Acceleration of saddle-point methods in smooth cases - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Acceleration of saddle-point methods in smooth cases

Résumé

In this work, we provide a new analysis of the convergence of the ADMM (Alternating Direction Method of Multipliers) based on the equivalence between the ADMM and the PDHG (Primal-Dual Hybrid Gradient) with overrelaxation. The convergence study of the latter in the smooth case (where the objective function is decomposed in a strongly convex part and a differentiable part with a Lipschitz continuous gradient) allows us to deduce convergence results on both the ADMM and an accelerated variant of the ADMM. Numerical comparisons with the PDHG method and the well-known FISTA are shown in practical cases.
Fichier principal
Vignette du fichier
ADMM_Tan.pdf (620.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01415459 , version 1 (13-12-2016)
hal-01415459 , version 2 (05-01-2017)
hal-01415459 , version 3 (16-01-2017)

Identifiants

Citer

Pauline Tan. Acceleration of saddle-point methods in smooth cases. 2016. ⟨hal-01415459v1⟩
382 Consultations
219 Téléchargements

Altmetric

Partager

More