An Iterative Algorithm for Forward-Parameterized Skill Discovery
Résumé
We introduce COCOTTE (COnstrained Complexity Optimization Through iTerative merging of Experts), an iterative algorithm for discovering discrete, meaningful parameterized skills and learning explicit models of them from a set of behaviour examples. We show that forward-parameterized skills can be seen as smooth components of a locally smooth function and, framing the problem as the constrained minimization of a complexity measure, we propose an iterative algorithm to discover them. This algorithm fits well in the developmental robotics framework, as it does not require any external definition of a parameterized task, but discovers skills parameterized by the action from data. An application of our method to a simulated setup featuring a robotic arm interacting with an object is shown.
Domaines
Robotique [cs.RO]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...