Environment Exploration for Object-Based Visual Saliency Learning
Résumé
Searching for objects in an indoor environment can be drastically improved if a task-specific visual saliency is available. We describe a method to incrementally learn such an object-based visual saliency directly on a robot, using an environment exploration mechanism. We first define saliency based on a geometrical criterion and use this definition to segment salient elements given an attentive but costly and restrictive observation of the environment. These elements are used to train a fast classifier that predicts salient objects given large-scale visual features. In order to get a better and faster learning, we use an exploration strategy based on intrinsic motivation to drive our attentive observation. Our approach has been tested on a robot in our lab as well as on publicly available RGB-D images sequences. We demonstrate that the approach outperforms several state-of-the-art methods in the case of indoor object detection and that the exploration strategy can drastically decrease the time required for learning saliency.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...