Conditional quantile sequential estimation for stochastic codes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Conditional quantile sequential estimation for stochastic codes

Résumé

We propose and analyze an algorithm for the sequential estimation of a conditional quantile in the context of real stochastic codes with vectorvalued inputs. Our algorithm is based on k-nearest neighbors smoothing within a Robbins-Monro estimator. We discuss the convergence of the algorithm under some conditions on the stochastic code. We provide non-asymptotic rates of convergence of the mean squared error and we discuss the tuning of the algorithm’s parameters.
Fichier principal
Vignette du fichier
GaGaLaSt.pdf (579.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01187329 , version 1 (26-08-2015)
hal-01187329 , version 2 (16-09-2015)
hal-01187329 , version 3 (11-12-2015)
hal-01187329 , version 4 (28-01-2016)
hal-01187329 , version 5 (19-05-2016)
hal-01187329 , version 6 (13-05-2019)
hal-01187329 , version 7 (20-07-2019)

Identifiants

Citer

Tatiana Labopin-Richard, Fabrice Gamboa, Aurélien Garivier, Jerome Stenger. Conditional quantile sequential estimation for stochastic codes. 2015. ⟨hal-01187329v7⟩
385 Consultations
356 Téléchargements

Altmetric

Partager

More