Some nodal properties of the quantum harmonic oscillator and other Schrödinger operators in $\mathbb{R}^2$ - Archive ouverte HAL
Article Dans Une Revue Contemporary mathematics Année : 2017

Some nodal properties of the quantum harmonic oscillator and other Schrödinger operators in $\mathbb{R}^2$

Résumé

For the spherical Laplacian on the sphere and for the Dirichlet Laplacian in the square}, Antonie Stern claimed in her PhD thesis (1924) the existence of an infinite sequence of eigenvalues whose corresponding eigenspaces contain an eigenfunction with exactly two nodal domains. These results were given complete proofs respectively by Hans Lewy in 1977, and the authors in 2014 (see also Gauthier-Shalom--Przybytkowski, 2006). In this paper, we obtain similar results for the two dimensional isotropic quantum harmonic oscillator. In the opposite direction, we construct an infinite sequence of regular eigenfunctions with as many nodal domains as allowed by Courant's theorem, up to a factor $\frac{1}{4}$. A classical question for a $2$-dimensional bounded domain is to estimate the length of the nodal set of a Dirichlet eigenfunction in terms of the square root of the energy. In the last section, we consider some Schrödinger operators $-\Delta + V$ in $\mathbb{R}^2$ and we provide bounds for the length of the nodal set of an eigenfunction with energy $\lambda$ in the classically permitted region $\{V(x) < \lambda\}$.
Fichier principal
Vignette du fichier
berard-helffer-nodal-patterns-qho-final-170330.pdf (526.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01160620 , version 1 (06-06-2015)
hal-01160620 , version 2 (27-04-2017)

Identifiants

Citer

Pierre Bérard, Bernard Helffer. Some nodal properties of the quantum harmonic oscillator and other Schrödinger operators in $\mathbb{R}^2$. Contemporary mathematics, 2017, Geometric and Computational Spectral Theory, 700, pp.87--116. ⟨10.1090/conm/700/14184⟩. ⟨hal-01160620v2⟩
502 Consultations
350 Téléchargements

Altmetric

Partager

More