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Acceleration of saddle-point methods

in smooth cases

Pauline Tan, CMAP, École polytechnique, Palaiseau

1 Introduction

1.1 Context

The Alternating Direction Methods of Multipliers (ADMM) is a widely-used method
aimed at minimizing constrained problems of form

min
(x,z)∈X×Z
Ax+Bz=c

g(x) + h(z). (1)

The objective function is separable in (x, z) with g : X → R ∪ {+∞} and h : Z →
R∪{+∞} two closed convex functions. The constraint involves two linear operators A :
X → Y and B : Z → Y and a constant c ∈ Y . In this work, X, Z, and Y are finite-
dimensional real Hilbert spaces. The ADMM was initially introduced in the mid-70’s by
Gabay-Mercier [9] and by Glowinski-Marrocco [10]. It considers the augmented
Lagrangian associated to problem (1)

Lτ (x, z; y) := g(x) + h(z) + 〈Ax+Bz − c, y〉+
1

2 τ
‖Ax+Bz − c‖2 (2)

for τ > 0 which leads to solve the saddle-point problem

min
(x,z)∈X×Z

sup
y∈Y

Lτ (x, z; y) (3)

instead of the initial problem. One particular instance of these so-called augmented La-
grangian methods uses Uzawa’s method to solve (3). Namely, the method of multipliers
tackles this problem by alternating an exact minimization on the primal variable (x, z)
and a gradient ascent step on the dual variable y. In such a method, the minimization
step couples the primal variables. To decouple them, one may consider splitting this step
into two partial minimizations, one over x and another over z. These two minimization
can be done simultaneously, from the same initial points, or, in the case of the ADMM,
one after the other, with an update in between. This leads to the following algorithm

xn+1 = argmin
x∈X

Lτ (x, zn; yn)

zn+1 = argmin
z∈Y

Lτ (xn+1, z; yn)

yn+1 = yn +
1

τ
(Axn+1 − zn+1).

(4)

This method can be proved to be linked to another famous algorithm, which is
known as the Primal-Dual Hybrid Gradient (PDHG) method [18]. The PDHG method
tackles saddle-point problems by alternating gradient descent steps and gradient ascent
steps. Such problems arise while considering a primal-dual formulation of a convex
minimization problem, in a splitting strategy for instance. A noteworthy feature of
the PDHG method is that it can be accelerated thanks to an over-relaxation step à la
Nesterov [13] on one of the variables [17, 3, 8, 4].
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The ADMM has been intensively studied in the past years. One may see for instance
a comprehensive review in [2]. The key point is the convergence of the algorithm and
its convergence rate. Under assumptions on the matrix ranks and / or the regularity
of the objective functions g and h, linear rates can be achieved [12]. Eventually, some
accelerated variants of the ADMM have been proposed [7, 6].

As a recent developpement, we should mention [11], which also studied the conver-
gence of the PDHG method and derived optimal step size choice, when only one function
assumed to be strongly convex.

1.2 Contribution of this paper

In this paper, we provide a new analysis of the ADMM based on the equivalence between
the ADMM and the accelerated PDHG method. More specifically, we use the analysis
to derive convergence rate for the ADMM in a case we refer to be smooth. We indeed
made restrictive assumptions on the initial problem (1), which implies that we consider
the following particular instance of (1):

min
(x,z)∈X×Z
Ax=z

g(x) + h(z). (5)

which may be rewritten as the unconstrained composite problem

min
x∈X

g(x) + h(Ax) (6)

with regularity assumptions on g, which is supposed to be strongly convex, and h, which
has a Lipschitz gradient. We first establish new linear ergodic convergence rates of the
accelerated PDHG by generalizing the proof of [citer]. This leads to a linear rate for the
ADMM under these assumptions. Then, we introduce a slight variant of the ADMM
which leads to a better rate, by relaxing the choice of the parameters in the convergence
proof of the PDHG method.

The reason why we only consider the case B = −Id and c = 0 is that, otherwise,
as the map y 7→ h∗(B∗y) will be supposed to be strongly convex, this implies that ∇f
is Lipschitz continuous and that B is invertible. Such conditions are artificial when B
is not −Id. However, the interested reader will easily extend our result to this case.
Moreover, problems of standard form (6) often arise in many contexts, and thus can
justify a special study by themselves.

1.3 Structure of the paper

This paper is organized as follows. In Section 2, we recall the equivalence between the
ADMM and the PDHG method. We also define what we call the smooth case, which is
the case we will consider throughout this paper. In Section 3, we establish two linear
convergence results for the accelerated PDHG, and we provide the best parameter choice
in the case where the overrelaxation parameter is fixed to be 1 or left unconstrained. In
Section 4, we exploit the equivalence between the ADMM and the PDHG to derive from
the results of Section 3 new linear convergence rate for the ADMM. We also propose
a slight variant of the ADMM, which leads in the best case to the same convergence
rate as the accelerated PDHG method. In Section 5, we compare our results with
some found in the literature for the classical ADMM or variants, in the case where the
assumptions made on the problem yield a linear convergence rate. Those assumptions
do not necessary include the smooth case studied here. Eventually, in Section 6, we
applied our accelerated ADMM on two problems, and compared its convergent with the
unaccelerated ADMM, the accelerated PDHG and Beck and Teboulle’s FISTA [1].
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2 Equivalence between the ADMM and the acceler-
ated PDHG

2.1 Initial primal problem

Let X and Y be two finite-dimensional real Hilbert spaces. The inner product is denoted
by 〈·, ·〉 and ‖·‖ stands for the induced norm. We recall that we consider the minimization
problem

min
x∈X

{
f(x) := g(x) + h(Ax)

}
(7)

where g : X → R ∪ {+∞} and h : Y → R ∪ {+∞} are proper, convex, and lower
semi-continuous (l.s.c.) functions. The map A : X → Y is a continuous linear operator.
Its adjoint is denoted by A∗ and it is supposed to be bounded, of norm LA

LA := ‖A‖ = sup
x∈X,‖x‖≤1

‖Ax‖. (8)

2.2 Equivalence with PDHG

Let us briefly recall how the ADMM is connected to the (accelerated) PDHG algorithm.
Let us rewrite the ADMM iterations (4). Ignoring the constant terms in the minimization
steps, we obtain

xn+1 = argmin
x∈X

{
g(x) + 〈Ax, yn〉+

1

2 τ
‖Ax− zn‖2

}
zn+1 = argmin

z∈X

{
h(z)− 〈z, yn〉+

1

2 τ
‖Axn+1 − z‖2

}
yn+1 = yn +

1

τ
(Axn+1 − zn+1).

(9)

Defining ξn+1 := Axn+1 and introducing the map

gA(ξ) := inf
x∈X,Ax=ξ

g(x) (10)

we can make a change of variable in the x-update and rewrite the updates of xn+1

and yn+1 thanks to proximity operators. This yields
ξn+1 = proxτgA

(
ξn − τ ȳn

)
yn+1 = proxh∗/τ (yn + ξn+1/τ)

ȳn+1 = yn+1 + (yn+1 − yn)

(11)

and the z-update is given by zn+1 = ξn+1 − τ (yn+1 − yn). This primal-dual algorithm
has been studied in [3]. It can be interpreted as an accelerated PDHG algorithm with
an additional over-relaxation step (of parameter 1) on the dual variable. It solves the
saddle-point problem

min
ξ∈X

sup
y∈Y

{
gA(ξ) + 〈ξ, y〉 − h∗(y)

}
(12)

which is of general form

min
ξ∈X

sup
y∈Y

{
L(ξ; y) := G(ξ) + 〈Kξ, y〉 −H∗(y)

}
(13)

with K = Id, G = gA and H = h. Note that (13) is the primal-dual formulation of the
minimization problem

min
ξ∈X

{
G(ξ) +H(Kξ)

}
. (14)
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2.3 Smooth case

From now on, we consider the smooth case. In the initial primal problem (7), the func-
tions g and h∗ are both supposed to be strongly convex, with respective parameter γ > 0
and δ > 0. We recall that a function f : X → R ∪ {+∞} is strongly convex of parame-
ter α > 0 (f is also said to be α-convex) if for any x1, x2 ∈ X and p ∈ ∂f(x1)

f(x2) ≥ f(x1) + 〈p, x2 − x1〉+
α

2
‖x2 − x1‖2 (15)

where ∂f(x1) denotes the subdifferential of f at point x1. One can easily check that if f
is α-convex, then its convex conjugate f∗ is differentiable, with a Lipschitz continuous
gradient, of constant 1/α.

The assumptions made above obviously that the map x 7→ h(Ax) has an (L2
A/δ)-

Lipschitz gradient Moreover, it is easy to show that G∗ is differentiable and that ∇G∗
is Lipschitz continuous with constant L2

A/γ, which follows from

g∗A(y + t) = g∗
(
A∗(y + t)

)
= g∗(A∗y) + 〈∇g∗(A∗y), A∗t〉+ o(‖A∗t‖) (16)

since g is γ-convex. Hence, G is γ/L2
A-convex. Let γ̃ = γ/L2

A and δ̃ = δ.
We define κf := L2

A/δ/γ the condition number of f as the ratio between L2
A/δ the

Lipschitz constant of the smooth part h(K·) and γ the strong convexity parameter of
the non-smooth part g. In the case where f is both smooth with ∇f lipschitz continuous
and strongly convex, this definition recovers the one usually used in such cases and the
condition number is always larger than 1. In the general case, it can be less than 1.
When κf is large, the function is said ill-conditioned.

2.4 Forward-backward splitting

If h is differentiable, it is possible to consider a forward-backward splitting (FBS) strategy
to solve problem (7). The FBS applied on the sum f = g + h(A·) gives updates of form

xn+1 = proxτg
(
xn − τ A∗∇h(Axn)

)
. (17)

Hence, choosing to use the FBS instead of the ADMM or the PDHG method suggests
that ∇h is supposed to be easier to compute than proxh.

A variant of the FBS is FISTA [1], which adds an extra overrelaxation step. It can
be adapted to solve for strongly convex problems following [14], see [5, Appendix B] for
details. In other terms, the updates (17) are replaced by{

xn+1 = proxτg
(
x̄n − τ A∗∇h(Ax̄n)

)
x̄n+1 = xn+1 + θn+1 (xn+1 − xn)

(18)

where the variable overrelaxation parameter θn is chosen in the strongly convex case by
letting

tn+1 =
1− q t2n +

√
(1− q tn2)2 + 4 tn

2

2
(19)

for q = τγ/(1 + τγ) for τ ∈ (0, δ/L2
A]. Then,

θn =
(
1 + τγ(1− tn+1)

) tn − 1

tn+1
. (20)

In the non-strongly convex case (γ = δ = 0), the quantity q is null, and the resulting
updates of tn and θn are those in the original paper of Beck and Teboulle. When g
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is assumed to be strongly convex and h(A· ) has a L2
A/δ-Lipschitz gradient, the con-

vergence rate for the objective error of this algorithm has been proved to be linear. In
the case where t (and thus, θ) is chosen to be constant

tn = t =
1
√
q

and θn = θ = (1−√q)2 1 + τ γ

1− τ γ
(21)

then the convergence rate is equal to 1 − √q [5, Remark B.2]. This rate is minimal
when τ is maximal and equals

ω = 1−

√
δγ/L2

A

1 + δγ/L2
A

= 1−

√
1

κf + 1
. (22)

Note that, in the case where g is γ-convex then this is also the case for f . Hence, the
optimality condition on x∗ coupled with the strong convexity inequality recalled in (15)
yields

f(xn)− f(x∗) ≥ γ

2
‖xn − x∗‖2 (23)

that is, a linear convergence for the objective error implies a linear convergence of at
least same rate for the convergence of the primal iterate xn.

3 Convergence of PDHG in the smooth case

In this section, we establish the general convergence proof of the following algorithm
yn+1 = proxσH∗(yn + σKξ̄n)

ξn+1 = proxτG
(
ξn − τ K∗yn+1

)
ξ̄n+1 = ξn+1 + θ (ξn+1 − ξn).

(24)

which aims at solving problem (13), in the general case where K : Z → Y is bounded of
norm LK , G : Z → R ∪ {+∞} is γ̃-convex and H∗ : Y → R ∪ {+∞} is δ̃-convex. The
step sizes τ, σ > 0 and the relaxation parameter 0 < θ ≤ 1 are to be specified.

When θ = 0, this algorithm is known as the PDHG method [18]. It consists in
a proximal gradient ascent step for the dual variable, followed by a proximal gradient
descent step for the primal variable. The over-relaxation step has been added in [17]
for minimizing the Mumford-Shah functional, and studied in a wider framework in [8]
and more recently in [4]. The case θ = 1 and τσ = 1 corresponds to the equivalence with
the ADMM, as recalled in the previous section. When θ = 1 and τσ 6= 1, the iterations
are equivalent to the ADMM with an additional proximal term [3], which leads to a
preconditioned version of the ADMM [8].

Now we can formulate our main result.

Theorem 1 Assume problem (13) has a solution, which is a saddle-point of L, de-
noted by (ξ∗, y∗). Choose τ > 0, σ > 0 and 0 < θ ≤ 1 such that

max

{
1

τ γ̃ + 1
,

1

σδ̃ + 1

}
≤ θ ≤ 1

L2
Kτσ

. (25)

Then, for any ω such that

max

{
1

τ γ̃ + 1
,
θ + 1

σδ̃ + 2

}
≤ ω ≤ θ (26)
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we have the following majoration for any N ∈ N and any (ξ, y) ∈ Z × Y :

0 ≤ 1

2τ
‖ξN − ξ‖2 + (1− ωL2

Kτσ)
1

2σ
‖yN − y‖2

+

N∑
n=1

ωn

ωn−1
(
L(ξn; y)− L(ξ; yn)

)
≤ ωN

2τ
‖ξ0 − ξ‖2 +

ωN

2σ
‖y0 − y‖2

(27)

where (ξn, yn)n are generated by Algorithm (24). Hence, if we define

TN :=

N∑
n=1

1

ωn−1
=

1− ωN

ωN−1(1− ω)
(28)

and let

ΞN :=
1

TN

N∑
n=1

1

ωn−1
ξn and YN :=

1

TN

N∑
n=1

1

ωn−1
yn. (29)

Then we have the following bound for any (ξ, y) ∈ Z × Y :

0 ≤ 1− ω
ω(1− ωN )

1

2τ
‖ξ − ξN‖2 +

1− ω
ω(1− ωN )

(1− ωL2
Kτσ)

1

2σ
‖y − yN‖2

+ L(ΞN ; y)− L(ξ;YN )

≤ 1

TN

1

2τ
‖ξ − ξ0‖2 +

1

TN

1

2σ
‖y − y0‖2.

(30)

This theorem provides a linear ergodic convergence rate, i.e. for the sequences (ΞN )
and (YN ). This rate can be compared with [14], and will proved to be better with
optimal parameters. Also note that no assumption is made about the rank of the linear
operator K. Equation (30) can be applied to ξ = ξ∗ and y = y∗, which yields a
nonergodic linear convergence rate for the variable convergence (see subsection 3.1.3).
The objective error can be measured thanks to the partial primal-dual gap:

GBZ×BY
(Ξ;Y ) := sup

y∈BY

L(Ξ; y)− inf
ξ∈BZ

L(ξ;Y ) (31)

for BZ ×BY an bounded open subset of Z × Y which contains (ξ∗, y∗). The partial gap
is nonnegative and expected to be zero iff (Ξ, Y ) is a saddle-point of L. Of course, this
implies that BZ and BY can be estimated.

A similar result may be found in [3], but the rate we provide here is better, since no
restrictive assumptions are made on the parameters values, unless necessary.

3.1 Proof of convergence

We proceed analogously to the proof in [3], but we do not specify any parameter unless
needed. For now, we only assume that 0 < θ ≤ 1.
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3.1.1 Preliminaries

Let us define the general updates by setting for any (ξ̄, ξ̃) ∈ Z2 and (ȳ, ỹ) ∈ Y 2ŷ := proxσH∗(ȳ + σKξ̃)

ξ̂ := proxτG(ξ̄ − τK∗ỹ).
(32)

In other terms, ŷ and ξ̂ are the output of an iteration, and are respectively computed
from initial points (ȳ, ξ̃) and (ỹ, ξ̄). These points are related by first-order optimality

conditions. For instance, the point ξ̂ is defined as the solution of a minimization problem

ξ̂ = argmin
ξ∈Z

{
1

2τ
‖ξ̄ − τK∗ỹ − ξ‖2 +G(ξ)

}
(33)

so, by optimality, we obtain

− 1

τ
(ξ̂ − ξ̄)−K∗ỹ ∈ ∂G(ξ̂). (34)

Similarly, the definition of ŷ yields

− 1

σ
(ŷ − ȳ) +Kξ̃ ∈ ∂F ∗(ŷ). (35)

Using the definition of strong convexity recalled in (15), we get (after expanding the
scalar products)

G(ξ)+
1

2τ
‖ξ− ξ̄‖2 ≥ G(ξ̂)+ 〈K(ξ̂− ξ), ỹ〉+ 1

2τ
‖ξ̂− ξ̄‖2 +

1

2τ
‖ξ− ξ̂‖2 +

γ̃

2
‖ξ− ξ̂‖2 (36)

H∗(y)+
1

2σ
‖y− ȳ‖2 ≥ H∗(ŷ)−〈Kξ̃, ŷ−y〉+ 1

2σ
‖ŷ− ȳ‖2+

1

2σ
‖y− ŷ‖2+

δ̃

2
‖y− ŷ‖2. (37)

Now, summing (36) and (37), we have after rearrangement

L(ξ̂; y)− L(ξ; ŷ) ≤ 1

2τ
‖ξ − ξ̄‖2 − 1 + τ γ̃

2τ
‖ξ − ξ̂‖2 − 1

2τ
‖ξ̄ − ξ̂‖2

+
1

2σ
‖y − ȳ‖2 − 1 + σδ̃

2σ
‖y − ŷ‖2 − 1

2σ
‖ȳ − ŷ‖2

+ 〈K(ξ̂ − ξ), ŷ − ỹ〉 − 〈K(ξ̂ − ξ̃), ŷ − y〉.

(38)

3.1.2 First inequality

Let us now prove the following lemma:

Lemma 1 Let (ξn, yn)n be generated by Algorithm (24). Then, for any n ∈ N,
τ, σ > 0 and 0 < ω ≤ θ, we have

L(ξn; y)− L(ξ; yn) ≤ 1

2τ
‖ξ − ξn‖2 +

1

2σ
‖y − yn‖2

− 1

ω

(
1

2τ
‖ξ − ξn+1‖2 +

1

2σ
‖y − yn+1‖2

)
+ ω

1

2τ
‖ξn−1 − ξn‖2 −

1

2τ
‖ξn − ξn+1‖2

+ ω 〈K(ξn−1 − ξn), y − yn〉 − 〈K(ξn − ξn+1), y − yn+1〉.

(39)
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Proof. We specify the six variables in (38), by choosing on one hand

ξ̂ = ξn+1, ξ̄ = ξn, and ξ̃ = ξn + θ (ξn − ξn−1) (40)

for 1 ≥ θ > 0 not specified yet, and

ŷ = yn+1, ȳ = yn, and ỹ = yn+1 (41)

on the other hand, which leads to the iterations in (24). After a simplification, we get

L(ξn+1; y)− L(ξ; yn+1) ≤ 1

2τ
‖ξ − ξn‖2 +

1

2σ
‖y − yn‖2

− 1 + τ γ̃

2τ
‖ξ − ξn+1‖2 −

1 + σδ̃

2σ
‖y − yn+1‖2

− 1

2τ
‖ξn − ξn+1‖2 −

1

2σ
‖yn − yn+1‖2

+ θ 〈K(ξn−1 − ξn), y − yn+1〉 − 〈K(ξn − ξn+1), y − yn+1〉.

(42)

Now, we define τ γ̃ = µ > 0 and σδ̃ = µ′ > 0. For any n ∈ N, we set

∆n =
1

2τ
‖ξ − ξn‖2 +

1

2σ
‖y − yn‖2. (43)

Hence, we can rewrite (42) with ∆n, which yields

L(ξn+1; y)− L(ξ; yn+1) ≤ ∆n − (1 + µ) ∆n+1 −
1

2τ
‖ξn − ξn+1‖2 −

1

2σ
‖yn − yn+1‖2

+ θ 〈K(ξn−1 − ξn), y − yn+1〉 − 〈K(ξn − ξn+1), y − yn+1〉

+
µ− µ′

2σ
‖y − yn+1‖2.

(44)

Let us bound the scalar products in (44). For any 0 < ω ≤ θ, we have the decomposition

θ 〈K(ξn−1 − ξn), y − yn+1〉 = ω 〈K(ξn−1 − ξn), y − yn〉

+ ω 〈K(ξn−1 − ξn), yn − yn+1〉

+ (θ − ω) 〈K(ξn−1 − ξn), y − yn+1〉.

(45)

Let us have a closer look at the last two terms. Let α > 0. Since ω ≥ 0, we have

ω 〈K(ξn−1 − ξn), yn − yn+1〉 ≤ ω LK ‖ξn−1 − ξn‖ · ‖yn − yn+1‖

≤ ω LK
(
α

2
‖ξn−1 − ξn‖2 +

1

2α
‖yn − yn+1‖2

)
.

(46)

Similarly, since θ − ω ≥ 0,

(θ − ω) 〈K(ξn−1 − ξn), y − yn+1〉 ≤ (θ − ω)LK

(
α

2
‖ξn−1 − ξn‖2 +

1

2α
‖y − yn+1‖2

)
.

(47)

8



After simplification, the majoration (44) becomes, thanks to inequalities (46) and (47),

L(ξn+1; y)− L(ξ; yn+1) ≤ ∆n − (1 + µ) ∆n+1

+ θ LK
α

2
‖ξn−1 − ξn‖2 −

1

2τ
‖ξn − ξn+1‖2

+

(
ω LK

2α
− 1

2σ

)
‖yn − yn+1‖2

+ ω 〈K(ξn−1 − ξn), y − yn〉 − 〈K(ξn − ξn+1), y − yn+1〉

+

(
(θ − ω)LK

2α
+
µ− µ′

2σ

)
‖y − yn+1‖2.

(48)

Choose α = ωLKσ. Hence, we have ωLK/α = 1/σ, so that the ‖yn − yn+1‖2 term
cancels. This leads to:

L(ξn+1; y)− L(ξ; yn+1) ≤ ∆n − (1 + µ) ∆n+1

+ ω
θL2

Kτσ

2τ
‖ξn−1 − ξn‖2 −

1

2τ
‖ξn − ξn+1‖2

+ ω 〈K(ξn−1 − ξn), y − yn〉 − 〈K(ξn − ξn+1), y − yn+1〉

+

(
θ − ω
ω

+ µ− µ′
)

1

2σ
‖y − yn+1‖2.

(49)

Since 1 + µ = 1/ω + 1 + µ− 1/ω, we have

− (1+µ) ∆n+1 = − 1

ω
∆n+1 +

(
1

ω
− µ− 1

) (
1

2τ
‖ξ − ξn+1‖2 +

1

2σ
‖y − yn+1‖2

)
(50)

so the right-hand side of (49) becomes

∆n −
1

ω
∆n+1 + ω

θL2
Kτσ

2τ
‖ξn − ξn−1‖2 −

1

2τ
‖ξn − ξn+1‖2

+ ω 〈K(ξn−1 − ξn), y − yn〉 − 〈K(ξn − ξn+1), y − yn+1〉

+

(
1

ω
− µ− 1

)
1

2τ
‖ξ − ξn+1‖2 +

(
θ − ω
ω

+
1

ω
− µ′ − 1

)
1

2σ
‖y − yn+1‖2.

(51)

It is now time to set conditions on ω, θ, τ and σ. First, choose θ, τ and σ so
that θL2

Kτσ ≤ 1. Then, choose θ so that both 1/ω−µ− 1 and (θ−ω)/ω+ 1/ω−µ′− 1
are nonpositive, which implies that

1

µ+ 1
≤ ω ≤ θ and

θ + 1

µ′ + 2
≤ ω ≤ θ. (52)

Then we can bound (51) by

∆n −
1

ω
∆n+1 + ω

1

2τ
‖ξn−1 − ξn‖2 −

1

2τ
‖ξn − ξn+1‖2

+ ω 〈K(ξn−1 − ξn), y − yn〉 − 〈K(ξn − ξn+1), y − yn+1〉.
(53)
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Eventually, back to (49) we get the wanted inequality

L(ξn+1; y)− L(ξ; yn+1) ≤ ∆n −
1

ω
∆n+1

+ ω
1

2τ
‖ξn−1 − ξn‖2 −

1

2τ
‖ξn − ξn+1‖2

+ ω 〈K(ξn−1 − ξn), y − yn〉 − 〈K(ξn − ξn+1), y − yn+1〉. �
(54)

3.1.3 Linear convergence of the iterates

Multiplying (54) by 1/ωn and summing between n = 0 and n = N−1 (choose ξ−1 = ξ0)
cancels most of the terms:

N∑
n=1

1

ωn−1
(
L(ξn; y)− L(ξ; yn)

)
≤ ∆0 −

1

ωN
∆N −

1

2τωN−1
‖ξN−1 − ξN‖2

− 1

ωN−1
〈K(ξN−1 − ξN ), y − yN 〉.

(55)

Once again, we bound the scalar product: let β > 0,

− 1

ωN−1
〈K(ξN−1 − ξN ), y − yN 〉 ≤

LK
ωN−1

(
β

2
‖ξN−1 − ξN‖2 +

1

2β
‖y − yN‖2

)
(56)

and inequality (55) becomes

N∑
n=1

1

ωn−1
(
L(ξn; y)− L(ξ; yn)

)
≤ ∆0 −

1

ωN
∆N +

(
LKβ

2ωN−1
− 1

2τωN−1

)
‖ξN−1 − ξN‖2

+
LK
ωN−1

1

2β
‖yN − y‖2.

(57)

Now choose β = 1/(LKτ), which cancels the ‖ξN−1 − ξN‖2 term, and we get

N∑
n=1

1

ωn−1
(
L(ξn; y)− L(ξ; yn)

)
≤ ∆0 −

1

ωN
∆N +

L2
Kτσ

ωN−1
1

2σ
‖y − yN‖2. (58)

Replacing ∆0 and ∆n by their respective definition, we obtain

N∑
n=1

1

ωn−1
(
L(ξn; y)− L(ξ; yn)

)
≤ 1

2τ
‖ξ − ξ0‖2 +

1

2σ
‖y − y0‖2

− 1

ωN
1

2τ
‖ξ − ξN‖2 −

1

ωN
(1− ωL2

Kτσ)
1

2σ
‖y − yN‖2.

(59)

Since ωL2
Kτσ ≤ θL2

Kτσ ≤ 1 and L(ξn; y)− L(ξ; yn) ≥ 0 for any n ∈ N, we have

0 ≤ 1

2τ
‖ξ − ξN‖2 + (1− ωL2

Kτσ)
1

2σ
‖y − yN‖2 +

N∑
n=1

ωN

ωn−1
(
L(ξn; y)− L(ξ; yn)

)
≤ ωN

2τ
‖ξ − ξ0‖2 +

ωN

2σ
‖y − y0‖2.

(60)
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The latter inequality proves the linear convergence of the iterates:

Corollary 1 Assume problem (13) has a solution, which is a saddle-point of L, de-
noted by (ξ∗, y∗). Let (ξn, yn)n be generated by Algorithm (24). Suppose there exist τ ,
σ, θ and ω satisfying both conditions (25) and (26). Then, for any N ∈ N, we have

‖ξ∗ − ξN‖2 ≤ ωN
(
‖ξ∗ − ξ0‖2 +

τ

σ
‖y∗ − y0‖2

)
. (61)

Moreover, if ωL2
Kτσ 6= 1, then we also have

‖y∗ − yN‖2 ≤
ωN

1− ωL2
Kτσ

(σ
τ
‖ξ∗ − ξ0‖2 + ‖y∗ − y0‖2

)
. (62)

Remark: The convergence rate in Corollary 1 can be improved if we use the fact that,
by definition,

L(ξn+1; y∗)− L(ξ∗; yn+1) = G(ξn+1)−G(ξ∗) +H∗(yn+1)−H∗(y∗)
+ 〈Kξn+1, y

∗〉 − 〈Kξ∗, yn+1〉.
(63)

The strong convexity of G et H∗ and the optimality of ξ∗ and y∗ yield the following
inequalities:

G(ξn+1)−G(ξ∗) ≥ 〈−K∗y∗, ξn+1 − ξ∗〉+
γ̃

2
‖ξn+1 − ξ∗‖2 (64)

H∗(yn+1)−H∗(y∗) ≥ 〈Kξ∗, yn+1 − y∗〉+
δ̃

2
‖yn+1 − y∗‖2. (65)

This implies that

γ̃

2
‖ξn+1 − ξ∗‖2 +

δ̃

2
‖yn+1 − y∗‖2 ≤ L(ξn+1; y∗)− L(ξ∗; yn+1) (66)

since the sum of the scalar products cancels. Hence, if we choose not to control the
primal-dual gap, choosing (ξ, y) = (ξ∗, y∗), in (42) becomes

0 ≤ 1

2τ
‖ξ∗ − ξn‖2 +

1

2σ
‖y∗ − yn‖2

− 1 + 2τ γ̃

2τ
‖ξ∗ − ξn+1‖2 −

1 + 2σδ̃

2σ
‖y∗ − yn+1‖2

− 1

2τ
‖ξn − ξn+1‖2 −

1

2σ
‖yn − yn+1‖2

+ θ 〈K(ξn−1 − ξn), y∗ − yn+1〉 − 〈K(ξn − ξn+1), y∗ − yn+1〉

(67)

which means that all the computations from (42) to (60) hold, with µ and µ′ replaced by
µ̃ = 2µ and µ̃′ = 2µ′ and without L-terms, as well as the constraints on the parameters.
In others terms, the same computations prove that

Corollary 2 Assume problem (13) has a solution, which is a saddle-point of L, de-
noted by (ξ∗, y∗). Let (ξn, yn)n be generated by Algorithm (24). Suppose there exist τ ,
σ, θ and ω satisfying both conditions

max

{
1

2τ γ̃ + 1
,

1

2σδ̃ + 1

}
≤ θ ≤ 1

L2
Kτσ

. (68)
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Then, for any ω̃ such that

max

{
1

2τ γ̃ + 1
,
θ + 1

2σδ̃ + 2

}
≤ ω̃ ≤ θ. (69)

Then, for any N ∈ N, we have

‖ξ∗ − ξN‖2 ≤ ω̃N
(
‖ξ∗ − ξ0‖2 +

τ

σ
‖y∗ − y0‖2

)
. (70)

Moreover, if ω̃L2
Kτσ 6= 1, then we also have

‖y∗ − yN‖2 ≤
ω̃N

1− ω̃L2
Kτσ

(σ
τ
‖ξ∗ − ξ0‖2 + ‖y∗ − y0‖2

)
. (71)

For given τ , σ and θ, the lower bounds 1/(2τ γ̃ + 1) and (θ + 1)/(2σδ̃ + 2) for ω̃ are
smaller than those for ω. Thus, the new rate ω̃ can be expected to be better than the
global one ω (which is called global since it also holds for the objectif error, as shown in
the next paragraph). This will be checked in Subsection 3.2.

3.1.4 Ergodic convergence of the objective error

We can now complete the proof of Theorem 1. Dividing (60) by ωN 6= 0 and by TN 6= 0,
we get

0 ≤ 1− ω
ω(1− ωN )

1

2τ
‖ξ − ξN‖2 +

1− ω
ω(1− ωN )

(1− ωL2
Kτσ)

1

2σ
‖y − yN‖2

+
1

TN

N∑
n=1

1

ωn−1
(
L(ξn; y)− L(ξ; yn)

)
≤ 1

TN

1

2τ
‖ξ − ξ0‖2 +

1

TN

1

2σ
‖y − y0‖2.

(72)

But, by convexity,

0 ≤ L(ΞN ; y)− L(ξ;YN ) ≤ 1

TN

N∑
n=1

1

ωn−1
(
L(ξn; y)− L(ξ; yn)

)
(73)

Therefore, (72) becomes

0 ≤ 1− ω
ω(1− ωN )

1

2τ
‖ξ − ξN‖2 +

1− ω
ω(1− ωN )

(1− ωL2
Kτσ)

1

2σ
‖y − yN‖2

+ L(ΞN ; y)− L(ξ;YN )

≤ 1

TN

1

2τ
‖ξ − ξ0‖2 +

1

TN

1

2σ
‖y − y0‖2

(74)

which completes the proof of Theorem 1.
We can now establish the ergodic linear convergence of the objective function. Let

BZ × BY be an open subset of Z × Y which contains (ξ∗, y∗) and (ξ0, y0). The partial
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primal-dual gap is bounded by

GBZ×BY
(ΞN ;YN ) ≤ 1

TN

1

2τ
sup
ξ∈BZ

‖ξ − ξ0‖2 +
1

TN

1

2σ
sup
y∈BY

‖y − y0‖2

≤ 1

TN

((
diam(BZ)

)2
2τ

+

(
diam(BY )

)2
2σ

) (75)

with (TN )−1 ∼ ωN−1/(1−ω). Hence, we prove the linear convergence of the primal-dual
gap applied to the sequences (ΞN , YN ).

3.2 Choice of parameters

Theorem 1 holds provided one can properly choose the steps τ and σ and the relaxation
parameter θ. We study some particular choices for those parameters and the convergence
rate they yield. Since a smaller ω leads to a faster convergence, we tune the algorithm
parameters to minimize the lower bound of ω. Here is how we proceed:

1. Fix τ > 0.

2. Find conditions on σ so that inequalities (25) hold.

3. Minimize (θ + 1)/(σδ̃ + 2) with respect to (w.r.t.) θ satisfying (25) and w.r.t σ
given by the previous step.

4. Compare this minimum to 1/(τ γ̃ + 1) and deduce the lower bound ω∗(τ) for ω.

5. Minimize ω∗(τ) and derive the optimal rate ω∗.

Since the resulting parameters are compatible with conditions (68) and (69), the left-
hand member in (70) yields a better theoritical rate for the convergence of the variables.

Besides, the same computations (with γ̃ and δ̃ doubled) may be used to choose the
parameters so that the rate ω̃ (Corollary 2) is minimal.

3.2.1 Case θ = 1

We first fix θ = 1. As shown in [3], this choice is equivalent to the ADMM with an
additional proximal term.

Fix τ > 0. Replacing θ = 1 in (25), we obtain that the steps τ and σ are constrained
as following

1 ≤ 1

L2
Kτσ

(76)

which implies that σ ≤ 1/(L2
Kτ). Then, (26) in Theorem 1 states that the convergence

rate ω satisfies

max

{
1

τ γ̃ + 1
,

1

σδ̃/2 + 1

}
≤ ω ≤ 1 (77)

Let us minimize 1/(σδ̃/2 + 1) w.r.t. σ satisfying (76). Since the map σ 7→ 1/(σδ̃/2 + 1)
is nondecreasing, its minimum is reached when σ is maximal, which leads to

min
σ subject to (76)

{
1

σδ̃/2 + 1

}
=

1

δ̃/(2L2
Kτ) + 1

. (78)
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Now, compare it to 1/(τ γ̃+1). It is clear that 1/(δ̃/(2L2
Kτ)+1) is greater than 1/(τ γ̃+1)

as soon as τ ≥
√
δ̃/(2γ̃L2

K). Hence, the lower bound ω∗(τ) is given by

ω∗(τ) = max

{
1

τ γ̃ + 1
,

1

δ̃/(2L2
Kτ) + 1

}
=


1

τ γ̃ + 1
if 0 < τ <

√
δ̃/(2γ̃L2

K)

1

δ̃/(2L2
Kτ) + 1

if τ ≥
√
δ̃/(2γ̃L2

K)

(79)

which is minimal for τ∗ =

√
δ̃/(2γ̃L2

K) and leads to the optimal rate

ω∗ = ω∗(τ∗) =
1√

(γ̃δ̃)/(2L2
K) + 1

=
1√

1/κF /2 + 1
. (80)

This rate is reached for

τ = τ∗ =

√
δ̃

2γ̃L2
K

and σ =
1

L2
Kτ
∗ =

√
2γ̃

δ̃L2
K

. (81)

One can check that the same choice for τ and σ yield the minimal value for the solution
error rate ω̃, which is

ω̃∗ =
1

2
√

(γ̃δ̃)/(2L2
K) + 1

=
1√

2/κF + 1
. (82)

In other terms, in the case where θ = 1, the best choice for the global rate ω and for the
solution error rate ω̃ coincide.

3.2.2 The best convergence rate (θ < 1)

In this section, we want to derive the best convergence rate given the constraints in (1).

Theorem 2 The best convergence rate in Theorem 1 is obtained when choosing

τ =
δ̃

2L2
K

(
1 +

√
1 +

4L2
K

γ̃δ̃

)
and σ =

γ̃

2L2
K

(
1 +

√
1 +

4L2
K

γ̃δ̃

)
(83)

and, if κF = L2
K/γ̃/δ̃,

θ =

√
1 + (4L2

K)/(γ̃δ̃)− 1√
1 + (4L2

K)/(γ̃δ̃) + 1
=

√
1 + 4κF − 1√
1 + 4κF + 1

< 1 (84)

which satisfy τ γ̃ = σδ̃. The resulting rate is ω∗ = θ.

Proof Fix τ > 0 and find out which conditions σ must satisfy to ensure the existence
of θ satisfying (25). There exists θ satisfying (25) if

1

τ γ̃ + 1
≤ 1

L2
Kτσ

and
1

σδ̃ + 1
≤ 1

L2
Kτσ

. (85)
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which also reads

σ ≤ 1

L2
Kτ

+
γ̃

L2
K

and (L2
Kτ − δ̃)σ ≤ 1. (86)

Let us determine conditions on σ so that these inequalities hold. If L2
Kτ − δ̃ ≤ 0,

i.e. τ ≤ δ̃/L2
K , the second inequality is always true. Hence, let us study the case L2

Kτ −
δ̃ > 0, i.e. τ > δ̃/L2

K . It implies that σ must satisfy both majorations

σ ≤ 1

L2
Kτ

+
γ̃

L2
K

and σ ≤ 1

L2
Kτ − δ̃

. (87)

Let us compare these two bounds. Since

1

L2
Kτ

+
γ̃

L2
K

− 1

L2
Kτ − δ̃

=
γ̃L2

Kτ
2 − γ̃δ̃τ − δ̃

L2
Kτ(L2

Kτ − δ̃)
(88)

with L2
Kτ(L2

Kτ − δ̃) positive, 1/(L2
Kτ) + γ̃/L2

K is greater than 1/(L2
Kτ − δ̃) iff γ̃L2

Kτ
2−

γ̃δ̃τ − δ̃ ≥ 0, i.e. iff τ ≥ τ∗, given by

τ∗ =
δ̃

2L2
K

(
1 +

√
1 +

4L2
K

γ̃δ̃

)
>

δ̃

L2
K

. (89)

Therefore, for any δ̃/L2
K < τ ≤ τ∗, (87) becomes σ ≤ 1/(L2

Kτ) + γ̃/L2
K . If τ > τ∗, (87)

reads σ ≤ 1/(L2
Kτ − δ̃). As a conclusion, we have the following upper bounds for σ:

σ ≤


1

L2
Kτ

+
γ̃

L2
K

if 0 < τ ≤ τ∗

1

L2
Kτ − δ̃

if τ∗ < τ.
(90)

Now, fix σ satisfying (90) and let us minimize (θ + 1)/(σδ̃ + 2) subject to (25). The
map θ 7→ (θ + 1)/(σδ̃ + 2) is minimal when θ is minimal. Hence, let us determine the
lower bound of θ, which is given by

max

{
1

τ γ̃ + 1
,

1

σδ̃ + 1

}
. (91)

First, remark that, if τ > δ̃/L2
K , then

δ̃

L2
Kτ − δ̃

≤ τ γ̃ ⇐⇒ γ̃L2
Kτ

2 − γ̃δ̃τ − δ̃ ≥ 0 ⇐⇒ τ ≥ τ∗. (92)

Suppose that τ > τ∗, which implies that τ > δ̃/L2
K . Since σ is bounded from above

by 1/(L2
Kτ − δ̃), we deduce that σδ̃ ≤ τ γ̃, which yields

max

{
1

τ γ̃ + 1
,

1

σδ̃ + 1

}
=

1

σδ̃ + 1
if 0 < σ ≤ 1

L2
Kτ − δ̃

. (93)

Now, let us consider the case τ ≤ τ∗. Since

1

L2
Kτ

+
γ̃

L2
K

≥ τ γ̃

δ̃
⇐⇒ γ̃L2

Kτ
2 − γ̃δ̃τ − δ̃ ≤ 0 ⇐⇒ τ ≤ τ∗, (94)

we deduce that

max

{
1

τ γ̃ + 1
,

1

σδ̃ + 1

}
=


1

σδ̃ + 1
if 0 < σ ≤ τ γ̃

δ̃
1

τ γ̃ + 1
if

τ γ̃

δ̃
< σ ≤ 1

L2
Kτ

+
γ̃

L2
K

.
(95)
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Let us minimize (θ+1)/(σδ̃+2) w.r.t. to σ, when θ is equal to its lower bound θ∗(σ),
given by (93) and (95). This leads to minimize the following quantity w.r.t. σ:

θ∗(σ) + 1

σδ̃ + 2
=


1

σδ̃ + 1
if τ > τ∗ or

(
τ ≤ τ∗ and 0 < σ ≤ τ γ̃

δ̃

)
1

τ γ̃ + 1

τ γ̃ + 2

σδ̃ + 2
if

(
τ ≤ τ∗ and

τ γ̃

δ̃
< σ ≤ 1

L2
Kτ

+
γ̃

L2
K

)
.

(96)

In both cases, the minimum is reached when σ is maximal, equal to its upper bound
given by (90). Hence,

min
σ subject to (90)
θ subject to (25)

{
θ + 2

σ + 1

}
=


1− δ̃

L2
Kτ

if τ > τ∗

min

{
1

τ γ̃ + 1
,

1

τ γ̃ + 1

τ γ̃ + 2

δ̃/(L2
Kτ) + δ̃γ̃/L2

K + 2

}
if τ ≤ τ∗.

(97)
Compare it to 1/(τ γ̃ + 1), and deduce the lower bound ω∗(τ):

ω∗(τ) = max

 1

τ γ̃ + 1
, min
σ subject to (90)
θ subject to (25)

{
θ + 2

σ + 1

} . (98)

Thanks to (92), it follows that

ω∗(τ) =


1− δ̃

L2
Kτ

if τ > τ∗

1

τ γ̃ + 1
if τ ≤ τ∗.

(99)

In the second case, σδ̃ is supposed to be greater than τ γ̃, so (θ∗ + 1)/(σδ̃ + 2) is always
smaller than 1/(τ γ̃ + 1). Therefore, the best rate is bounded from below by 1/(τ γ̃ + 1).
Eventually, we get the following best rate:

ω∗(τ) =


1− δ̃

L2
Kτ

if τ > τ∗

1

τ γ̃ + 1
if τ ≤ τ∗

(100)

which is minimal for τ = τ∗. This eventually leads to the best rate

ω∗ = 1− δ̃

L2
Kτ
∗ =

1

τ∗γ̃ + 1
=

√
1 + (4L2

K)/(γ̃δ̃)− 1√
1 + (4L2

K)/(γ̃δ̃) + 1
=

√
1 + 4κF − 1√
1 + 4κF + 1

(101)

obtained when τ = τ∗ and σ = τ∗γ̃/δ̃. �
This choice leads to the following value for the solution error rate ω̃:

ω̃ =
1

2τ∗γ̃ + 1
=

√
1 + (4L2

K)/(γ̃δ̃)− 1√
1 + (4L2

K)/(γ̃δ̃) + 3
=

√
1 + 4κF − 1√
1 + 4κF + 3

. (102)

Once again, the same computations prove that the best solution error rate ω̃ is
reached when

τ̃ =
δ̃

L2
K

(
1 +

√
1 +

L2
K

γ̃δ̃

)
and σ̃ =

γ̃

L2
K

(
1 +

√
1 +

L2
K

γ̃δ̃

)
(103)
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and leads to

ω̃∗ = θ =

√
1 + L2

K/(γ̃δ̃)− 1√
1 + L2

K/(γ̃δ̃) + 1
=

√
1 + κF − 1√
1 + κF + 1

< ω∗. (104)

3.3 Overrelaxation on the dual variable

The same results still hold if the relaxation is done on the dual variable y instead of the
primal variable ξ, namely if the updates are replaced by

ξn+1 = proxτG(ξn − τK∗ȳn)

yn+1 = proxσH∗(yn + σKξn+1)

ȳn+1 = yn+1 + θ (yn+1 − yn).

(105)

As seen in (11), such an overrelaxation will be useful for the analysis of the ADMM. It
is equivalent to inverting the role of the dual and the primal variables, which yields the
following result:

Theorem 3 Assume problem (13) has a solution, which is a saddle-point of L, de-
noted by (ξ∗, y∗). Choose τ > 0, σ > 0 and 0 < θ ≤ 1 such that

max

{
1

τ γ̃ + 1
,

1

σδ̃ + 1

}
≤ θ ≤ 1

L2
Kτσ

. (106)

Then, for any ω such that

max

{
θ + 1

τ γ̃ + 2
,

1

σδ̃ + 1

}
≤ ω ≤ θ (107)

we have the following majoration for any N ∈ N and any (ξ, y) ∈ Ξ× Y :

0 ≤ (1− ωL2
Kτσ)

1

2τ
‖ξN − ξ‖2 +

1

2σ
‖yN − y‖2 +

N∑
n=1

ωn

ωn−1
(
L(ξn; y)− L(ξ; yn)

)
≤ ωN

2τ
‖ξ0 − ξ‖2 +

ωN

2σ
‖y0 − y‖2.

(108)

Now, define

TN :=

N∑
n=1

1

ωn−1
=

1− ωN

ωN−1(1− ω)
(109)

and let

ΞN :=
1

TN

N∑
n=1

1

ωn−1
ξn and YN :=

1

TN

N∑
n=1

1

ωn−1
yn. (110)

Then we have the following bound for any (ξ, y) ∈ Ξ× Y :

0 ≤ 1− ω
ω(1− ωN )

(1− ωL2
Kτσ)

1

2τ
‖ξ − ξN‖2 +

1− ω
ω(1− ωN )

1

2σ
‖y − yN‖2

+ L(ΞN ; y)− L(ξ;YN )

≤ 1

TN

1

2τ
‖ξ − ξ0‖2 +

1

TN

1

2σ
‖y − y0‖2.

(111)
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Note that the conditions on the parameters now slightly differ from the previous
case. A variant can be found in [5, Appendix C2].

As in the previous case where the overrelaxation is done over the primal variable, we
can prove the following result for the linear convergence of the solution errors:

Corollary 3 Assume problem (13) has a solution, which is a saddle-point of L, de-
noted by (ξ∗, y∗). Let (ξn, yn)n be generated by Algorithm (24). Suppose there exist τ ,
σ, θ and ω satisfying both conditions

max

{
1

2τ γ̃ + 1
,

1

2σδ̃ + 1

}
≤ θ ≤ 1

L2
Kτσ

. (112)

Then, for any ω̃ such that

max

{
θ + 1

2τ γ̃ + 1
,

1

2σδ̃ + 2

}
≤ ω̃ ≤ θ. (113)

Then, for any N ∈ N, we have

‖y∗ − yN‖2 ≤ ω̃N
(
‖y∗ − y0‖2 +

τ

σ
‖ξ∗ − ξ0‖2

)
. (114)

Moreover, if ω̃L2
Kτσ 6= 1, then we also have

‖ξ∗ − ξN‖2 ≤
ω̃N

1− ω̃L2
Kτσ

(σ
τ
‖y∗ − y0‖2 + ‖ξ∗ − ξ0‖2

)
. (115)

Similar computations as in the previous section show that the best rate ω∗ is achieved
when choosing the following parameters:

τ =
δ̃

2L2
K

(
1 +

√
1 +

4L2
K

γ̃δ̃

)
and σ =

γ̃

2L2
K

(
1 +

√
1 +

4L2
K

γ̃δ̃

)
(116)

and, with κF = L2
K/γ̃/δ̃,

θ =

√
1 + (4L2

K)/(γ̃δ̃)− 1√
1 + (4L2

K)/(γ̃δ̃) + 1
=

√
1 + 4κF − 1√
1 + 4κF + 1

< 1 (117)

which leads to ω∗ = θ.

4 Application : convergence rate for the ADMM in
the smooth case

As the ADMM is nothing but a particular instance of the accelerated PDHG method
with additional constraints on the parameter choice, its convergence rate is expected to
be worse than that of the latter. In subsection 4.1, it will indeed be derived from the
computations of the previous section and shown to be greater than that of the PDHG
method.

However, as we will show it in the subsection 4.2, it is possible to recover the same
convergence rate as in the accelerated PDHG method by introducing a slight modifica-
tion in the ADMM iterations.
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4.1 Unaccelerated ADMM

As recalled in Section 2.2, the ADMM iterations (9) are equivalent to the PDHG it-
erations (11) applied to the functions G = gA and H = h, and to the identity oper-
ator K = Id, of norm LK = 1. The functions G and H are respectively γ̃ = γ/L2

A-
convex and δ̃ = δ-convex. Note that the relaxation is done on the dual variable, of
parameter θ = 1. The stepsize for the primal (resp. dual) proximal ascent is τ > 0
(resp. σ = 1/τ).

4.1.1 Ergodic linear convergence

Apply Theorem 3. Parameters θ and σ being constrained as stated above, Theorem 3
ensures that, provided one can find τ > 0 such that

max

{
1

τγ/L2
A + 1

,
1

δ/τ + 1

}
≤ 1 (118)

for any ω such that

max

{
2

τγ/L2
A + 2

,
1

δ/τ + 1

}
≤ ω ≤ 1 (119)

we have the following bound for any (x, y) ∈ X × Y :

0 ≤ (1− ω)2

ω(1− ωN )

1

2τ
‖Ax−AxN‖2 +

1− ω
ω(1− ωN )

1

2/τ
‖y − yN‖2

+ L(AXN ; y)− L(Ax;YN )

≤ 1

TN

1

2τ
‖Ax−Ax0‖2 +

1

TN

1

2/τ
‖y − y0‖2.

(120)

Assume BY is an bounded open subset of Y which contains y∗. Since

f(x) = sup
y∈BY

{
g(x) + 〈Ax, y〉 − h∗(y)

}
= sup
y∈BY

L(Ax; y) (121)

taking the supremum in the inequalities above implies that

0 ≤ f(XN )− L(Ax;YN ) ≤ 1

TN

1

2τ
‖Ax−Ax0‖2 +

1

TN

1

2/τ
sup
y∈BY

‖y − y0‖2. (122)

Then, having L(Ax;YN ) ≤ sup
y∈BY

L(Ax; y), we deduce that, for x = x∗,

0 ≤ f(XN )− f(x∗) ≤ 1

TN

(
1

2τ
‖Ax∗ −Ax0‖2 +

1

2/τ
sup
y∈BY

‖y − y0‖2
)
. (123)

Hence, we have proved the ergodic linear convergence of the ADMM in terms of objec-
tive error. The linear convergence (with same rate) of the dual iterates comes naturally
from (120). However, though the strong convexity ensures the convergence of the pri-
mal iterates (xN ), their convergence speed is not clear. We can solely estimate the
convergence of (AxN ), which is linear. Thanks to

zN+1 − z∗ = AxN+1 −Ax∗ + τ (y∗ − yN+1) + τ (yN − y∗) (124)

we can nevertheless deduce the linear convergence of the primal iterates (zN ). This also
implies the linear convergence for the feasibility error (AxN − zN ).
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4.1.2 Convergence rate

Let us estimate the best convergence rate which can be achieved by the ADMM. Con-
dition (118) is always true. Hence, for any τ > 0, the convergence rate satisfies

max

{
1

(τγ)/(2L2
A) + 1

,
1

δ/τ + 1

}
≤ ω ≤ 1. (125)

The lower bound equals 1/((τγ)/(2L2
A)+1) when τ ≤

√
(2δL2

A)/γ and equal to 1/(δ/τ+

1) otherwise. This leads to the best rate

ω∗ =
1√

(γδ)/(2L2
A) + 1

=
1√

1/κf/2 + 1
reached when τ =

√
2δL2

A

γ
. (126)

We call this parameter the optimal parameter for the ADMM. Using this parameter also
yields the following theoritical rate for the dual variable and Axn, given by Corollary 3:

ω̃ = max

{
1

(τγ)/L2
A + 1

,
1

2δ/τ + 1

}
=

1√
(2γδ)/L2

A + 1
=

1√
2/κf + 1

. (127)

This value can be easily proved to be the optimal one for ω̃.

4.2 Accelerated ADMM

We propose to relax the choice of step τ in the updates of z and of y in the ADMM.
Replacing τ by τ ′ ≤ τ in these two updates leads to the following algorithm:

xn+1 = argmin
x∈X

{
g(x) + 〈Ax, yn〉+

1

2 τ
‖Ax− zn‖2

}
zn+1 = argmin

z∈X

{
h(z)− 〈z, yn〉+

1

2 τ ′
‖Axn+1 − z‖2

}
yn+1 = yn +

1

τ ′
(Kxn+1 − zn+1).

(128)

4.2.1 Equivalent PDHG

Following the same computations as in 2.2, we show that iterations in Algorithm (128)
are equivalent to those of the following PDHG algorithm

ξn+1 = proxτgA
(
ξn − τ ȳn

)
yn+1 = proxh∗/τ ′(y

n + ξn+1/τ ′)

ȳn+1 = yn+1 +
τ ′

τ
(yn+1 − yn)

(129)

where the relaxation parameter θ = τ ′/τ is linked to the ascent steps τ and σ = 1/τ ′.
Once again, Theorem 3 reads for any suitable ω, τ and τ ′:

0 ≤ 1− ω
ω(1− ωN )

(1− ωτ/τ ′) 1

2τ
‖Ax−AxN‖2 +

1− ω
ω(1− ωN )

1

2/τ ′
‖y − yN‖2

+ L(AXN ; y)− L(Ax;YN )

≤ 1

TN

1

2τ
‖Ax−Ax0‖2 +

1

TN

1

2/τ ′
‖y − y0‖2

(130)
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which yields a linear convergence in terms of objective error (in an ergodic sense). How-
ever, the best convergence rate achieved by the algorithm is expected to be better than
that of the unaccelerated ADMM. Indeed, introducing the relaxed step τ ′ add a degree
of freedom in the constraints over the value of ω. Hence, it is minimized over a larger
set and its minimal value is thus smaller.

Similarly to the unaccelerated case, (130) ensures the linear convergence of the dual
iterates. If 1−ωτ/τ ′ does not cancel, it also implies the linear convergence of the primal
iterates (zN ). Otherwise, we lose the control on the convergence of (AxN ), thus on that
of (zN ).

4.2.2 Convergence rate

Let us derive the best convergence rate for Algorithm (128). We may use Theorem 3,
which ensures that steps τ and τ ′ are constrained by the relations

max

{
1

τγ/L2
A + 1

,
1

δ/τ ′ + 1

}
≤ τ ′

τ
≤ 1 (131)

and that the convergence rate is constrained by

max

{
τ ′/τ + 1

τγ/L2
A + 2

,
1

δ/τ ′ + 1

}
≤ ω ≤ τ ′

τ
. (132)

Hence, it is sufficient to find (τ, τ ′) satisfying both (131) and (132) which minimize the
left-hand member in the latter.

One can also first use the remark made after Corollary 3. If no constraint θ is made,
then the best rate is achieved when

τ =
δ

2

1 +

√
1 +

4L2
A

γδ

 and σ =
1

τ ′
=

γ

2L2
A

1 +

√
1 +

4L2
A

γδ

 (133)

and

θ =

√
1 + (4L2

A)/(γδ)− 1√
1 + (4L2

A)/(γδ) + 1
. (134)

Let us check that such a choice satisfy θ = τ ′/τ . First, we have

τ ′ =
(2L2

A)/γ

1 +
√

1 + (4L2
A)/(γδ)

=
(δ/2)(

√
1 + (4L2

A)/(γδ) + 1)(
√

1 + (4L2
A)/(γδ)− 1)

1 +
√

1 + (4L2
A)/(γδ)

(135)
which implies that

τ ′

τ
=

√
1 + (4L2

A)/(γδ)− 1√
1 + (4L2

A)/(γδ) + 1
. (136)

Hence, these parameters can be chosen for the accelerated ADMM, and yields to the
best rate. Thus, they are called optimal parameters for the accelerated ADMM. With
this parameter choice, we have ω∗ = θ. Note that the resulting rate is the same as
the best one expected when applying the accelerated PDHG on Problem (6). However,
unlike in the PDHG algorithm, this choice implies a loss of control on both x-iterates
and z-iterates. Moreover, this choice leads to the following rate ω̃:

ω̃ =
1

2δ/(τ ′)∗ + 1
=

√
1 + (4L2

A)/(γδ)− 1√
1 + (4L2

A)/(γδ) + 3
=

√
1 + κf − 1√
1 + κf + 3

(137)
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Figure 1: Theoritical rate comparison. In red/thick the unaccelerated ADMM, in ma-
genta/thick dotted the accelerated ADMM, in blue/dotted the overelaxed PDHG and
in green FISTA with constant step.

To minimize the latter rate, we use the previous computations with γ and δ doubled,
which leads to the parameter choice

τ ′ =
δ

2

√1 +
L2
A

γδ
− 1

 and τ =
δ

2

√1 +
L2
A

γδ
+ 1

 (138)

and the resulting rate:

ω̃∗ =

√
1 + L2

A/(γδ)− 1√
1 + L2

A/(γδ) + 1
=

√
1 + κf − 1√
1 + κf + 1

. (139)

4.3 Theoretical rate comparison

Figure 1 compares the theoretical rates of the unaccelerated ADMM, the accelerated
ADMM, the overrelaxed PDHG method and FISTA with constant step, by plotting for
each algorithm the best rate with respect to the condition number κf . The rate achieved
by FISTA is the best one, but remains comparable with the accelerated ADMM and the
overrelaxed PDHG method. As expected, the unaccelerated ADMM yield larger rate
values.

5 Relations of other methods

In this section, we make a quick review on other linear convergence results for variant
of the ADMM found in the literature. Generally, their differ from our result on the
hypotheses made on the problem (both on the regularity of the objective function and
on the operators).
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5.1 Overrelaxed ADMM

In [15], the authors propose to add an overrelaxation step in the spirit of Nesterov’s
acceleration. They showed linear convergence rate when h is assumed to be strongly
convex and with Lipschitz-continuous gradient, while B is invertible and A is full
column rank.

5.2 Generalized ADMM

In [7], the authors studied the ADMM in a wider framework, by allowing in each partial
minimization to add an extra proximal term, which leads to a generalized ADMM. Linear
convergence rates are proved for four scenarios in which at least one of the functions g
or h is strongly convex and has a Lipschitz gradient, which is not assumed here. The
case we treated is considered, but with extra assumptions (in particular, h is supposed
to be strongly convex). They provided an explicit convergence rate for only one scenario
[7, Corollary 3.6].

5.3 Relaxed ADMM

It can be shown that the ADMM iterations are also equivalent to applying the Douglas-
Rachford splitting (DRS) to the dual of (6). A relaxed version of the DRS, called
Peaceman-Rachford splitting (PRS), can be obtained by introducing a relaxed pa-
rameter in the DRS iterations. Applying the PRS on the dual of (6) hence leads to a
so-called relaxed ADMM [6]. In [6, Theorem 6.3], the authors proved the linear conver-
gence rate of the relaxed ADMM in various cases (including the one we studied here),
which depend on the assumptions made on the operators A and B (which is not sup-
posed to be the negative identity) and / or on the regularity of the functions g and h.
However, the study is theoretical and does not provide explicit optimal rates.

5.4 K-block ADMM

In [12], the authors proved a linear convergence rate in the case where one can make
assumptions on g and h which are supposed to be decomposable into a strictly convex
term and a polyhedral one. This includes for instance the strongly convex case, but do
not recover the smooth case studied in this paper. Furthermore, hypothesis on the rank
of operators A and B (not necessary the negative identity) are made. Moreover, their
proof still holds when the objective function is a sum of K separable convex functions
(with an according number of variables).

6 Applications

6.1 A toy example

6.1.1 Problem

Let N be a integer. We consider the following constrained problem:

min
x=(xi)i=0,··· ,N−1∈RN

x0=1

{
f(x) :=

M −m
2

‖KNx‖22 +
m

2
‖x‖22

}
(140)

where the linear operator KN : RN → RN−1 is defined by (KNx)i = (xi+1 − xi)/2
for any i = 0, · · · , N − 2, of norm ‖KN‖ ≤ 1. The condition number of this problem
is M/m. Hence, if m is negligible compared to M , then the problem is ill-conditioned.
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Figure 2: Minimizer of (140).

Let h(z) := (M − m) ‖z‖22/2 for any z ∈ RN−1 and g(x) := m ‖x‖2/2 + χ{1}(x0)

for x = (xi)i=0,··· ,N−1 ∈ RN . The function g is m-convex and h∗ : y 7→ ‖y‖22/(M −m)/2
is (1/(M −m))-convex.

6.1.2 Solution

The minimizer of problem (140) may be explicitly computed, by introducting the sub-
vector x̂ given by:

∀ i = 0, · · · , N − 2, x̂i = xi+1. (141)

such that x = (1, x̂). The constrained problem (140) can thus be rewritten in the
unconstrained form

min
x̂=(x̂i)i=0,··· ,N−2∈RN−1

{
M −m

2

(
‖KN−1x̂‖22 +

(x̂0 − 1)2

4

)
+
m

2
(‖x̂‖22 + 1)

}
(142)

The minimizer x̂∗ is then given by the Euler equation, namely x̂∗ = A−1b with

A = m IN−1 + (M −m)K∗N−1KN−1 +
M −m

4
e0,0 (143)

where e0,0 denote the matrix of size N − 1 with null coefficients except the one at
index (0, 0) equal to 1. The vector b is given by b := (M −m) e0/4, with e0 the first
vector of the canonical basis of RN−1. Hence, the minimizer of the initial problem (140)
is x∗ = (1, x̂∗). For N = 15, M = 1000, and m = 1, Figure 2 plots x∗.
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6.1.3 ADMM

We apply the accelerated ADMM, which yields

xn+1 = argmin
x=(xi)i∈RN

x0=1

{
m

2
‖x‖22 + 〈KNx, yn〉+

1

2 τ
‖KNx− zn‖22

}

zn+1 = argmin
z∈RN−1

{
M −m

2
‖z‖22 − 〈z, yn〉+

1

2 τ ′
‖KNxn+1 − z‖22

}
yn+1 = yn +

1

τ ′
(KNxn+1 − zn+1).

The z-update is computed thanks to the Euler equation:

zn+1 =
yn +KNxn+1/τ

′

M −m+ 1/τ ′
. (144)

The x-update is computed thanks to the subvectors we introduced above and is equiva-
lent to solving

min
x̂=(x̂i)i∈RN−1

{
m

2
‖x̂‖22 + 〈x̂,K∗N−1ŷn〉+

1

2 τ

(
‖KN−1x̂− ẑn‖22 +

(
x̂0 − 1

2
− (zn)0

)2)}
.

(145)
The Euler equation ensures that x̂n+1 = A−1n bn with

An = m IN−1 +
1

τ
K∗N−1KN−1 +

1

4 τ
e0,0 (146)

and

bn = −K∗N−1ŷn +
1

τ
K∗N−1ẑn +

(
− (yn)0

2
+

1

2τ
(zn)0 +

1

4τ

)
e0. (147)

We eventually have xn+1 = (1, x̂n+1).

6.1.4 Parameters

We tested two sets of parameters:

1. optimal parameter for the unaccelerated ADMM:

τ = τ ′ =

√
2

m(M −m)
(148)

(we assume that L = 1).

2. optimal paramaters for the accelerated ADMM:

τ =
1

2(M −m)

(√
1 +

4(M −m)

m
+ 1

)
(149)

and

τ ′ = τ − 1

M −m
=

1

2(M −m)

(√
1 +

4(M −m)

m
− 1

)
. (150)

The convergence rates achieved in each case are respectively 1/(
√

1/(M/m− 1)/2 + 1)

and (
√

4M/m− 3− 1)/(
√

4M/m− 3 + 1).
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6.1.5 Comparison with PDHG and FISTA

To solve problem (142), we can use the accelerated PDHG iterations, by considering its
primal-dual formulation

min
x=(xi)i=0,··· ,N−1∈RN

x0=1

sup

z′∈RN−1

{
m

2
‖x‖22 + 〈Kx, z′〉 − 1

2(M −m)
‖z′‖22

}
. (151)

Hence, we are considering the following algorithm:
z′n+1 = proxσh∗(z

′
n + σKN x̄n)

xn+1 = proxτg
(
xn − τ K∗Nz′n+1

)
x̄n+1 = xn+1 + θ (xn+1 − xn)

(152)

for which the best theoritical convergence rate is achieved when choosing

τ =
1

2(M −m)

(
1 +

√
1 +

4(M −m)

m

)
and σ =

m

2

(
1 +

√
1 +

4(M −m)

m

)
(153)

and

θ =

√
1 +

4(M −m)

m
− 1√

1 +
4(M −m)

m
+ 1

< 1. (154)

The z′-iterates are explicitly given by

z′n+1 =
M −m

M −m+ σ
(z′n + σKN x̄n) (155)

while

x̂n+1 =
x̂n/τ −K∗N−1ẑ′n+1

1/τ +m
and xn+1 = (1, x̂n+1). (156)

Note that, unlike in the ADMM iterations, there is no operator to invert.
We can also use the FISTA algorithm, which solves problem (140) by an accelerated

FBS which can be writtenxn+1 = proxτg
(
x̄n − τ ∇h(x̄n)

)
x̄n+1 = xn+1 + θn+1 (xn+1 − xn).

(157)

where θn is given by (21), with τ = 1/(M −m). The x-iterates are explicitly given by

x̂n+1 =
̂̄xn/τ − (M −m) ̂(K∗NKN x̄n)

1/τ +m
. (158)

6.1.6 Results

To compare the convergence of each set of parameters, we used two tools:

1. the solution error ‖xn − x∗‖22;

2. the objective error f(xn)− f(x∗).
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(a) Objective error

(b) Solution error

Figure 3: Empirical convergence for the toy example.
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Figure 3 displays the evolution of both measures, as well as the theoretical convergence
decays expected in each case (ω̃ and ω). We chose m = 0.1 and M = 10, so that
κf = 100.

We first observe that, as expected, the accelerated ADMM has a better convergence
than the unaccelerated ADMM. The empirical rates are better than the theoretical ones,
which can be explained by the over-smoothness of the quadratic problem, compared to
the assumptions required by the smooth case.

We also observe oscillations for both the accelerated PDHG and FISTA. Rippling
for FISTA has been already observed for quadratic problems of this kind [16]. This
phenomena occurs when the overrelaxation parameter θ is chosen too large compared to
the eigenvalues of m IN + (M −m)K∗NKN . Similar cause may explain the oscillations
in the accelerated PDHG, namely using overrelaxation steps can introduce oscillations
when the according parameter are unproperly chosen. Hence, we do not expect to
observe such oscillations for ADMM-like schemes.

6.2 Denoising with TV-Huber

6.2.1 Problem

We now apply the accelerated ADMM to a denoising problem, which is less smooth and
more realistic than the toy example. Let g ∈ R3NxNy be a RGB-color (noisy) image. We
want to solve the following problem:

min
v∈R3NxNy

{
f(v) :=

µ

2
‖v − u‖22 + h(∇v)

}
(159)

where the gradient linear operator ∇ : R3NxNy → R3NxNy × R3NxNy is defined for any
color image v by a pair of color images ∇v = (δxv, δyv)T. The finite differences are given
at any index (i, j) ∈ [[ 0 ; Nx − 1 ]]× [[ 0 ; Ny − 1 ]] by

(δxv)i,j =

{
vi+1,j − vi,j if i < Nx − 1

0 otherwise
(160)

and

(δyv)i,j =

{
vi,j+1 − vi,j if j < Ny − 1

0 otherwise.
(161)

The TV-Huber regularization term is defined by

h(∇v) =

Nx−1∑
i=0

Ny−1∑
j=0

h0
(
‖(∇v)i,j‖

)
(162)

with

h0(z) =

{
|z|2/2 if |z| ≤ 1

|z| − 1/2 if |z| > 1
and h′0(z) =

{
z if |z| ≤ 1

z/|z| if |z| > 1.
(163)

Hence, this term acts like a quadratic regularization when the image variations are small
and like a TV regularization when they are larger (see Figure 4). The quantity µ > 0 is
a weight parameter.

The convex conjugate h∗ of the regularization function h can be proved to be

h∗(y) =

Nx−1∑
i=0

Ny−1∑
j=0

(
1

2
|yi,j |2 + χ[0,1](|yi,j |)

)
(164)

where χ[0,1](t) = 0 if t ∈ [0, 1] and +∞ otherwise. This implies that h∗ is 1-convex.
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(a) Ideal image u (b) Noisy image g (c) Denoised image v∗

Figure 4: We added a white Gaussian noise to an ideal image (a) to get noisy image
(b). The noise is of standard variation 10 (the image values are between 0 and 255).
The denoising is made by solving (159). Source : Hepatica nobilis flowers, by Archenzo
(detail).

6.2.2 ADMM

Let g := µ ‖· − u‖22/2. We apply the accelerated ADMM to problem (159), which leads
to the following iterations:

vn+1 = argmin
v∈R3NxNy

{
µ

2
‖v − u‖22 + 〈∇v, ξn〉+

1

2 τ
‖∇v − φn‖22

}
φn+1 = argmin

φ∈(R3NxNy )2

{
h(φ)− 〈φ, ξn〉+

1

2 τ ′
‖∇vn+1 − φ‖22

}
ξn+1 = ξn +

1

τ ′
(∇vn+1 − φn+1).

Each minimization is solved thanks to the Euler equation: the v-update reads

vn+1 =

(
µ I +

1

τ
∇∗∇

)−1(
µu+

1

τ
∇∗φn −∇∗ξn

)
(165)

whereas the φ-update is given by

(φn+1)i,j =
τ ′(ξn)i,j + (∇vn+1)i,j
|τ ′(ξn)i,j + (∇vn+1)i,j |

|(φn+1)i,j | (166)

with

|(φn+1)i,j | =


τ ′|(ξn)i,j + (∇vn+1)i,j |

τ ′ + 1
if |τ ′(ξn)i,j + (∇vn+1)i,j | ≤ τ ′ + 1

|τ ′(ξn)i,j + (∇vn+1)i,j | − τ ′ if |τ ′(ξn)i,j + (∇vn+1)i,j | > τ ′ + 1.

(167)

6.2.3 Parameters

Before choosing the parameters, we recall the regularity of the problem. Functions h∗

and g are respectively 1-convex and µ-convex. The gradient operator is bounded, of
norm L ≤ 2

√
2 (this bound being tight when Nx or Ny go to +∞). Thus, we set

L = 2
√

2. We tested two sets of parameters:

1. optimal parameter for the unaccelerated ADMM: τ = τ ′ = 4/
√
µ;
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2. optimal paramters for the accelerated ADMM:

(τ, τ ′) =

(
1

2

(√
1 +

32

µ
+ 1

)
,

1

2

(√
1 +

32

µ
− 1

))
. (168)

These choices respectively lead to the convergence rates 1/(
√
µ/8+1) and (

√
1 + 32/µ−

1)/(
√

1 + 32/µ+ 1).

6.2.4 PDHG and FISTA

The primal-dual formulation of problem (159) is given by

min
v∈R3NxNy

sup
φ∈(R3NxNy )2

{µ
2
‖v − u‖22 + 〈∇v, φ〉 − h∗(φ)

}
. (169)

Hence using the PDHG algorithm to solve it leads to the following iterations:

φ′n+1 = argmin
φ′∈(R3NxNy )2

{
h∗(φ′) +

1

2σ
‖φ′ − φ′n − σ∇v̄n‖2

}
vn+1 = argmin

v∈R3NxNy

{
µ

2
‖v − u‖2 +

1

2τ
‖v − vn + τ ∇∗φ′n+1‖2

}
v̄n+1 = vn+1 + θ (vn+1 − vn)

(170)

which are computed thanks to the Euler equation:

(φ′n+1)i,j = proj[−1,1]

(
(φ′n)i,j + σ (∇v̄n)i,j

1 + σ

)
and vn+1 =

vn/τ + µu−∇∗φ′n+1

1/τ + µ
.

(171)
The best choice of parameters for this algorithm is (Theorem 2):

τ =
1 +

√
1 + 32/µ

16
, σ =

1 +
√

1 + 32/µ

16/µ
and θ =

√
1 + 32/µ− 1√
1 + 32/µ+ 1

. (172)

If we apply FISTA to this problem, this leads to the following updates:
vn+1 = argmin

v∈R3NxNy

{
µ

2
‖v − u‖2 +

1

2τ
‖v − v̄n + τ ∇∗∇(∇h(v̄n))‖2

}
v̄n+1 = vn+1 + θn (vn+1 − vn)

(173)

which leads to the explicit update

vn+1 =
v̄n/τ + µu−∇∗∇(∇h(v̄n))

1/τ + µ
. (174)

The variable relaxation parameter follows the update rule (21) with τ = 1/8.

6.2.5 Results

To measure the convergence of the algorithm, we used the same two tools as in the
previous case: the solution error and the objective error.

Figure 5(a) displays the evolution of the objective error, while Figure 5(b) shows
the decay of the solution error, for the accelerated ADMM and the PDHG method.
In the latter, the theoretical linear rate ω̃ is also plotted for comparison. We chose
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µ = 10. The solution error decreases as expected for all methods except FISTA, for
which we did not estimate a finer theoretical rate for the solution error. In practice, it
seems that it converges with same rate as the PDHG. Hence, in terms of solution error
convergence, the accelerated ADMM provides the best empirical decay. For the objective
error, the accelerated ADMM, the PDHG method and FISTA yield comparable decay
rate. However, one should keep in mind that both the unaccelerated ADMM and the
accelerated ADMM require an operator inversion, unlike the PDHG method and FISTA.
Hence, even if comparable number of iterations are needed to achieve convergence, the
ADMMs iterations are more time consuming than the other methods and should be used
only when the inversion of the operator can be implemented efficiently.

7 Conclusion

In this work, we studied the convergence of the PDHG scheme in the case where the
composite problem has a strongly convex part and a differentiable with a Lipschitz con-
tinuous gradient part. Using the equivalence between this algorithm and the ADMM, we
provided a new convergence analysis of the latter. This analysis allowed us to introduce
an accelerated variant of the ADMM, which is proved to have same convergence rate as
the PDHG method. Experimental results confirmed this theoretical analysis. In partic-
ular, it has been observed that the accelerated ADMM does not introduce oscillations in
some cases, unlike the PDHG algorithm and FISTA, which are known to be in practice
more efficient than the ADMM-like scheme, since they require no operator inversion.
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