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Environment Exploration for Object-Based Visual Saliency Learning

Céline Craye1,2, David Filliat1 and Jean-François Goudou2

Abstract— Searching for objects in an indoor environment
can be drastically improved if a task-specific visual saliency is
available. We describe a method to incrementally learn such
an object-based visual saliency directly on a robot, using an
environment exploration mechanism. We first define saliency
based on a geometrical criterion and use this definition to
segment salient elements given an attentive but costly and
restrictive observation of the environment. These elements are
used to train a fast classifier that predicts salient objects given
large-scale visual features. In order to get a better and faster
learning, we use an exploration strategy based on intrinsic
motivation to drive our displacement in order to get relevant
observations. Our approach has been tested on a robot in indoor
environments as well as on publicly available RGB-D images
sequences. We demonstrate that the approach outperforms
several state-of-the-art methods in the case of indoor object
detection and that the exploration strategy can drastically
decrease the time required for learning saliency.

I. INTRODUCTION

Object detection or object search in cluttered environments
by mobile robots is still a difficult problem. Despite progress
in computer vision for detecting objects in unconstrained
images, especially using deep-learning which has recently
shown impressive results on complex image datasets such
as IMAGENET [21], it remains particularly interesting in a
robotics context to move the robot to favorable observation
conditions in order to improve recognition performances.
Such visual exploration of the environment [3], [8], [17] is
often associated with a visual attention strategy so as to direct
the robot’s attention towards areas of interest, while ignoring
irrelevant portions of the visual field.

The selection of areas of interest is typically driven by
visual saliency maps [3], [8], [17] or, if depth is available,
geometrical segmentation [1], [5]. In the first case, bottom-up
saliency maps are based on color images [7], [23] or RGB-D
data [20], and highlight stimuli that are intrinsically salient
in their context. As interesting elements are not always
intrinsically salient, some approach suggest to add top-down
modulation in order to further enhance elements related to
a given task [8], [10]. In the second case, indoor object
segmentation based on depth data usually rely on finding
planar surfaces and objects lying on it. Those methods can
accurately detect objects on tables or floor, but are limited by
the sensor quality, strong geometrical considerations (size or
distance to the objects) and require more computation time
than bottom-up saliency maps.
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Saclay, 828 bd des Maréchaux, 91762 Palaiseau cedex France
celine.craye@ensta-paritech.fr

2Thales - SIX - Theresis - VisionLab 1, avenue Augustin Fresnel, 91767
Palaiseau, France celine.craye@thalesgroup.com

So far, these visual attention approaches are mostly used as
black boxes and are not learned (although sometimes refined)
directly during the exploration. Machine learning approaches
such as deep-learning are also trained offline, often in a fully
supervised setup, and thus may not be adapted to different or
dynamic environments. A more adaptive approach would be
to learn and adapt to an environment directly on a robot,
in an incremental and autonomous way. Learning would
then specialize for a specific environment, but would be
constantly improved and remain flexible to any change or
novelty. Such learning would need an exploration strategy to
gather relevant training samples.

Active exploration by robots can be done in many different
ways depending on the task and available hardware. On
mobile robots, predefined path plans [17], navigation graphs
[13], or frontier-based explorations [12] can drive the robot’s
exploration. When equipped with a camera with zooming
capabilities, [3], [13], [18], the perception of the robot can be
further improved by moving the camera to relevant portions
of the visual field. In the context of task learning, Oudeyer
et al. proposed an exploration strategy based on intrinsic
motivation such as learning progress [19] and competence
progress [2]. In this approach, the robot is not trying to cover
the whole environment or to improve its perception for a
specific task, but is focusing on areas where learning is the
most efficient. This way, the environment is not uniformly
covered, but is learned more efficiently based on the current
state of knowledge rather than on extrinsic criteria.

In this paper, we propose two contributions. First, we
present an algorithm that can learn object-based visual
saliency in an incremental and autonomous manner, directly
within a robot’s environment. Second, we suggest an explo-
ration strategy driven by learning progress to allow the robot
to autonomously learn about its environment faster and bet-
ter. For that, we use an object segmentation algorithm from
depth data that provides reliable and accurate, but partial and
computationally expensive estimation of the saliency. From
its result, we train a classifier that learns the visual RGB
aspect of the discovered salient elements. Thus, the classifier
is able to estimate the saliency of each pixel based on the
RGB component only and reconstruct a saliency map faster
and in less restrictive conditions than object segmentation
does. It is for example capable of predicting object existence
in areas where depth information is not available. We then
use an intrinsically motivated exploration strategy based on
learning progress to speed up and improve the learning
quality. This paper extends previous work [6] in terms of
segmentation algorithm and exploration strategy. In [6], the
segmentation was obtained from depth data extracted only in
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Fig. 1. General architecture of our system along with reference section
for each block

a small portion of the input image (the fovea). We here use
another segmentation technique that is applied on the entire
image. Moreover, in previous work, the exploration strategy
was used to select the position of the fovea in each input
image, without considering the displacement of the robot in
its environment. We now go one step further by selecting
the next displacement of a mobile robot in its environment
instead of the focus point in the current image.

II. PROPOSED APPROACH

Figure 1 presents the general architecture of our system
along with the corresponding section for each block. In a
learning stage, the system learns the visual (RGB) aspect
of salient elements within their context using a depth-
based object detector as a supervision signal. We use an
adapted version of the Intelligent Adaptive Curiosity (IAC)
[19] to drive the exploration of the environment and make
saliency learning faster and more efficient. Once exploration
and learning is finished, we exploit the model to generate
environment specific saliency maps using only the RGB
image. The next two sections describe the overall method
by describing the incremental saliency learning approach and
the exploration strategy based on IAC.

A. Saliency learning

We define salient elements as being objects of the envi-
ronment that are lying on planar surfaces (typically tables
or floor), with a range size between 10 and 150 centimeters.
The saliency learning is made possible by the interaction of
three modules described below.

1) A feature extraction applied to the RGB image that
encodes the color of each pixel and its neighborhood
at different scales, averaged using superpixels. The
method is more extensively explained in [6]. The
feature extractor is applied on the whole input frame,
and returns a 39 dimensions feature vector for each
pixel. The feature extraction is much faster to com-
pute than the geometric segmentation, and is available
everywhere.

2) A segmentation algorithm that detects objects lying
on planar surfaces is applied on the depth map. We
use an adapted version of the method proposed by

[5]. The depth map is turned into a point cloud for
geometrical calculation. First, the main plane of the
input point cloud, supposed to be the floor plane is
detected and labeled as not salient. Then, big planes
that are perpendicular to the ground are filtered and
also labeled as not salient, as they are likely to be
walls. Remaining points are then grouped by a k-
d tree clustering and represent object candidates. To
avoid false positives as much as possible, we categorize
as unknown clusters that are either too small, too
larger, or having a contact with the border of the
frame. Remaining clusters are considered as salient
objects. The point cloud is then converted back to a
segmentation mask of the image frame based on the
obtained labels (see Fig. 2, second row for illustration).

3) A classifier that is continuously updated based on the
saliency labels provided by the segmentation mask and
the corresponding RGB features. Each pixel of the
input image is associated with a feature vector from
the feature extractor and a label from the segmentation.
We train our classifier with the feature-label samples in
order to predict the saliency of a given pixel. We only
train the classifier with data that is classified as salient
or not salient. Pixels classified as unknown are not
considered. The classifier used in our implementation
is a random forest, which is not designed for online
training. No available version [15], [22] of online
random forest was satisfying in terms of speed and
performance, so we adapted the offline version to make
re-training fast enough. To this end, a limited number
of samples from each new frame is used to update the
classifier: for each new frame, we randomly pick up
700 pixels and add the corresponding data to a dataset
cumulated from the beginning of the sequence. Then,
we update the classifier by only re-training a small
fraction of the forest at a time: we randomly select
4 trees among the 30 in the forest, and we retrain
those tree with 70% of the dataset cumulated from
the beginning of the sequence. Lastly we restrict the
size of the cumulated dataset to 100000 samples. If the
dataset exceeds this size, we randomly remove samples
to meet the maximum size requirement. As a result,
after each update, the classifier is able to estimate the
saliency of an input based on the model trained with
the previous observations, and the RGB image only.

In the exploitation stage, the saliency map is constructed
as follows: RGB features are extracted for each pixel of the
input and sent to the classifier. For each pixel, the classifier
outputs a score between 0 and 1 that estimates the saliency.
The classifier score is then associated to each pixel of the
input image to reconstruct the saliency map.

B. IAC-based exploration

Exploration to gather training samples has a critical impact
on the learning quality and efficiency. In the scope of
autonomous and lifelong learning, an exploration strategy
is necessary to guide learning and focus on areas where



learning is neither trivial nor impossible. Making sure that
learning is still possible avoids decreasing in the learning
quality because of irrelevant samples, and speeds up the
overall learning rate by focusing on appropriate tasks first.

Our exploration strategy is based on an adapted version
of the IAC (Intelligent Adaptive Curiosity) algorithm [19].
IAC is a method to drive a robot’s actions toward situa-
tions that maximize the learning progress. This algorithm
makes the agent focus on cases that are neither too easy
nor too hard based on the learning state, so that progress
are constantly made and no time is wasted in unlearnable
situations. Moreover, progress maximization has been found
to be an optimal strategy to learn in a limited amount of time
[16]. IAC has been manly used to learn a mapping between
motor commands and sensory feedbacks. To our knowledge,
the algorithm has not been applied so far for pure vision
problem, or used for robotics navigation.

IAC’s key components are:

• a learner that learns to make predictions about the
environment. In our case, the learner is the random
forest module described in section II

• a separation of the exploration space into regions. In
our case, the regions are divided based on positions and
orientations of the robot.

• a meta-learner monitoring the learning rate in each
region, and estimating the progress in each of them.

IAC suggests that the next action to be taken by the
robot should be randomly picked up in the region having
the highest learning progress. We use a similar approach to
drive the robot in its environment: the environment (typically
the room to explore) is arbitrarily divided into regions.
After evaluating the progress in each of them, a position
and orientation of the robot is randomly selected in the
most progressing region. The robot next moves to this new
position, obtains a new RGB-D input there, updates its
saliency model and updates the progress estimation.

In our approach, the meta-learner stores for each region
a history of the error rate based on the differences between
estimated saliency (from the learner estimation) and observed
saliency (from the segmentation algorithm). When a new
frame is acquired in region i after t observations in the
region, the meta-learner of region i is updated by adding
the current error rate Erri(t) to the history:

Erri(t) = 1− F1(C(O,E)) = 1− 2tp

2tp+ fp+ fn
(1)

where F1(C(O,E)) is the F1 score of the confusion matrix
C(O,E) based on the observed O and estimated E saliency
maps, tp, fp and fn are the true positives, false positives and
false negatives, from the confusion matrix. We use the F1

score as our error metrics for Erri, because not salient pixels
are representing more than 80% of the samples, making
accuracy inappropriate for error estimation.

An estimation of the learning progress in region i, is
obtained by a linear regression of the error rate history Erri

over the last θ samples:Erri(t− θ)
...

Erri(t)

 = βi(t)×

t− θ
...
t

+

ε(t− θ)
...
ε(t)

 (2)

with ε(t) the residual error. The learning progress LPi in
region i is defined as the derivative of the learning curve (or
the opposite of the error rate) in i. Therefore, we have

LPi(t) = −βi(t) (3)

In the original version of IAC, the region to be explored
next is the one with highest learning progress. This strategy is
optimal only if taking a specific action has a negligible cost.
In the case where actions are displacements of a robot from
one location to another, it is clear that exploring in the same
area for a few iteration may be more efficient than constantly
making long displacement to the most progressing areas. To
make learning progress and action selection better suited to
our case, we force exploration to stay in the same region until
N frames are obtained. The exploration procedure is then as
follows: In a given region, we randomly select N positions
(we found 10 to be a good trade-off in our experiments), and
get an associated frames for each of them. We update at each
new frame the learner and meta-learner. After N frames, we
select the next region i to be explored with a probability that
is proportional to LPi 75% of the time, and randomly 25%
of the time. We then move to this region and get N new
frames from there.

III. EXPERIMENTAL RESULTS

To validate the efficiency of our approach, we used two
different datasets.

The first one was collected from a Pioneer 3DX robot,
with a Kinect RGB-D camera mounted at 1 meter from the
ground and tilted slightly downward. We manually controlled
the robot in a room containing several objects such as chairs,
desks, or trash bins. We recorded a 5 minutes length video
sequence in which a large number of views of the room
were captured. Then, we moved the objects in the room and
recorded another video so as to get a sequence for learning
and one for testing. On the testing sequence, we manually
labeled the salient elements for about 100 frames in order to
evaluate the prediction capability of our system.

The second one is a publicly available dataset called RGB-
D scenes dataset [14], composed with 8 video sequences of
indoor scenes of everyday-life objects on tables. Objects are
labeled in bounding boxes, which is not accurate enough for
our evaluation. Therefore, we use the segmentation result of
100 frames and clean them up to obtain a ground truth. Those
frames are removed from the training dataset.

The experiments were run on Ubuntu 10.12 with an Intel
Core i3-3240, CPU at 3.4GHz quadcore processor. To learn
saliency, several configurations were tested and compared.
Frames of the sequence were either presented in a chrono-
logical order, random order, or based on learning progress.
Section III-A provides details about the efficiency of the



resulting saliency itself, whereas section III-B describes the
different strategies and their efficiency to speed up learning.

A. Saliency learning evaluation

Before presenting the incremental learning progression,
we first analyze the final performance reached when enough
samples are used to train the classifier. In our case, we
found that about 1000 frames were enough to obtain the best
possible accuracy on both datasets. However, for clarity, the
evaluation in this section is done with a saliency model that
was learned from the entire training sequence and evaluated
on the testing sequence. We first demonstrate the benefit of
using a learned saliency approach compared to the original
segmentation only. Figure 2 illustrates a few frames from
the sequence together with the saliency and the segmentation
results.

From these samples, we observe that the segmentation
algorithm is such that nothing salient can be detected further
than 4 meters away. On the other hand, saliency estimation is
applied on the whole image and the generalization capability
of the classifier makes it possible to detect salient objects at
more than four meters. Second, reflective surfaces are often
hard to detect by the Kinect sensor. However, the aspect of
salient reflective objects can be partially learned and fully
retrieved based on the RGB data only. Third, the segmen-
tation algorithm is very restrictive and is often not able to
detect salient elements if they are in contact with a border of
the image or badly captured by the Kinect. On the contrary,
the saliency algorithm provides an estimate of saliency even
if the object is partially cut, occluded, or captured with a
poor image quality. Last, the segmentation processes input at
0.5Hz to 1.5Hz, depending on the geometrical complexity of
the input. The saliency map estimation is processed at 8Hz,
which makes it much more computationally efficient. Once
exploration is finished, the segmentation can be disabled
and saliency can be estimated at 8Hz for further processing
(object localization for example).

To demonstrate the accuracy of our saliency estimation,
we select three related saliency algorithms and compute the
ROC curves for each method on both datasets. BMS [23]
and GBVS [11] are among the most accurate RGB saliency
methods according to the MIT saliency benchmark [4]. BMS
is used with parameters that highlight salient objects rather
than salient fixations. In addition, we use the new version
of the VOCUS2 algorithm [9] along with the configuration
file dedicated to the task of object detection in cluttered
scenes (top-down saliency). On the robot sequence, we also
evaluate the segmentation performance. Regions that are not
labeled as salient or not salient are replaced by random noise
between 0 and 1. Results are displayed in figure 3.

Based on the ROC evaluation, our method significantly
outperforms the evaluated bottom-up and top-down tech-
niques on both datasets, which was expected because it
is trained specifically for the environment. We can also
observe that most of the evaluated techniques outperforms
the depth segmentation. This is because segmentation only
returns a saliency result when this information is available.

As a result, a large portion of the input frames is neither
salient nor not salient and therefore estimated as noise in
the ROC evaluation. For the same reason, when available,
the segmentation hardly ever makes mistake about saliency
prediction, which explains why the true positive rate is much
higher than other methods when the false positive rate is very
low.

In figure 4, a comparison between the methods is pre-
sented. First, our method provides an estimate of the shape
and size of the salient object, which is not the case of tech-
niques such as GBVS that are more stimuli-based. Second,
the segmentation, that is based on geometrical consideration,
avoids the detection of distractors that are visually salient
(windows, trees outside, red power outlet) but irrelevant for
our tasks. Last, it enhances elements that are not naturally
salient (mobile container, desk) but consistent with our
definition.

B. Exploration strategy

We now look at the evolution of the saliency quality
during incremental learning. Figure 5 first shows a qualitative
example of the evolution of the saliency at a given point
of view, while the sequence is used in chronological order
for training the classifier. We can observe the generalization
capability because even before the seat was observed (in
frame 400), the classifier is already able to recognize it as
a salient element, because it has already learned a partial
model of the background.

To evaluate the exploration strategy proposed in Section II-
B, we use the two datasets by simulating displacements of the
robot. Instead of selecting a random position/orientation in a
region and physically moving to this location, we associate
each frame of the dataset with a position/orientation (and,
as a result, a region), and we randomly pick frames in the
regions selected by IAC. For the two sequences recorded in
our laboratory, the positions and orientations of the robot
were obtained by a SLAM algorithm. We then arbitrarily
defined 16 regions based on the position and orientation of
the robot in the room: the positions were segmented in 4
equal regions based on the center of the room map, and
the orientations were segmented in 4 equal cluster inside
each region (see Figure 8). For RGB-D scenes, we used
the sequence table small 2 only. The video sequences are
provided without any localization information. However, the
trajectory of the acquisition sensor is such that each point
of view is seen only once in the sequence. We then created
5 regions by dividing the video into five sub-sequences of
equal length.

To demonstrate the benefits of exploring the environment
using IAC, we compare the performance of the system when
positions of the robot are selected with IAC, randomly,
and following the chronological order of the sequence. In
practice, selecting a position of the robot is equivalent in
our case with selecting a frame from the dataset.

The performance of the system was evaluated using the
evolution of the overall error rate of the system. Based on
the reference frames on which a ground truth is available, we
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Fig. 8. Trajectory of the robot in the lab for one of the two sequences and
division of the space into regions. Arrows represent a position/orientation
at which an RGB-D frame is available. Dashed lines show the separation
of the space based on position. Color of the arrow show the division based
on orientation. In total, 16 regions are available.

compare the estimated saliency map for all of these frames
with the available ground truth. Using the formula provided
by equation 1 for each frame and taking the average error,
we obtain the overall error rate. Note that the overall error
rate differs from the region error rate used to determine the
learning progress in Section II-B. The overall error rate is
an extrinsic metrics used to evaluate the performance of the
system, whereas the region error rate is intrinsic (based on
segmentation rather than ground truth) and is used to get an
estimate of the error in each region. At each new observation,
we evaluate the current overall error rate and compare its
evolution in time for each exploration strategy.

For IAC and random frame selection, we run the exper-
iment 10 times and consider the average and variance over
those sequences. As a reference, we also display the overall
error rate obtained with a model trained offline with all
samples of the entire sequences, as well as the performance



of the BMS [23] saliency maps. Results are displayed in
Figure 6. As expected, the offline model is a lower bound of
the error rate, and the system tends to reach this limit after
a certain number of observations, whatever the exploration
strategy. Our method rapidly outperforms BMS when enough
observations are obtained. The chronological exploration is
slower to converge than random exploration at the beginning.
Last, IAC seems to be the exploration strategy that provides
the faster learning rate. Note that the difference between
random and IAC-based exploration is less significant on the
robot sequence, but the error variance of IAC is much lower
than the one for random exploration.

To get a better insight of the selection of the region and
the proportion of time spend in each region, we represent in
Figure 7 the proportion of time spent in each region at each
new observation. The curves were obtained from the table
small 2 sequence, each curve representing the percentage of
time spent in a given region. As opposed to random selection,
where the time spend in each region is almost constant, IAC
has a clear evolution of the most visited region. Starting
with regions where error rate is decreasing fast (i.e. where
progress is high), it then spends much more time on regions
where progress is slower.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to incre-
mentally learn visual saliency, using an exploration strategy
based on learning progress. Using a reliable, yet restrictive
and slow segmentation of salient elements, we construct
a model of saliency that is much faster to compute, and
getting better as new observations are obtained. This method
shows good performance in the case of detecting objects
lying on planar surfaces, as a clear geometrical definition can
describe these situations. In this case, our results outperform
state-of-the-art saliency approaches. To allow the robot to
autonomously discover and learn about its environment, we
use an adapted version of IAC: we divide the exploration
space into regions, and drive our exploration to spend more
time on regions where progress is the highest. This type of
exploration strategy makes learning faster and better than
it would be with random exploration and enables lifelong
learning.

In a future work, we would like to investigate further
the exploration strategy based on learning progress. Indeed,
the time spent by the robot for displacement from one
region to another one is not taken into account and an
optimal trade-off between displacement time and learning
time should be found. We could also apply this framework
with other definitions of saliency. Instead of a generic object
segmentation, we could for example use objects detectors
and specialize our saliency to find those objects within their
environments.
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