CONDITIONAL QUANTILE SEQUENTIAL ESTIMATION FOR STOCHASTIC CODE
Résumé
This paper is devoted to the estimation of conditional quantile, more precisely the quantile of the output of a real stochastic code whose inputs are in R d. In this purpose, we introduce a stochastic algorithm based on Robbins-Monro algorithm and on k-nearest neighbors theory. We propose conditions on the code for that algorithm to be convergent and study the non-asymptotic rate of convergence of the means square error. Finally, we give optimal parameters of the algorithm to obtain the best rate of convergence.
Origine | Fichiers produits par l'(les) auteur(s) |
---|