Acceleration of saddle-point methods in smooth cases - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Acceleration of saddle-point methods in smooth cases

Résumé

In the present paper we propose a novel convergence analysis of the Alternating Direction Methods of Multipliers (ADMM), based on its equivalence with the overrelaxed Primal-Dual Hybrid Gradient (oPDHG) algorithm. We consider the smooth case, which correspond to the cas where the objective function can be decomposed into one differentiable with Lipschitz continuous gradient part and one strongly convex part. An accelerated variant of the ADMM is also proposed, which is shown to converge linearly with same rate as the oPDHG.
Fichier principal
Vignette du fichier
ADMM_Tan_HAL.pdf (620.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01415459 , version 1 (13-12-2016)
hal-01415459 , version 2 (05-01-2017)
hal-01415459 , version 3 (16-01-2017)

Identifiants

Citer

Pauline Tan. Acceleration of saddle-point methods in smooth cases. 2017. ⟨hal-01415459v2⟩
382 Consultations
219 Téléchargements

Altmetric

Partager

More