CONDITIONAL QUANTILE SEQUENTIAL ESTIMATION FOR STOCHASTIC CODES - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

CONDITIONAL QUANTILE SEQUENTIAL ESTIMATION FOR STOCHASTIC CODES

Résumé

This paper is devoted to the estimation of conditional quantile, more precisely the quantile of the output of a real stochastic code whose inputs are in R d. In this purpose, we introduce a stochastic algorithm based on Robbins-Monro algorithm and on k-nearest neighbors theory. We propose conditions on the code for that algorithm to be convergent and study the non-asymptotic rate of convergence of the means square error. Finally, we give optimal parameters of the algorithm to obtain the best rate of convergence.
Fichier principal
Vignette du fichier
draft2.pdf (754.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01187329 , version 1 (26-08-2015)
hal-01187329 , version 2 (16-09-2015)
hal-01187329 , version 3 (11-12-2015)
hal-01187329 , version 4 (28-01-2016)
hal-01187329 , version 5 (19-05-2016)
hal-01187329 , version 6 (13-05-2019)
hal-01187329 , version 7 (20-07-2019)

Identifiants

Citer

Tatiana Labopin-Richard, F Gamboa, Aurélien Garivier. CONDITIONAL QUANTILE SEQUENTIAL ESTIMATION FOR STOCHASTIC CODES. 2015. ⟨hal-01187329v4⟩
385 Consultations
356 Téléchargements

Altmetric

Partager

More