A generative-discriminative learning model for noisy information fusion - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

A generative-discriminative learning model for noisy information fusion

Thomas Hecht

Résumé

This article is concerned with the acquisition of multimodal integration capacities by learning algorithms. Humans seem to perform statistically optimal fusion, and this ability may be gradually learned from experience. In order to stress the advantage of learning approaches in contrast to hand-coded models, we propose a generative-discriminative learning architecture that avoids simplifying assumptions on prior distributions and copes with realistic relationships between observations and underlying values. We base our investigation on a simple self-organized approach, for which we show statistical near-optimality properties by explicit comparison to an equivalent Bayesian model on a realistic artificial dataset.
Fichier principal
Vignette du fichier
icdl15.pdf (634.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01250967 , version 1 (06-01-2016)

Identifiants

Citer

Thomas Hecht, Alexander Gepperth. A generative-discriminative learning model for noisy information fusion. International Conference on Development and Learning (ICDL), Aug 2015, Providence, United States. ⟨10.1109/DEVLRN.2015.7346148⟩. ⟨hal-01250967⟩
115 Consultations
131 Téléchargements

Altmetric

Partager

More