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Abstract—This article is concerned with the acquisition of mul-
timodal integration capacities by learning algorithms. Humans
seem to perform statistically optimal fusion, and this ability
may be gradually learned from experience. In order to stress
the advantage of learning approaches in contrast to hand-coded
models, we propose a generative-discriminative learning architec-
ture that avoids simplifying assumptions on prior distributions
and copes with realistic relationships between observations and
underlying values. We base our investigation on a simple self-
organized approach, for which we show statistical near-optimality
properties by explicit comparison to an equivalent Bayesian
model on a realistic artificial dataset.

I. INTRODUCTION

Autonomous agents must possess the ability to acquire
knowledge from multiple sensors in an unsupervised way.
Similarly, proper multi-sensor fusion is a necessity for any
biological organism [1], and it seems that, under certain
conditions, humans and other animals can perform statisti-
cally optimal multisensory integration [2]. As to how this is
achieved, many questions remain : mainly, one can speculate
whether there is a generic, sensor-independent fusion mech-
anism taking into account the basic statistical laws such as
Bayes’ rule at some neural level, or whether optimal fusion,
where it occurs, is something that can be learned.

In this article we present an argument for the latter case
since it stands to reason that multisensory integration in
biological systems is not generally innate but learned [3]. This
ability seems to be gradually acquired in the course of develop-
ment, and then refined and maintained throughout a life-span
which would obviously be desirable for intelligent agents to
reproduce. Thus not only the question of how multisensory
integration is carried out is of importance, but also of how it
is acquired. As we believe that the acquisition and maintenance
of fusion skills is a life-long task, we propose a neural
model capable of performing stable multisensor fusion without
assumptions about noise variances. Our approach uses a hybrid
architecture combining an unsupervised self-organizing map
(SOM) layer with a supervised linear regression layer.

This article wishes to demonstrate that a SOM can learn
a viable representation of a given data distribution given by
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examples thus laying the basis for an optimal fusion decision
taken by a subsequent linear regression module. We put
emphasis of advantages of such a generative-discriminative
model by showing that the discriminative ability to focus on a
given-task best performance can be modulated by underlying
statistics of data distribution captured by the unsupervised
generative model. We compare our system final modulated
decision with the well-known Bayesian fusion optimum.

II. RELATED WORK

Also called ”multisensory data fusion”, multimodal inte-
gration aims at providing a robust and unified representa-
tion of the environment based on multiple sensors inputs
[4]. In mammalian brains, this process seems to be implied
in maximizing information gathering and reliability by the
effective use of a set of available observations from different
sensors [5]. It has been widely studied at different levels (i.e.
from particular cortical cells to individual behaviour) and into
different scientific fields (e.g. neurophysiology, neuroimagery,
psychophysics or neurobiology).

There are many reasons for believing that self-organization
is a fundamental mechanism used in the brain [6]. Studies
dealing with self-organizing artificial neural networks and
multimodal fusion are usually based on properties one can
find in biology : continuous unsupervised processes, adap-
tation and plasticity, topological preservation of the input
space relationship or dimensionality reduction. Self-organized
approaches have the potential to establish a transition from
high-dimensional, noisy and modality-specific sensor readings
to abstract, multimodal and symbolic concepts, whereas they
are considered less appropriate for reproducing statistical op-
timality which should be respected by any integration process.

Some recent papers used SOM or SOM-like bio-imitating
architectures in order to reproduce individual behaviours or
biological phenomena by imitating, more or less clumsily,
hierarchical layered interconnected cortical areas, especially
superior colliculus ( [7] and [8] which place emphasis on the
positive impact of a non-linear transfer function applied to
neural maps and [9], [10] and [11] which deal with imitating
SC multisensory integration). Several studies aim at designing
models inspired by recent neurophysiological findings without
fully copying nature architectures or processes, focusing on



well-defined applications like information retrieval [12], visual
categorisation [13], data visualisation [14] or audio-visual
multimodal integration [15].

III. METHODS

A. Hybrid model

In this section, we detail components and notations of the
proposed neural architecture. Our bio-inspired hybrid learning
method, depicted in Fig. 1, is presented noisy observations
si, i = 0 . . . N − 1, obtained one after the other from
N sensors, where the dependence of observations on the
underlying ”true” sensor value r is described by a prob-
abilistic noise model (throughout the article, we will use
N = 2 sensors to keep things simple). In order to increase
the computational capacities of the architecture, observations
and the ”true” underlying value r are represented using a
technique variously termed ”population encoding” or ”basis
function representation”, described in Sec. III-B. From the
set of population-coded observations, the SOM algorithm
III-C creates a combinatorial internal representation capturing
key statistical properties of observations. Each neuron-like
unit in this representation preferentially responds to certain
input stimuli, the generative aspect of the SOM algorithm
ensuring that common combinations cause strong responses
and uncommon ones weak responses. Subsequently, a decoder
module maps the internal representation to the population-
coded ”true value” r by using a multiple linear regression
(MLR) algorithm (see Sec. III-D) resulting in an estimate r∗nn.
Learning the decoder function happens in a supervised fashion
using the known underlying values r.

sensors
corrupted by noise

RMSE

SOM
multiple

linear regression
true

value

decision

Fig. 1: Detailed illustrative view of the proposed system.

To verify that the internal representation indeed captures
important statistical properties relevant to the fusion process,
an alternative fusion mechanism that linearly maps sensory in-
puts to true values is investigated as well, producing estimates
denotes r∗alt . The comparison of population-coded estimates
and true values is performed after a decoding step using the
mean squared error (MSE) measure.

B. Population encoding for raw sensor values

Population coding or ”basis function encoding” allows a
common representational format based on biological observa-
tions [16] : this kind of discrete information coding occurs
at the sensory input areas of the brain [17], [18]. A quantity
is encoded as an ”activation” on a two-dimensional surface,
where the position and amplitude of the activation ”blob”
respectively code for value and confidence [19].

We use a simpler version of the population coding idea in
order to enrich the representation of the raw unimodal sensor
measurement by projecting scalars from a specific range into
a unified two-dimensional grid of l × c of pixels : values
are still encoded by placing a 2D Gaussian centered on a
determined position but we do not encode the confidence part
of the quantity into the block. The main reason why we do
so is because the very point of our system is to identify the
variability in data, whatever distribution it comes from. The
encoding process translates a continuous variable from its own
continuous range to a discrete position into a discrete space.
Then a 2D Gaussian blob with given x- and y-axis variance is
placed at this position. To prevent the center of the blob from
exceeding the discrete border (e.g. because of the addition
of noise to the value to encode) we usually set a margin δ
which is used in the discretization process : with a and b being
the continuous borders and c and d the discrete borders, the
translation [a, b]→ [c; d] is replaced by [a, b]→ [c+ δ; d− δ].

C. Kohonen’s Self-Organizing Map

The Kohonen’s Self-Organizing Map (SOM) algorithm is a
topology-based (”nearby patterns should be mapped by nearby
neurons”) unsupervised clustering method which combines
biological inspiration and a solid mathematical foundation.
The algorithm assumes the existence of p × q competing
units receiving m-dimensional input vectors xi ∈ X and
implements a winner-takes-most learning strategy. Each unit
uj has an associated codebook vector or prototype wj which
is adapted over time. For each iteration t, an input sample
xt is randomly picked from X and the learning algorithm
determines the best-matching unit (BMU). Usually, the BMU
is found by applying a distance function. In this article, we
use the so-called dot-product maps [20] in which codebook
vectors wj are compared to the current input sample xt

through the cosine similarity. The current BMU corresponds
to the unit for which w?t = argmaxj sim(xt,wj) (xt and
wj are kept normalized to constant length). The grid then
moves its prototype a certain proportion ηt of this similarity
closer to xt. A set of adjoining codebook vectors around the
BMU are also moved closer to the current training case. This
set of ”adjoining” units is determined by a kernel function
φ(wa,wb, σt) called neighborhood function which tells for a
codebook wa vector whether it stays in the influence area
of another codebook vector wb, with respect to an influence
radius σt. Every wi ∈W is updated with the following rule :
wt+1
i ← wti + ηtφ(wti,w

?, σt)(xt −w?).
The result of the algorithm is the mapping of the grid

of codebook vectors to the underlying structure of the input
samples in a low-dimensional projection. At each step t, the
similarity of a unit’s codebook vector to the input sample
defines that unit’s activation ati.

The SOM output activity oti is the activity seen from
modules following the SOM in the architecture, here the MLR
module. It is defined by applying an output function Φ(•)
to the map activations (here, Φ and its parameters are the
same for all units). The importance of this output function



has been studied in [21]. In this article, because we use a
cosine similarity, Φ is a power function for which each unit
activity and defined as :

oti = Φ(ati, p) = {ati}p

D. Linear regression model

Applied to to real-valued target functions, the linear regres-
sion model explains a random continuous dependent target
variable y by a linear combination of K explanatory random
independent known variables x1, x2, . . . , xK . This model can
be formally defined by:

y = β0x0 + β1x1 + β2x2 + . . .+ βKxK + ε

with β0, β1, . . . , βK some parameters and ε the normally
distributed disturbance term and x0 = 1.

If the data set consists of M pairs (xi, yi) with xi =
(x0, x1, . . . , xK)T, the model looks for the optimal weight
vector w? = (β?0 , β

?
1 , . . . , β

?
K) in terms of the squared error

(SE). Because we wish to work in an on-line fashion, we
choose an iterative method to minimize the cost function
SE(•). The Widrow-Hoff algorithm applies stochastic gradient
descent techniques to the linear regression objective function.
The error is not computed for all data points any more but for
each individual example. It becomes, for the i-th update of the
linear model weights:

SEon-line
i (w) =

1

2
(hw(xi)− yi)2

with hw(xn) = wTxn the value of the hypothesis function
attached to a certain w.

E. Data generation

During experiments, sensor values, target values and rela-
tions between them belong to two ”families” of data generation
: in one case (data generation Type 1) the system receives
two values built by adding noise directly to a single random
target value; in the other case (data generation Type 2), the
system generates two independent random values, which are
corrupted by noise, and the target value is a linear or non-linear
combination of these two values.

1) Data generation Type 1: The first ”family” of input
data, so-called data generation Type 1 follows the ”classic”
Bayesian framework : a single ”true” value r that gives rise to
several noisy sensor readings si. We suppose that the sensor
readings si are generated independently from each other from
a unique r value by additive Gaussian noise ε̃.

r ∼ pUa,b(x)

si = r + ε̃i

ε̃ ∼ PNµ,σ(x)

2) Data generation Type 2: A more realistic setting is
where the sensory readings si and the underlying true value
r are more tightly coupled. In this second ”family” of input
data, so-called data generation type 2, we suppose that the
si are no longer class-conditionally independent and depend

on r as well as each other. In other words, all of the si have
to be considered simultaneously for inferring r. Formally, we
express this by drawing the s̃i independently from a bounded
uniform distribution, and then making r a function of the s̃i:
r = f(s̃1, s̃2, . . . ). Afterwards, the s̃i are subjected to additive
Gaussian noise in order to produce the measured values si:

s̃i ∼ pUa,b(x)

r = f(s̃1, s̃2, . . . )

ε̃i ∼ PNµ,σ(x)

si = s̃i + ε̃i

F. Extending the classic Bayesian integration framework

In this section, we will present Bayesian multisensory fusion
in a setting that is close to real-life operation. In particular, we
will drop the common assumption of r being unbounded and
introduce an interval r ∈ [a, b] into the Bayesian calculations.
In the most generic form, Bayesian sensor fusion aims to find
the most probable value of r given the observations s:

r∗ = arg maxrp(r|s) ∼ arg maxrp(s|r)p(r) (1)

This amounts to a maximization problem, putting the first
derivative with respect to r to 0 yields the necessary condition:

∂rp(s|r)p(r) = 0

⇔ ∂r (p(s|r)) p(r) + p(s|r)∂sp(r) = 0 (2)

Eqn. (2) has trivial solutions outside the interval [a, b]
where both p(s) and ∂sp(r) vanish. However they minimize
p(s|r)p(r) (inserting an appropriate r always gives a value of
0), and are thus excluded from our considerations.

If, however, a solution exists inside [a, b], it must obey the
simplified equation

∂s (p(s|r)) = 0 (3)

On the other hand, if eqn.( 3) has a non-trivial solution outside
the interval [a, b] then it must be either s = a or s = b,
depending on which is closer, because the infinities in the
derivatives of p(r) achieve a ”clamping” of obtained fusion
results to the known interval [a, b]. This can be implemented
very efficiently, without solving any equations at all, as a post-
processing step of fusion.

Please bear in mind that we do not make any assumptions
about the conditional distributions p(s|r) which may be de-
fined by additive noise or other models, both of which we
will discuss in next paragraphs.

1) Dealing with Data generation Type 2: The only tricky
point consists here in computing the quantity p(s|r) required
by eqn. (2). As the sensor measurements si no longer directly
depend on r but on s̃i, the calculation is a little more cum-
bersome, especially since the factorization p(s|r) = Πip(si|r)
no longer holds. For a simplified setting of two sensors we



obtain:

p(s1s2|r) =

∫ ∫
ds̃1ds̃2p(s1s2|s̃1s̃2r)p(s̃1s̃2|r)

=

∫ ∫
ds̃1ds̃2p(s1s2|s̃1s̃2)p(s̃1s̃2|r)

=

∫ ∫
ds̃1ds̃2p(s1|s̃1)p(s2|s̃2)δ(f(s̃1, s̃2)− r)

=

∫
ds̃1p(s1|s̃1)p(s2|f−1s2 (s̃1, r)) (4)

where the first transformation follows from the law of total
probability: we insert a complete set of disjoint states s̃1s̃2.
In the second line, the factor r has been removed from the
conditional probability p(s1s2|s̃1s̃2r) as it can be deduced
from s̃1 and s̃2. Later, the conditional probability has been
split as si depends only on s̃i.

The function f−1s2 (s1, r) is the function obtained by solving
f(s1, s2, . . . ) = r for s2. The optimal fused value of r in the
interval [a, b] is obtained as before by maximizing eqn. (4). As
the resulting expression is in general intractable analytically,
we resort to numerical methods to solve it for s. It should be
stressed that eqn. (4) can be derived for any number of sensors
although its numerical solution will get more and more costly.

IV. EXPERIMENTS

For all the experiments described in this section, the case
two virtual sensors is considered. We assume that they both
observe the same real phenomenon in the environment, which
is represented by a single real number. We demonstrate the
abilities of our generative-discriminative system by comparing
its performances with optimal Bayesian fusion which is not
learned but uses prior knowledge of noise type and properties
[22] : the Bayesian optimal fusion weights are statistically
relevant but, on the other hand, specifically need prior estimate
of sensor variances. Our common representation space is able
to represent the statistical properties of all signals sufficiently
well to allow for correct fusion.

A. Set up
Whatever the type of data generation, each experiment we

conduct in this section varies the variance of each artificial
sensor and measures how efficient fusion can be for a given
combination. For simplicity, we use two simulated sensors
with five possible standard deviations : for the k-th sensor,
σk ∈ [0.01, 0.0575, 0.105, 0.1525, 0.2].

Each target and noisy sensors values are respectively spa-
tially encoded in shape of a Gaussian blob located in a
1 × 200 bunch of pixels (this bunch represents the discrete
range [0; 100]) with an integrated margin δ = 3 as described
in Sec. III-B.

The common representation space takes the shape of a
20 × 20 grid. The 400 corresponding codebook vectors are
initialized uniformly at random and then updated following
Kohonen’s learning algorithm with a Gaussian neighborhood
function and iteration-indexed decreasing neighborhood radius
and learning rate (both with exponential decay), as described
in Sec. III-C.

Fig. 2: Comparison of mean squared errors between our
architecture (solid line) and Bayesian (dotted line) fusion
decisions with data generation type 1 and additive Gaussian
noise

For a given data generation type, for each of the 25 standard
deviations couples and each of the 3 noise models, a SOM is
trained during 100000 iterations on available spatially encoded
training samples : at each step the SOM tries to map an input
vector ξt which is the concatenation of noisy st1 and st2, with
1 ≤ t ≤ 100000.

After the first 100000 first steps, a MLR iteratively brings
face to face the SOM output (with p = 25 for the power
output function) with the spatially encoded target value. This
interval of 100000 steps is not mandatory but allows a faster
convergence of the MLR because it receives output from a
quasi-stable learned organisation in the SOM. The MLR uses
a learning rate α = 1× 10−4.

At the end, the MLR prediction abilities are tested on
10000 never-seen sensor and target values with mean-squared
error and compared with Bayesian (or extended Bayesian)
predictions and MLR predictions based directly on encoded
sensors couples.

B. Results

For data generated by ”data generation type 1”, with ad-
ditive Gaussian noise for bounded target value, results show
that the proposed architecture reaches classic and extended
Bayesian frameworks results (Fig. 2). Because ”data genera-
tion type 1” deals with linear combinations of sensor values
weighted by sensors noise variance, a single MLR module can
achieve such performances, on condition that there are enough
available training observations (we verified that MSE predic-
tions are not significantly different from Bayesian predictions).
The added SOM module with a non-linear output function
does not damage the performances of the MLR module. Since
results are near-optimal, we do not show the effect of a fusion
decision modulation here.

For data generated by ”data generation type 2”, with
strongly coupled sensors with additive Gaussian noise, results



(a) (b)

Fig. 3: Comparison of mean squared errors between our architecture (solid line) and Bayesian (dotted line) fusion decisions
with data generation type 2 and additive Gaussian noise. Dash-dot lines represent cases where a fusion decision is taken
only if BMU scores are greater than the median of BMU scores of the trained grid. (a) : targets values are linear combinations
of sensors values ; (b) : targets values are non-linear combinations of sensors values.

show that the proposed architecture works far better than only
with the MLR module (note that, in these cases, MSE per-
formances are out of range in presented figures). Target value
and sensors values are not class-conditionally independent and
there is no direct linear link between the latter and the former
anymore. The learning phase provides a self-organized space
which preserves encoded noisy sensors couples topological re-
lationships and allows reduced representation of observations.
The MLR module then receives a non-linear projection of the
map activation – comparable to a kernel trick over cosine
similarities – which allows a better prediction of the real target
value.

Because the generative part of our system tries to represent
data distribution statistics, it can calculate how probable an
observation of encoded sensors values actually is. We apply
the following simple heuristic to exclude outliers which do not
permit sensible fusion results : the regression fusion decision
is taken into account only if the current BMU score is greater
than the median of past BMU scores. More complex heuristics
could be used as thresholds to improve performance. But
this kind of filter explicitly shows that the SOM module au-
tonomously catches intrinsic variances of noisy sensors values,
and that we can use this information to remove outliers. This
very point is a huge advantage of the proposed architecture and
improves results especially in case of realistic relationships
between sensors values and true values (Fig. 3a and 3b).

V. DISCUSSION

For a typical Bayesian approach, the distribution of the true
stimulus, the noise models and the variances of the problem
must be known beforehand in order to perform inference. In
our approach, such parameters are implicitly estimated from
data using a generative learning algorithm (SOM). Then, in
related modeling approaches on multisensory fusion [3], it is

assumed that the distribution of the underlying ”true” stimulus
r, p(r) is uniform and unbounded : p(r) ∼ U(∞,∞), and that
observations si for each sensor are obtained from r by adding
Gaussian noise with a variance that is known for each sen-
sor. Individual observations are therefore class-conditionally
independent. In this article, we treat Bayesian multisensory
integration in a way much closer to real experiments. We
introduce a finite interval [a, b] to which r is constrained which
introduces additional complexity into the Bayesian formulas.
Lastly, the models according to which observations si are
generated from the true stimulus r are considerably more
complex, and above all individual observations need no longer
be class-conditionally independent.

When a dependant linear link between target value and
sensors values exists (”data generation type 1”), our system
is able to reach good performances – especially thanks to the
MLR module – which are comparable to Bayesian optima.
When this link is more realistic and potentially non-linear
(”data generation type 2”), the MLR module needs to rely
on the non-linear SOM output to achieve performance close
to extended Bayesian framework.

We can significantly improve our system results by filtering
fusion decisions with available quality measures based on
BMU scores. Without this fusion decision modulation, the
MLR module always combines sensors values, as the clas-
sic Bayesian fusion formula does. Without knowing explicit
information about data distributions or noise variances, the
proposed architecture can perform near-optimal performances
on realistic fusion tasks.

VI. FUTURE WORK

The hybrid architecture presented here still needs to have
ground truths available for the discriminative part of it. A step
towards more autonomy lies in using one cue as ground truth



(a) Self-organizin map BMU test scores (cosine distances) (b) Online regression test errors

Fig. 4: Measuring incremental abilities (with exponential smoothing) of the proprosed system. Entering the non-gray zone, we
provoked a sudden drift in input samples’ statistics : the system continues learning but now over a new input data distribution.
Dash-dot lines and dotted lines represent test samples results, respectively over the first and the second data distribution.

: the system could try to predict a sensor cue based on other
sensors. Such a system also implies information feedback from
the discriminative module to the generative one.

The median threshold used to detect outliers is currently off-
line and global : it consistently rejects half of the decisions
making performance go better in average by combining BMU
scores over all units of the SOM and must be computed
between train and test phases. We need to investigate on-line
and adaptive thresholding techniques and rely on topological
localisation to refine this selection.

Finally, we want our approach to deal with incremental
learning tasks and life-long learning, hopefully on ”real world”
robotics datasets : Fig. 4 displays that our system is able to
produce indicators concerning the non-stationarity of the un-
derlying data properties while avoiding catastrophic forgetting.
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