online model parameter adaptation. In many application
examples, data D are not available priorly, but examples arrive over time, and
the task is to infer a reliable model Mt after every time step based on the
example (~xt, yt) and the previous model Mt−1 only. This is realised by online
learning approaches, which use training samples one by one, without knowing
their number in advance, to optimise their internal cost function. There is a
continuum of possibilities here, ranging from fully online approaches that adapt
their internal model immediately upon processing of a single sample, over so-
called mini-batch techniques that accumulate a small number of samples, to
batch learning approaches, which store all samples internally.

Online learning is easily achieved by stochastic optimisation techniques such
as online back-propagation, but there are also extensions of the support vector
machine (SVM) [164]. Prototype-based models such as vector quantisation, ra-
dial basis function networks (RBF), supervised learning vector quantisation, and
self-organising maps (SOM) all naturally realise online learning schemes since
they rely on a (approximate) stochastic gradient technique [140, 115, 15, 83].
Second order numeric optimisation methods and advanced optimisation schemes
can be extended as well, such as variational Bayes, convex optimization, second
order perceptron learning based on higher order statistics in primal or dual
space, and online realisations of the quasi-Newton Broyden-Fletcher-Goldfarb-
Shanno technique [114, 117, 49, 125, 62]. Stochastic optimization schemes can
be developed also for non-decomposable cost function, [80]. Further, lazy learn-
ers such as k-nearest neighbour (k-NN) methods lend itself to online scenarios
by their design [140]. Interestingly, online learning has already very early been
accompanied by their exact mathematical investigations [162].

1.2 Incremental learning methods

Incremental learning refers to online learning strategies which work with limited
memory resources. This rules out approaches which essentially work in batch
mode for the inference of Mt by storing all examples up to time step t in mem-
ory; rather, incremental learning has to rely on a compact representation of the
already observed signals, such as an efficient statistics of the data, an alterna-
tive compact memory model, or an implicit data representation in terms of the
model parameters itself. At the same time, it has to provide accurate results for
all relevant settings, despite its limited memory resources.

Challenge 2: Concept drift. Incremental learning shares quite a number
of challenges with online learning, with memory limitations adding quite a few
extras. One prominent problem consists in the fact that, when the temporal
structure of data samples is taken into account, one can observe changes in data
statistics that occur over time, i.e. samples (~xi, yi) are not i.i.d. Changes in
the data distribution over time are commonly referred to as concept drift [88,
157, 33, 126]. Different types of concept drift can be distinguished: changes in
the input distribution p(~x) only, referred to as virtual concept drift or covariate
shift, or changes in the underlying functionality itself p(y|~x), referred to as real
concept drift. Further, concept drift can be gradual or abrupt. In the latter case
one often uses the term concept shift. The term local concept drift characterises
changes of the data statistics only in a specific region of data space [157]. A
prominent example is the addition of a new, visually dissimilar object class to a



classification problem. Real concept drift is problematic since it leads to conflicts
in the classification, for example when a new but visually similar class appears
in the data: this will in any event have an impact on classification performance
until the model can be re-adapted accordingly.

Challenge 3: The stability-plasticity dilemma. In particular for noisy
environments or concept drift, a second challenge consists in the question when
and how to adapt the current model. A quick update enables a rapid adaptation
according to new information, but old information is forgotten equally quickly.
On the other hand, adaption can be performed slowly, in which case old informa-
tion is retained longer but the reactivity of the system is decreased. The dilemma
behind this trade-off is usually denoted the stability-plasticity dilemma, which is
a well-known constraint for artificial as well as biological learning systems [113].
Incremental learning techniques, which adapt learned models to concept drift
only in those regions of the data space where concept drift actually occurs, offer
a partial remedy to this problem. Many online learning methods alone, albeit
dealing with limited resources, are not able to solve this dilemma since they
exhibit a so-called catastrophic forgetting behaviour [108, 132, 45, 44, 103] even
when the new data statistics do not invalidate the old ones.

One approach to deal with the stability-plasticity dilemma consists in the
enhancement of the learning rules by explicit meta-strategies, when and how to
learn. This is at the core of popular incremental models such as ART networks
[77, 56], or meta-strategies to deal with concept drift such as the just-in-time
classifier JIT [3], or hybrid online/offline methods [120, 43]. One major ingre-
dient of such strategies consist in a confidence estimation of the actual model
prediction, such as statistical tests, efficient surrogates, or some notion of self-
evaluation [8, 43, 78]. Such techniques can be enhanced to complex incremental
schemes for interactive learning or learning scaffolding [130, 84].

Challenge 4: Adaptive model complexity and meta-parameters. For
incremental learning, model complexity must be variable, since it is impossible to
estimate the model complexity in advance if the data are unknown. Depending
on the occurrence of concept drift events, an increased model complexity might
become necessary. On the other hand, the overall model complexity is usually
bounded from above by the limitation of the available resources. This requires
the intelligent reallocation of ressources whenever this limit is reached. Quite a
number of approaches propose intelligent adaptation methods for the model com-
plexity such as incremental architectures [166], self-adjustment of the number
of basic units in extreme learning machines [31, 177] or prototype-based models
[77, 144, 98], incremental base function selection for a sufficiently powerful data
representation [23], or self-adjusting cluster numbers in unsupervised learning
[79]. Such strategies can be put into the more general context of self-evolving
systems, see e.g. [92] for an overview. An incremental model complexity is not
only mandatory whenever concept drift is observed, hence a possibly changing
model complexity is present, but it can also dramatically speed-up learning in
batch scenarios, since it makes often tedious model selection superfluous.

In batch learning, not only the model complexity, but also essential meta-
parameters such as learning rate, degree of error, regularisation constants, etc.
are determined prior to training. Often, time consuming cross-validation is used
in batch learning, whereby first promising result how to automate the process



have been presented [155]. However, these are not suited for incremental learning
scenarios: Concept drift turns critical meta-parameters such as the learning rate
into model parameters, since their choice has to be adapted according to the
(changing) data characteristics. Due to this fact, incremental techniques often
rely on models with robust meta-parameters (such as ensembles), or they use
meta-heuristics how to adapt these quantities during training.

Challenge 5: Efficient memory models. Due to their limited resources,
incremental learning models have to store the information provided by the ob-
served data in compact form. This can be done via suitable system invariants
(such as the classification error for explicit drift detection models [33]), via the
model parameters in implicit form (such as prototypes for distance- based models
[63]), or via an explicit memory model [96, 98]. Some machine learning mod-
els offer a seamless transfer of model parameters and memory models, such as
prototype- or exemplar–based models, which store the information in the form
of typical examples [63]. Explicit memory models can rely on a finite window
of characteristic training examples, or represent the memory in the form of a
parametric model. For both settings, a careful design of the memory adaptation
is crucial since it directly mirrors the stability-plasticity dilemma [96, 98].

Challenge 6: Model benchmarking. There exist two fundamentally differ-
ent possibilities to assess the performance of incremental learning algorithms:
(1) Incremental -vs- non-incremental: In particular in the absence of concept
drift, the aim of learning consists in the inference of the stationary distribution
p(y|~x) for typical data characterised by p(~x). This setting occurs e.g. whenever
incremental algorithms are used for big data sets, where they compete with often
parallelised batch algorithms. In such settings, the method of choice evaluate
the classification accuracy of the final model Mt on a test set, or within a cross-
validation. While incremental learning should attain results in the same range
as batch variants, one must take into account that they deal with restricted
knowledge due to their streaming data access. It has been shown, as an example,
that incremental clustering algorithms cannot reach the same accuracy as batch
versions if restricted in terms of their resources [2].
(2) Incremental -vs- incremental: When facing concept drift, different cost
functions can be of interest. Virtual concept drift aims for the inference of a
stationary model p(y|~x) with drifting probability p(~x) of the inputs. In such
settings, the robustness of the model when evaluated on test data which follow a
possibly skewed distribution is of interest. Such settings can easily be generated
e.g. by enforcing imbalanced label distributions for test and training data [73].
Whenever real confidence drift is present, the online behaviour of the classifica-
tion error ‖Mt(~xt+1) − yt+1‖ for the next data point is usually the method of
choice; thereby, a simple average of these errors can be accompanied by a de-
tailed inspection of the overall shape of the online error, since it provides insight
into the rates of convergence e.g. for abrupt concept drift.
(3) Formal guarantees on the generalisation behaviour: Since many classical
algorithms such as the simple perceptron or large margin methods have been
proposed as online algorithms, there exists an extensive body of work investi-
gating their learning behaviour, convergence speed, and generalisation ability,
classically relying on the assumption of data being i.i.d. [162]. Some results
weaken the i.i.d. assumption e.g. requiring only interchangeability [146]. Re-



cently, popular settings such as learning a (generalised) linear regression could
be accompanied by convergence guarantees for arbitrary distributions p(~x) by
taking a game theoretic point of view: in such settings, classifier Mt and training
example ~xt+1 can be taken in an adversial manner, still allowing fast convergence
rates in relevant situations [158, 131, 87, 151] The approach [117] even provides
first theoretical results for real context drift, i.e. not only the input distribution,
but also the conditional distribution p(y|~x) can follow mild changes.

2 Incremental learning models

Incremental learning comes in various forms in the literature, and the use of the
term is not always consistent; for some settings, as an example, a memory limi-
tation cannot be guaranteed, or models are designed for stationary distributions
only. We will give an overview over popular models in this context. Thereby,
we will mostly focus on supervised methods due to its popularity. Online or
incremental learning techniques have also been developed for alternative tasks
such as clustering [109, 91], dimensionality reduction [25, 12, 24, 6, 123, 93],
feature selection and data representation[179, 59, 42, 173, 27, 72], reinforcement
learning [11, 60], mining and inference [54, 129].

Explicit treatment of concept drift. Dealing with concept drift at execu-
tion time constitutes a challenging task [88, 157, 33, 126]. There exist different
techniques to address concept drift, depending on its type. Mere concept shift
is often addressed by so-called passive methods, i.e. learning technologies which
smoothly adapt model parameters such that the current distribution is reliably
represented by the model. Rapid concept changes, however, often require active
methods, which detect concept drift and react accordingly.

Virtual concept drift, which concerns the input distribution only, can easily
occur e.g. due to highly imbalanced classes over time. One popular state-of-
the-art technology accounts for this fact by so-called importance weighting, i.e.
strategies which explicitly or implicitly reweight the observed samples such that
a greater robustness is achieved [81, 10, 73]. Alternatively, concept shift can
have its reason in novelty within the data or even new classes. Such settings
can naturally be incorporated into local models provided they offer an adaptive
model complexity [144, 43, 56, 133, 100].

Real concept drift can be detected by its effect on characteristic features of
the model such as the classification accuracy. Such quantitative features can be
accompanied by statistical tests which can judge the significance of their chance,
hence concept drift. Tests can rely on well-known statistics such as the Hoeffding
bound [48], or alternatively on suitable distances such as the Hellinger distance,
which can measure the characteristics of value distributions of such characteristic
features. When integrated into robust classifiers such as ensemble techniques,
models which can simultaneously deal with different types of drift result [16].

Support vector machines and generalised linear models. Several incre-
mental SVM models exist [164]. Some rely on heuristics, like retraining a model
with all support vectors plus a new ”incremental” batch of data [35, 152], but
without theoretical guarantees. Other incorporate modification of the SVM cost
function to facilitate incrementality [141] and also possibly control complexity



[58, 57]. Still, their resources are not strictly limited. As an alternative, adi-
abatically SVM training has been proposed, i.e., presenting one example at a
time while maintaining the relevant optimality conditions on all previously seen
examples. However this requires all previously seen samples need to be stored,
although the approach can considerably simplify SVM training. Ensemble learn-
ing algorithms based on SVM [127, 164] achieve incremental learning by training
new classifiers for new batches of data, and combining all existing classifiers only
for decision making. Another hybrid scheme combines a SVM classifier with a
protoype-based data representation, whereby the latter can be designed as an
online model based on which training examples for SVM can be generated [169].
Alternatively, SVMs can directly be trained in primal space, where online learn-
ing is immediate [22]. Online versions have also been proposed for more complex
generalised linear models such as Gaussian Process regression [53, 110], whereby
none of these models can yet easily deal with concept drift.

Connectionist models. As the problem of catastrophic forgetting was first
remarked for multilayer perceptrons (MLP) [108, 132], it is hardly surprising
that there exists significant work how to avoid it in connectionist systems. Ini-
tial consensus traced catastrophic forgetting back to their distributed information
representation [46]. Indeed, localist connectionist models such as radial basis
function (RBF) networks can work reliably in incremental settings [133, 100],
whereby care has to be taken to guarantee their generalisation performance [147].
Both capabilities are combined in semi-distributed representations. A number of
algorithmic modifications of the MLP model has been proposed, such as spar-
sification [45], orthogonalization of internal node weights [47, 119], reduction of
representational overlap while training [85], or specific regularisation [55]. These
are successful in mitigating but not eliminating catastrophic forgetting [147]. Re-
cently, there has been an increased interest in extreme learning machines (ELM),
which combine a random mapping with a trained linear readout. Due to their
simple training, incremental variants can easily be formulated, whereby their
reservoir naturally represents rich potential concepts [178, 31, 159, 61].

Furthermore, there exist attempts to modify the system design of MLPs [86,
150] which are more in the line of generative learning; they incorporate novelty
detection and use different representational resources for new samples. Elaborate
connectionist models feature different memory subsystems for long- and short-
term learning [139, 7], as well as explicit replay and re-learning of previous
samples to alleviate forgetting [135]. These approaches reduce the problem of
catastrophic forgetting at the price of vastly more complex model. Contrarily to
other modern approaches, inspiration is taken primarily from biology and thus
its solid mathematical understanding is yet lacking.

Explicit partitioning approaches. Many modern incremental learers rely
on a local partitioning of the input space, and a separate classification/regression
model for each partition [160, 121, 148, 18, 21]. The manner of performing this
partitioning is very diverse, ranging from kd-trees [21] to genetic algorithms [18]
and adaptive Gaussian receptive fields [160]. Equally, the choice of local models
varies between linear models [160], Gaussian mixture regression [21] or Gaussian
Processes [121]. For high-dimensional problems such as occur in perception, the
partitioning of the input space constitutes the bottleneck as concerns memory
consumption. Covariance matrices as used in [160], for example, are quadratic



in the number of input dimensions, hence prohibitive for high dimensional data.
Decision trees partially alleviate this problem insofar as they cut along one

dimension only, disregarding feature correlations. Quite a number of incremental
tree builders have been proposed for classification or regression [41, 142, 52],
with a particular focus on when to split, how to avoid overly large trees while
ensuring incremental growth, and how to reliably deal with imbalanced classes
[66, 26, 102]. Interestingly, there do exist tree classifiers which result is entirely
invariant to the ordering of the training data, but at the price of unlimited
resources [90].

Ensemble methods. Ensemble methods combine a collection of different
models by a suitable weighting strategy. As such, they are ideally suited to im-
plicitly represent even partially contradictory concepts in parallel and mediate
the current output according to the observed data statistics at hand. Ensemble
methods have proved particularly useful when dealing with concept drift, with
a few popular models ranging from incremental random forests [105], ensembles
of bipartite graph classifiers [13], up to advanced weighting schemes suitable for
different types of concept drift and recurring concepts [172, 111, 95, 172, 32, 39].

Prototype-based methods. Prototype-based machine learning has its coun-
terpart in cognitive psychology [137] which hypothesises that semantic categories
in the human mind are represented by specific examples for these categories. In
machine learning approaches, a class is represented by a number of representa-
tives, and class membership is defined based on the distance of the data from
these prototypes. For high dimensional data, adaptive low-rank metric learning
schemes can dramatically improve classification accuracy and efficiency [17, 145].
Prototype-based methods are a natural continuation of the work on localist or
semi-distributed representations in early connectionist models, and thus share
many properties. They have the advantage of an easily adaptive model com-
plexity. One disadvantage is that the number of prototypes can become large
whenever complex class boundaries are present.

Prototype-based models are closely connected to the non-parametric k-NN
classifier (all training points act as prototypes) and the RBF model [140]. A
popular supervised method is given by learning vector quantisation (LVQ) and
recent variants which can be substantiated by a cost function [15]. A number
of incremental variants and methods capable of dealing with concept drift have
been proposed, such as dynamic prototype inversion / deletion schemes [98, 144],
or techniques with fixed model complexity, but intelligent source redistribution
strategies [50]. Similar unsupervised incremental models exist [63, 19, 176].

Insights into biological incremental learning. As biological incremental
learning has reached a high degree of perfection, biological paradigms can provide
inspiration how to set up artificial incremental systems. There is evidence that
sensory representations in the neocortex are prototype-based, whereby neurons
are topologically arranged by similarity [153, 94, 138, 40]. Learning acts on
these representations in a task-specific way insofar as the density of neurons is
correlated to sensory regions which require finer discrimination [128], i.e., where
more errors occur. Here, learning is conceivably enhanced through acetylcholine
release in case of task failures [163, 70]. Learning respects the topological layout
by changing only a small subset of neural selectivities [136] at each learning
event, corresponding to regions around the best matching unit [40].



Beyond the single-neuron level, there is a large body of literature investigat-
ing the roles of the hippocampal and neocortical areas of the brain in learning
at the architectural level. Generally speaking, the hippocampus employs a rapid
learning rate with separated representations whereas the neocortex learns slowly,
building overlapping representations of the learned task [122]. A well-established
model of the interplay between the hippocampus and the neocortex suggests that
recent memories are first stored in the hippocampal system and played back to
the neocortex over time [107]. This accommodates the execution of new tasks
that have not been recently performed as well as the transfer of new task repre-
sentations from the hippocampus (short-term memory) to the neocortical areas
(long-term memory) through slow synaptic changes, i.e. it provides an architec-
ture which is capable of facing the stability-plasticity dilemma.

3 Applications

We would like to conclude this overview by a glimpse on typical application
scenarios where incremental learning plays a major role.

Data analytics and big data processing. There is an increasing interest in
single-pass limited-memory models which enable a treatment of big data within a
streaming setting [64]. Their aim is to reach the capability of offline techniques,
and conditions are less strict as concerns e.g. the presence of concept drift.
Recent approaches extend, for example, extreme learning machines in this way
[168]. Domains, where this approach is taken, include image processing [34, 97],
data visualisation [106], and processing of networked data [29].

Robotics. Autonomous robotics and human-machine-interaction are inher-
ently incremental, since they are open-ended, and data arrive as a stream of
signals with possibly strong drift. Incremental learning paradigms have been de-
signed in the realm of autonomous control [161], service robotics [5], computer vi-
sion [175], self-localisation [82], or interactive kinesthetic teaching [143, 51]. Fur-
ther, the domain of autonomous driving is gaining enormous speed [156, 118, 4],
with enacted autonomous vehicle legislation in already eight states in the US
(Dec. 2015). Another emerging area, caused by ubiquitous sensors within smart
phones, addresses activity recognition and modeling [69, 1, 89, 74, 99, 68].

Image processing. Image and video data are often gathered in a streaming
fashion, lending itself to incremental learning. Typical problems in this context
range from object recognition [36, 9, 98], image segmentation [36, 71], and im-
age representation [30, 165], up to video surveillance, person identification, and
visual tracking [154, 28, 167, 104, 37, 134, 174, 101].

Automated annotation. One important process consists in the automated
annotation or tagging of digital data. This requires incremental learning aproaches
as soon as data arrive over time; example systems are presented in the approaches
[75, 14, 20] for video and speech tagging.

Outlier detection. Automated surveillance of technical systems equipped
with sensors sensors constitutes an important task in different domains, starting
from process monitoring [67] fault diagnosis in technical systems [171, 76, 170],
up to cyber-security [124]. Typically, a strong drift is present in such settings,
hence there is a demand for advanced incremental learning techniques.
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[122] R. C. OŔeilly. The division of labor between the neocortex and hippocampus. Connectionist Models in Cognitive
Psychology, page 143, 2004.

[123] S. Ozawa, Y. Kawashima, S. Pang, and N. Kasabov. Adaptive incremental principal component analysis in
nonstationary online learning environments. In IJCNN, pages 2394–2400, 2009.

[124] S. Pang, Y. Peng, T. Ban, D. Inoue, and A. Sarrafzadeh. A federated network online network traffics analysis
engine for cybersecurity. In IJCNN, volume 2015-September, 2015.

[125] A. Penalver and F. Escolano. Entropy-based incremental variational bayes learning of gaussian mixtures. IEEE
Transactions on Neural Networks and Learning Systems, 23(3):534–540, 2012.

[126] R. Polikar and C. Alippi. Guest editorial learning in nonstationary and evolving environments. IEEE Transac-
tions on Neural Networks and Learning Systems, 25(1):9–11, 2014.

[127] R. Polikar, L. Upda, S. S. Upda, and V. Honavar. Learn++: An incremental learning algorithm for supervised
neural networks. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 31(4):497–508,
2001.

[128] D. B. Polley, E. E. Steinberg, and M. M. Merzenich. Perceptual learning directs auditory cortical map reor-
ganization through top-down influences. The journal of neuroscience, 26(18):4970–4982, 2006.

[129] M. Pratama, S. Anavatti, P. Angelov, and E. Lughofer. Panfis: A novel incremental learning machine. IEEE
Transactions on Neural Networks and Learning Systems, 25(1):55–68, 2014.

[130] M. Pratama, J. Lu, S. Anavatti, E. Lughofer, and C.-P. Lim. An incremental meta-cognitive-based scaffolding
fuzzy neural network. Neurocomputing, 171:89–105, 2016.

[131] A. Rakhlin, K. Sridharan, and A. Tewari. Online learning via sequential complexities. Journal of Machine
Learning Research, 16:155–186, 2015.

[132] R. Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and forgetting
functions. Psychological Review, 97, 1990.

[133] P. Reiner and B. Wilamowski. Efficient incremental construction of rbf networks using quasi-gradient method.
Neurocomputing, 150(PB):349–356, 2015.
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